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Abstract: The quality of remotely sensed images is usually determined by their spatial resolution,
spectral resolution, and coverage. However, due to limitations in the sensor hardware, the spectral
resolution, spatial resolution, and swath width of the coverage are mutually constrained. Remote
sensing image fusion aims at overcoming the different constraints of remote sensing images, to
achieve the purpose of combining the useful information in the different images. However, the
traditional spatial–spectral fusion approach is to use data in the same swath width that covers the
same area and only considers the mutually constrained conditions between the spectral resolution
and spatial resolution. To simultaneously solve the image fusion problems of the swath width,
spatial resolution, and spectral resolution, this paper introduces a method with multi-scale feature
extraction and residual learning with recurrent expanding. To discuss the sensitivity of convolution
operation to different variables of images in different swath widths, we set the sensitivity experiments
in the coverage ratio and offset position. We also performed the simulation and real experiments to
verify the effectiveness of the proposed framework with the Sentinel-2 data, which simulated the
different widths.

Keywords: image fusion; multispectral image; residual network; convolutional neural network;
recurrent expanding; multi-scale feature extraction

1. Introduction

With the rapid development of remote sensing technology, a pattern of joint multi-spatio-spectral
Earth observation has been formed under different surface coverages and revisit cycles. However,
due to the difference in the instrument design, platform height, data storage, and transmission, the
spatial resolution, spectral resolution, and swath width of the images restrict each other. Generally
speaking, due to the limited amount of incident energy, a satellite system can usually only provide
data with either a high spatial resolution but a small number of spectral bands, or with a large number
of spectral bands but a reduced spatial resolution [1]. Specifically, those bands in the multi-channel
images obtained by sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS)
and Sentinel-2 sensors have different spatial resolutions. In addition, there is also a critical tradeoff

between the swath width and the other sensor properties, including the spatial resolution and spectral
resolution. To acquire wider-swath-width images, the Landsat Thematic Mapper (TM) sensor reduces
the 30 m spatial resolution to 120 m. As for the SPOT and Gaofen-1 (GF-1) satellites, acquiring high
spatial resolution images suffers from a small swath width of 60 km compared to the swath width of
800 km in its wide-swath-width imaging mode. These limitations of the sensor properties mean that it
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is difficult for us to simultaneously observe the ground surface at both a fine resolution and a broad
scale. Therefore, many researchers have developed fusion methods to improve these properties of the
original images, to promote the performance of remote sensing applications.

Image fusion technology, which is an important means of information integration in remote
sensing, is often used to solve the problems caused by spatial and spectral limitations. By taking
advantage of the complementary information of two images with different spatial resolutions and
spectral resolutions, high spatial resolution (HR) images with a high spectral resolution can be
synthesized [2,3]. The typical approach is spatial–spectral fusion, which has attracted extensive
research, including component substitution methods [2–5], multi-resolution analysis methods [6–10],
and model optimization based methods [11–17]. For example, researchers have used robust principal
component analysis (PCA) to decompose multispectral images, and have used panchromatic images
to incorporate spatial information into multispectral images [2]. Other researchers have introduced
wavelet transform to decompose both the multispectral images and the panchromatic images and have
then fused the different components based on certain rules, such as the weighted averaging method,
finally reconstructing HR multispectral images [7]. In addition, Song et al. [18] proposed an image
degradation model from SPOT5 to TM to improve the spatial resolution of the TM multispectral bands
by dictionary learning.

At present, deep learning is being gradually introduced to solve the spatial–spectral fusion
problem [19–22]. In these methods, a neural network is trained to extract the spatial and spectral
features and then fuse them to obtain high spatial resolution and high spectral resolution (HRHS)
images. However, for these spatial–spectral fusion methods, the low spatial resolution (LR) image can
only be well sharpened when the images cover the same area and the same spectral range.

With the development of remote sensing satellites and the diversity of sensor imaging modes,
there are two main challenges. Firstly, the different-band images in one multi-channel image have
different spatial resolutions and non-overlapping spectral regions [23]. The traditional spatial and
spectral fusion method, which is limited to the same spectral range, has difficulty dealing with this
problem. When the spectral range of the high and low-resolution images is not the same, injecting
spatial information from an HR band into the low-resolution band is prone to spectral distortion,
which makes it difficult to maintain the spectral information of the images. To deal with the above
fusion problem, multi-band fusion has recently been proposed [24]. For example, Wang et al. [25,26]
proposed a two-stage fusion method based on geostatistics, which first creates a single HR image from
the available high spatial resolution images and then use area-to-point kriging to upscale the residuals,
so as to improve the spatial resolution. However, these methods based on geostatistics cannot be
easily extended to images produced by other sensors. Inspired by deep learning, Palsson et al. [23]
proposed to fuse the Sentinel-2 images using a deep residual network. However, the existing methods
cannot accurately express the response functions between different spectra when the image’s spatial
resolution is enhanced, which causes spectral distortion.

Secondly, the different-band images in different imaging modes have different spatial resolutions
and swath widths [27]. Thus, a part of the image needs to be clipped because of the inconsistency of the
image swath width and size, which leads to a waste of information. Faced with the fusion of images with
different swath widths, the simple way is to interpolate the non-overlapping region, and then splice the
fusion result with the overlapping region. However, with the under-utilization of the complementary
information in the overlapping regions, the fused image suffers from insufficient high-frequency
information and smoothed texture and edge regions. To address this issue, Song et al. [18] obtained
a satisfactory wide spatial detail enhancement result by establishing a coupled sparse model of
the overlapping region. In addition, Sun et al. [28] realized the effective fusion of EO-1 Hyperion
hyperspectral and Advanced Land Imaging (ALI) wide-swath-width multispectral images of the same
spatial resolution by establishing a response relation model between the spectra. However, the spatial
resolution and spectral resolution cannot be simultaneously enhanced.
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The spectral, spatial, and swath-width enhancement of remote sensing images has been considered
in many studies. However, the above methods cannot simultaneously incorporate the spectral,
spatial, and swath-width information into one model. To directly produce HRHS images with a
wide swath width, sufficient spatial and spectral information should be extracted from the images,
which can be viewed as a nonlinear mapping. Deep learning is a way of exploring the nonlinear
mapping between data, which can easily fit an extremely complex nonlinear relationship through a
nonlinear activation function. Because of this advantage, many scholars have applied deep learning
to image fusion and super-resolution tasks. Among the well-known convolutional neural networks
(CNNs) are the super-resolution convolutional neural network (SRCNN) [29], the pansharpening
by convolutional neural network (PCNN) [20], the very deep convolutional network (VDSR) [30],
ResNet [23], VDsen2 [31], and the deep residual pansharpening neural network (DRPNN) [22].

In this paper, we propose a deep convolutional neural network with a residual learning (DRCNN)
based width-space-spectrum (WSS) fusion method to obtain HR multispectral images with both a
high spectral resolution and wide swath width. By mining the nonlinear relationship between the
HR and LR information in the overlapping areas and mapping the transformation of the different
spectral information, an integrated framework is built for WSS fusion. The main contributions of this
paper include:

(1) A spatial–spectral joint learning algorithm for different-swath-width images based on a deep
residual CNN is proposed. The deep learning algorithm provides more reliable prior spatial and
spectral knowledge for the non-overlapping region, modeling by training the mapping between the
spatial and spectral information in the overlapping area.

(2) By exploring the sensitivity of the CNN to different-swath-width image coverage ratios and
offsets, a recurrent expanding reconstruction strategy is established. Through the discussion of the
effects of different variables on the network performance, a highly applicable reconstruction strategy is
put forward.

The rest of this paper is structured as follows. In Section 2, the overall framework of the
proposed method and the recurrent expanding reconstruction strategy are introduced. In Section 3, the
experiments and the results are discussed. Finally, in Section 4, a summary is given.

2. Methodology

2.1. Width-Space-Spectrum Fusion

During the imaging process for remote sensing satellites, the sensor systems have an inevitable
impact on the spatial degradation, the spectral resolution, and the swath width. Different sensors
generate different resolution properties. To describe the relationships between the different observed
images, the specific observation model is defined as follows:

Y = SAngle_Y(AMX) + NY (1)

Z = SAngle_Z(BNX) + NZ (2)

where X represents the original HRHS image with a wide swath width; Y represents the high spatial
resolution and low spectral resolution (HRLS) image with a narrow swath width; Z represents the
low spatial resolution and high spectral resolution (LRHS) image with a wide swath width; A and B
represent the spectral response transform factors of the different imaging modes; M and N represent
the corresponding spatial degradation factors; S is the field of view in different imaging modes, which
can be treated as a mask; Angle_Y is the view angle in the HR imaging mode; Angle_Z is the view
angle in wide-swath-width imaging mode; and NY and NZ represent the additive noise present in the
real multispectral image.

The WSS fusion problem is to reconstruct the approximate HR image X̂ with high spectral
resolution and wide swath width using the LR image Z with a wide swath width and the HR image Y



Remote Sens. 2019, 11, 2203 4 of 19

with a narrow swath width. For this fusion, due to the missing information caused by the different
swath widths, the fusion result cannot be directly obtained by a simple linear method. The key to
achieving WSS fusion is to learn the relationship between the narrow-swath-width HR image and the
wide-swath-width LR image, which can be expressed as the following nonlinear problem:

X̂ = f (Y, Z;θ) (3)

where f (·;θ) is the nonlinear model, which can be trained in the deep learning approach proposed in
this paper, and θ is the parameter in the DRCNN, which represents the weights and biases in different
convolution kernels and the hyper-parameters in the network. The key to WSS fusion is to design a
better network structure and solve the parameters, which can be expressed as:

θ = argmin
θ
‖ X − f (Y, Z;θ) ‖22 + αΩ(θ) (4)

where α is a tradeoff parameter and Ω(·) is a regularization term that prevents overfitting. In this
paper, the weight decay term Ω(θ) = 1

2‖ θ ‖
2
2 is introduced as a regularized penalty function.

From Equation (4), it can be concluded that the solution to the WSS fusion problem lies in the
design of a framework suitable for the fusion problem and conducive to optimization. The network
framework proposed in this paper is elaborated in Section 2.2.

2.2. Network Framework

As shown in Figure 1, the framework of the network proposed in this paper is to undertake
WSS fusion by constantly expanding the image recursively. Based on the residual network, a
width-space-spectrum residual network (WSSRN) model is proposed to extract the spatial features
and spectral features with different resolutions and swath widths. This network expands the image by
a few pixels at every iteration. It is worth noting that the weights of the network are shared between
each iteration, which is good for network training. To fuse the HR and LR images with different
swath widths, take Sentinel-2 for example. The LR image is first upsampled, and the HR image is
then expanded to the same size as the upsampled LR image. The input images are then concatenated
in turn, as shown in Figure 1, which allows images with the same resolution to be closer to better
extract features. After feeding the images into the network, the multi-scale convolutional layers are
used to extract the features from the images with different swath widths, which consists of three
convolution layers with sizes of 3 × 3 × 32, 5 × 5 × 32, and 7 × 7 × 32. To ensure the network can be
easily optimized, a skip connection between the input LR image and the residual image is used. There
are six convolution blocks between the skip connection and multi-scale convolutional layers, which are
composed of a 7 × 7 × 64 convolution layer followed by a Rectified Linear Unit (ReLU). After training
such a network, the fused image can be continuously updated through a recurrent expanding strategy
to finally obtain the HR and wide-swath-width multispectral image.

2.3. The Residual Convolutional Neural Network

In this paper, the CNN differs from an ordinary neural network in that the pooling layer is
removed, which causes the loss of HR information. The purpose of the convolution operation is to
extract different features from the image. After the input image is convoluted by the convolution
kernel, the feature map can be excavated by the non-linearization of an activation function, which is
defined as follows:

F j
l = g

(
W j

l ∗ Fl−1 + b j
l

)
(5)

where F j
l represents the j-th feature map of the l th layer, Fl−1 indicates the set of input feature maps

corresponding to the j-th feature map, W j
l indicates the weights of the convolution kernel between the

feature maps of the l− 1-th layer and the j-th feature map of the l-th layer, and b j
l represents the bias of
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the j-th feature map of the l-th layer. Here, g means the rectified linear unit (ReLU), which is selected
as the activation function. Its specific function expression is:

g(x) = max(x, 0) (6)
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Figure 1. The architecture of the proposed width-space-spectrum residual network (WSSRN) model.

After the convolutional layer and the activation function complete the feature extraction, the
extracted features are further input into the reconstruction output layer, and the reconstruction output
layer works as “fusion reconstruction” in the entire CNN, which is essentially a convolutional layer.
Passing through the previous feature extraction work, the spectral features and the spatial features are
distributed in different channels, so it is necessary that a convolutional layer is used to fuse the features.

For a traditional CNN, the deeper the network, the more parameters it has and the more powerful
nonlinear presentation capabilities it obtains. However, as the network gets deeper and deeper, it
will cause the gradient disappearance during the training process, which leads to the weights of the
previous convolutional layers being unoptimized [32].

To solve this problem, this paper draws on the idea of a deep residual network. However, in this
paper, the structure of the residual block in a deep residual network is not directly used, because such
a structure makes the network too complicated. Only a single head-to-tail skip connection is used to
increase the gradient in the network back-propagation. The loss function of the network is as follows:

Loss(θ)i =
n∑

i=0

‖ (Xi −Zi) − ( f (Y, Z;θ)i −Zi) ‖
2
2 (7)

where Xi represents the i-th band of the ground truth, and n represents the number of the band.
This connection can be called a “global skip connection”, which avoids the problem of the vanishing
gradient in the network back-propagation. Furthermore, this skip connection also accelerates the
convergence of the network, because, when the gradient is larger, the parameter optimization is faster.

2.4. Multi-Scale Feature Extraction

For the fusion task with data at different swath widths, the HR information in the overlapping area
should be introduced into the non-overlapping region. As is well known, in CNNs, the convolutional
layers are used to extract features. However, the features in remote sensing images appear at
different-scale levels. For example, the geometric texture of a building is at a larger scale than the
texture of vegetation. Therefore, inspired by [33,34], multi-scale convolutional kernels are used to
extract the features from the remote sensing images at different scales, and the feature maps are then
concatenated and input into the nonlinear mapping layer below.
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As shown in Figure 2, it can be seen that the different-scale convolution kernels, including 3 × 3, 5
× 5, and 7 × 7, act on the same image for the feature extraction. The image thus has different feature
images after the different-scale convolution operations. It can be seen that a smaller convolution kernel
(e.g., 3 × 3) focuses more on details, such as the vegetation canopy texture (i.e., the small-scale features).
When using larger convolution kernels (e.g., 5 × 5 and 7 × 7), more main structures of the image
are highlighted, such as the building structure, the hills, and the river. In addition, the multi-scale
convolution also helps to inject HR information from the overlapping region into the non-overlapping
region in the transition area between the overlapping region and the non-overlapping region. In this
way, the utilization rate of the features contained in the images with different swath widths can be
greatly improved, to achieve better cross-width fusion results.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 25 

 

image are highlighted, such as the building structure, the hills, and the river. In 
addition, the multi-scale convolution also helps to inject HR information from the 
overlapping region into the non-overlapping region in the transition area between 
the overlapping region and the non-overlapping region. In this way, the utilization 
rate of the features contained in the images with different swath widths can be 
greatly improved, to achieve better cross-width fusion results. 

  
(a) input image (b) extracted by 3×3 kernel 

  
(c) extracted by 5×5 kernel (d) extracted by 7×7 kernel 

Figure 2. The feature maps extracted by the multiple-scale convolution kernels. 

2.5. Recurrent Expanding Strategy 

In this paper, for image fusion with different swath widths, the LR data are first 
upsampled to the same resolution as the HR image. However, due to the difference 
of the swath widths, the non-overlapping area lacks the available HR information. 
It is, therefore, difficult for the network to enhance the resolution of the transition 
region between the HR and LR images in the fusion process. Even the obvious 
resolution difference boundaries and border artifacts may appear in the fused 
image. When the difference in the swath width is small, less missing information is 
introduced, and the artifacts are not as obvious. As the difference increases, the 
artifacts in the results become increasingly obvious. However, the images captured 
by satellites vary greatly in size, which means that the missing information in the 
non-overlapping area is more serious. If the test dataset is notably different from the 
training data, the accuracy of the fusion reconstruction will be decreased. 

In response to this problem, a strategy based on recurrent expansion is proposed 
in this paper. By using this strategy, when fusing images with different swath 
widths, only part of the image is fused in every iteration, which is similar to the 
missing data reconstruction problem. As shown in Figure 3, the input images are 
preprocessed and fed into the network to obtain the fusion results. At each iteration, 
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2.5. Recurrent Expanding Strategy

In this paper, for image fusion with different swath widths, the LR data are first upsampled
to the same resolution as the HR image. However, due to the difference of the swath widths, the
non-overlapping area lacks the available HR information. It is, therefore, difficult for the network to
enhance the resolution of the transition region between the HR and LR images in the fusion process.
Even the obvious resolution difference boundaries and border artifacts may appear in the fused image.
When the difference in the swath width is small, less missing information is introduced, and the
artifacts are not as obvious. As the difference increases, the artifacts in the results become increasingly
obvious. However, the images captured by satellites vary greatly in size, which means that the missing
information in the non-overlapping area is more serious. If the test dataset is notably different from
the training data, the accuracy of the fusion reconstruction will be decreased.

In response to this problem, a strategy based on recurrent expansion is proposed in this paper. By
using this strategy, when fusing images with different swath widths, only part of the image is fused in
every iteration, which is similar to the missing data reconstruction problem. As shown in Figure 3, the
input images are preprocessed and fed into the network to obtain the fusion results. At each iteration,
an intermediate fused image expanded by five pixels is obtained and is regarded as a new HR image,
which then undergoes expansion, cropping, concatenation, and fusion, to obtain a new fusion image
in the next iteration. After multiple iterations, the WSS fusion is achieved, and the size of the high
spatial resolution image is expanded by 30 or more pixels based on the difference of the swath widths
between the observed images.
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3. Experimental Results and Analysis

3.1. Datasets

3.1.1. Training Datasets

In this set of experiments, the original data used were Sentinel-2 satellite data. The Sentinel-2
satellite, launched by the European Space Agency (ESA), covers almost all of the major territories and
islands, except for the Antarctic, and is capable of providing the image data required for almost all types
of research related to human life. Thirteen bands with a 290 km swath width are sensed by the Sentinel-2
satellite with a 10 day revisiting period. The spectral characteristics of the 13 bands and their resolutions
are listed in Table 1; these characteristics are available for free from https://scihub.copernicus.eu/.
Among them, the images of 10 m and 20 m resolution are the most widely used.

Table 1. The band details for Sentinel-2.

Band B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Wavelength (nm) 443 490 560 665 705 740 783 842 865 945 1380 1610 2190
Width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180

Resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

The training data selected were an image in the west of Hubei province, China acquired at
September 15, 2017. The training data size was 90 × 90 km. This area is rich in water, buildings, green
areas, and other ground objects, as shown in Figure 4.
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3.1.2. Test Datasets

The test data were selected from Nanjing, Jiangsu province, China, with a 900 × 900 m coverage
for each image. It should be noted that there is only one swath-width imaging mode on the Sentinel-2
satellite. In order to carry out the study of WSS fusion, a different-swath-width scenario was simulated.
Only four 10 m resolution bands (4B_10) and six 20 m resolution bands (6B_20) were selected. For the
training data, the original image was downsampled to the 4B_20 and 6B_40 images, so that the original
6B_20 image could be used as a reference. The 6B_40 image was also upsampled to 20 m to match the
4B_20 image. The images were then cut into a series of 30 × 30 image patches. In order to simulate the
different-swath-width scenario, five rows of pixels were cut out around each HR band patch. For the
test data, the image was clipped into multiple 90 × 90 patches, and then 15 rows of pixels around each
20 m resolution band patch were assigned zero values, as shown in Figure 5.
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The aim of the WSS fusion experiment was to obtain an HRHS image with a wide swath width.

3.2. Implementation Details

3.2.1. Parameter Setting and Network Training

Table 2 lists the network parameters of each layer of the WSSRN model. The proposed model was
trained using the stochastic gradient descent algorithm as the optimization method, with a momentum
of 0.9 and a learning rate of 0.1, which are obtained empirically in many deep learning methods [30].

Table 2. The network configuration of the WSSRN model.

Configuration

Layer 1_1
Layer 1_2
Layer 1_3

Conv + ReLU: size=3, stride=1, pad=1
Conv + ReLU: size=5, stride=1, pad=2
Conv + ReLU: size=7, stride=1, pad=3

9 Layers Conv + ReLU: size=7, stride=1, pad=3
Layer 11 Conv + ReLU: size=3, stride=1, pad=1

The Caffe [35] framework was used to train the proposed WSSRN model in a Windows 10
environment, with 16 GB RAM and one Nvidia RTX 2080 GPU. The total training time cost about 3 h
50 min, which is less than VDSR with about 15 h 51 min and SRCNN with about 18 h 48 m under the
same computational environment.

3.2.2. Compared Algorithms and the Quantitative Evaluation

For the image fusion of different swath widths, we mainly focus on the improvement of the spatial
resolution and spectral preservation in the non-overlapping areas. Since there is no HR information
introduced in the non-overlapping areas, this fusion problem can be regarded as a super-resolution
problem, as described in [36]. To evaluate the effect of the spectral preservation and spatial enhancement,
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the bicubic algorithm, a CNN consisting of three convolutional layers (SRCNN), and a very deep
convolutional network using skip connection (VDSR), were used as comparison methods. In the
simulated-image experiments, the correlation coefficient (CC), peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), spectral angle mapper (SAM), and Erreur Relative Global Adimensionnelle de
Synthèse (ERGAS) were employed as the quantitative evaluation indices. Among these indices, CC,
SSIM, and PSNR are used to evaluate spatial similarity. Therefore, the higher the value, the better the
result. Meanwhile, SAM is a spectral similarity index, and ERGAS is an integrated indicator, for which
the lower the value, the better the result.

3.3. Sensitivity Analysis for the Overlapping Region

In WSS fusion, the HR information in the overlapping region plays an important role in the
accuracy of the network. To obtain robust WSS fusion results, two factors corresponding to the relative
position and size of the overlapping region were analyzed in the experiments. One was the ratio of the
non-overlapping areas, called the coverage ratio, and the other was the starting pixel position of the
overlapping areas of the two images, called the offset position.

3.3.1. Coverage Ratio

In this experiment, the effect of the coverage ratio of the overlapping regions on the network
fusion effect was explored. In the experimental process, the WSSRN was trained through the dataset
with a coverage ratio of 0.4444. The coverage ratio is not too great or insufficient, which speeds up the
network training and allows the network to learn how to handle data with different widths.

Considering the impact of the offset position, the offsets of the training data and test data were set
to zero. For the test data, the HR images were clipped into images of 40 × 40 to 80 × 80, as shown in
Figure 6, so the coverage ratios were, respectively, 0.1975, 0.3086, 0.4444, 0.6049, and 0.7901.
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The results of the different coverage ratios are displayed in Figure 7 by false color synthesis. It can
be seen from the figure that a higher coverage ratio introduces more HR information, giving the results
more spatial details. The experimental results with low coverage ratio show some blurred edges in the
non-overlapping area.
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To better explore the influence of the coverage ratio on the fusion effect, the experimental results
were quantitatively evaluated. The results of the different indices are plotted with the coverage ratio
as the abscissa, as shown in Figure 8, and it can be seen that when the coverage ratio increases, the
value of these evaluation indicators increases correspondingly, which shows that the fusion effect of
the network is almost linearly positively correlated. When the coverage is low (e.g., 0.2 or 0.3), the rate
of the fusion effect decline slows. These phenomena indicate that the fusion effect of the network is
indeed related to the coverage ratio, but the relationship is almost linear.
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3.3.2. Offset Position

In image fusion, the utilization of the HR information in the overlapping area is expected to be
maximized, so the coverage ratio of the input image is set to the maximum possible value, and thus
cannot be optimized further. To obtain the best fusion effect, the offset position of the overlapping
area relative to the wide-swath-width LR image was also analyzed through an experiment. In this
experiment, the WSSRN model first learned the best model through the dataset with an offset position
of 0.

Considering the impact of the coverage ratio, the input LR data and the HR image size were fixed.
For the test data, the input LR data size was fixed as 90 × 90, and the HR image size was fixed as 60 ×
60, as shown in Figure 9. For the HR image, the offset position was selected as 0, 5, 10, 15, 20, 25, and 30.
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Similarly, the five quantitative evaluation indicators were again used. The results are shown in
Figure 10. It can be seen that the fusion effect is diminished once the test and training data offsets
are inconsistent. From the visual performance apparent in Figure 11, it is clear that, except for the
experimental result with the 0 offset, there is a severe striped border effect on the other results. From
this experiment, we can conclude that the CNN is very sensitive to the pixel rows of non-overlapping
regions when fusing data with different swath widths. The reason for this result is that the convolution
operation needs to traverse the pixels, and when the convolution kernel spans different-swath-width
images, the learned mapping is inconsistent with the test mapping, resulting in the striped border
artifacts in the fused result.

From the experimental results shown above, it can be seen that the fusion effect of the CNN for
the data with different widths depends on the coverage ratio of the overlapping areas and the offset
position in the training data. Furthermore, the influence on the fusion effect of the coverage ratio
increases linearly and steadily, which will never lead to the unexpected white borders or details in
the image, whereas the change caused by the offset position may result in spatial artifacts. Therefore,
the offset position can be regarded as the more critical factor for the network proposed in this paper.
During the training, the offset position can be increased to fuse more areas at a time. However, this has
high hardware requirements and greatly increases the network optimization time. To give the fusion
network a better generalization ability, a fixed number of pixels are reconstructed each time when the
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fusion is carried out by the proposed recurrent expanding strategy described in Section 2.5, which
ensures that the offset of the training and the test data is the same.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 25 
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3.4. Simulated Experiment

In order to quantitatively compare the proposed WSSRN model with the other methods, the
original Sentinel-2 data were downsampled to a 4 m resolution and a 20 m resolution. In this way, the
simulated experiment involved obtaining a 90 × 90 six-band image with a 20 m resolution by fusing a
90 × 90 six-band image with a 40 m resolution and a 60 × 60 four-band image with a 20 m resolution.
The original 90 × 90 six-band image with a 20 m resolution could then be used as a reference for the
quantitative assessment.
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The results of the different methods are shown in Figure 12 (the overlapping area is framed by
a dotted yellow line). It can be seen that SRCNN and VDSR show a certain effect in improving the
spatial resolution in the visual performance, but their effect on high-brightness areas, as framed by
red, is rather poor, and they cannot be well enhanced. There is also a visual sharpness that does not
conform to the real situation. The fusion effect of the WSSRN model proposed in this paper is the
best of all methods. More texture information is fused into the wide-swath-width image through the
multi-scale feature extraction, and in the transition zone between the HR and LR images, due to the
proposed recurrent expanding strategy, the acute change in resolution is alleviated. The results of the
proposed WSSRN model are also more visually natural.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 26 
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The quality of the fusion improved after using the WSSRN method (Table 3). For both spatial
similarity and spectral preservation, the fusion framework proposed in this paper has certain advantages.
The worst effect of all the methods is found for the interpolation method. In addition, due to the
weak generalization ability of the Sentinel-2 imagery, SRCNN introduces a sharpening effect in the
highlighted area.

Table 3. Quantitative evaluation for the simulated experiment.

Method Index Band 5 Band 6 Band 7 Band 8a Band 11 Band 12

Bicubic

CC 0.94 0.94 0.94 0.94 0.97 0.96

PSNR 35.11 32.06 30.84 29.78 31.24 31.64

SSIM 0.89 0.86 0.85 0.84 0.89 0.88

SAM 1.76

ERGAS 1.55

SRCNN

CC 0.95 0.95 0.95 0.96 0.98 0.97

PSNR 35.27 32.80 31.67 30.64 31.92 31.24

SSIM 0.92 0.90 0.89 0.89 0.93 0.92

SAM 2.18

ERGAS 1.4868

VDSR

CC 0.97 0.96 0.96 0.96 0.98 0.98

PSNR 37.35 34.30 32.89 31.95 34.50 34.62

SSIM 0.93 0.92 0.91 0.91 0.94 0.93

SAM 1.48

ERGAS 1.15

WSSRN

CC 0.97 0.97 0.97 0.97 0.99 0.98

PSNR 37.23 34.98 33.70 32.88 34.71 34.60

SSIM 0.95 0.94 0.94 0.94 0.95 0.94

SAM 1.57

ERGAS 1.09

3.5. Real-Data Experiment

The WSS fusion was also implemented in the real resolution of Sentinel-2 data by simulating a
multi-width scenario. We get a HRLS data covering a 1.2 × 1.2 km area and an LRHS data covering a 2
× 2 km area in Wuhan city, Hubei province, China out of the training data and the trained network,
using a 5 pixel offset position and a 0.4444 coverage ratio. For the real-data experiment, since Sentinel-2
data with a 10 m resolution cannot be acquired, a quantitative assessment is impossible, and only a
rough judgment on the fusion effect of the image can be made from the visual performance. Figure 13
shows the change of the false-color synthesis and grayscale image of three 20 m resolution bands with
the worst fusion effect before and after the real-data experiment.
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Because VDSR is much better than SRCNN in its super-resolution, only VDSR is compared with
the proposed WSSRN model. Comparing Figure 13a,f, it can be seen that the swath width of the
narrow-swath-width image has increased after the fusion, and, at the same time, the spectral resolution
of the new HR image is also improved, which is consistent with the original LR multispectral image
(original band 5, band 6, band 7, band 8a, band 11, and band 12). As can be seen from the six bands
before and after fusion, the spatial resolution of the fused image is greatly enhanced. Looking at the
results of band 8a, band 11, and band 12, it can be found that the spatial enhancement is obvious,
not only in the central overlapping area, but also in the non-overlapping area. Compared with
Figure 13d,e, the result of WSSRN contains more texture information than the result of VDSR. Overall,
the real-data experiment confirms that the proposed WSSRN model and recurrent expanding strategy
can effectively consider the constraints between the spectra, space, and swath width, and can fuse
them simultaneously to obtain a good result.

4. Discussion

The traditional method of using LRHS data with wide swath width and the HRLS data with
narrow swath width is that the overlapped areas of data can be fused by spatial–spectral fusion first,
and then the non-overlapped areas can be reconstructed by super-resolution. Finally, they are spliced
together to obtain HRHS data. In this way, it is possible to achieve the WSS fusion and utilize all HR
and LR data at the same time, but it is not clear whether the maximum utilization of the HR data has
been achieved.

To discuss whether the WSSRN can use HR data to enhance the spatial resolution of
non-overlapping areas while fusing the overlapping areas compared to traditional splicing methods,
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the central areas of the super resolution methods were replaced by the central area of our WSSRN,
because HR data only covers central areas, which are shown in Figure 14.Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 25 
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The overlapping area is framed by a dotted yellow line. Due to the insufficient extraction of
spatial detail information, when the overlapping region is replaced with the image patch with rich HR
information, the results fused by the bicubic, SRCNN, and VDSR methods show a poor fusion effect in
the surrounding area. In addition, the results of VDSR show a great difference in the fusion effect of
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the different bands, so it is difficult to use the data generated by this method in practical applications.
However, the performance of the WSSRN is balanced.

As shown in Table 4, we can see that the indices for VDSR and SRCNN are significantly improved
after replacement, indicating that the central part contains enough HR information. It is, however,
clear from the evaluation that the result of the proposed method are still better than those of the other
algorithms, which indicates that the introduction of multi-scale feature extraction combined with the
recurrent expanding strategy can effectively inject the HR information of the central overlapping area
into the surrounding area to improve the final fusion results. From the experimental results, it can be
concluded that the proposed WSSRN model can effectively fuse data with different widths, different
spatial resolutions, and different spectral resolutions.

Table 4. Quantitative evaluation for the simulated experiment with the same center image.

Method Index Band 5 Band 6 Band 7 Band 8a Band 11 Band 12

Bicubic

CC 0.9587 0.9647 0.9642 0.9674 0.9811 0.9735

PSNR 36.51 33.89 32.69 31.77 33.16 33.39

SSIM 0.9373 0.9254 0.9194 0.9173 0.9372 0.9254

SAM 1.59

ERGAS 1.25

SRCNN

CC 0.9624 0.9697 0.9705 0.9727 0.9842 0.9748

PSNR 36.57 34.31 33.12 32.12 33.37 32.92

SSIM 0.9456 0.9392 0.9359 0.9345 0.9501 0.9384

SAM 1.85

ERGAS 1.24

VDSR

CC 0.9656 0.9715 0.9720 0.9744 0.9864 0.9789

PSNR 37.35 34.62 33.66 32.77 34.66 34.45

SSIM 0.9472 0.9412 0.9366 0.9352 0.9535 0.9415

SAM 1.60

ERGAS 1.11

WSSRN

CC 0.9646 0.9724 0.9719 0.9747 0.9868 0.9796

PSNR 37.23 34.98 33.70 32.88 34.71 34.60

SSIM 0.9457 0.9421 0.9367 0.9362 0.9538 0.9423

SAM 1.57

ERGAS 1.09

5. Conclusions

In this paper, a multi-scale residual CNN was proposed to deal with remote sensing image fusion
problems with different swath widths. This represents an early attempt to incorporate swath width,
spatial resolution, and spectral resolution into one network to simultaneously achieve multi-band fusion
and swath-width enhancement. In this process, how the CNN deals with the sensitivity of the variables
between different-width data was explored by experiments, and then a step-by-step reconstruction
method based on a recurrent expanding strategy was proposed. By exploiting and transferring the
HR information of the central overlapping area from the different swath-width images, the proposed
framework can effectively improve the resolution of the non-overlapping regions. The experiments
showed that the WSSRN can achieve a better spatial resolution improvement in the surrounding
non-overlapping area without HR information than the current single-image super-resolution methods.
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Moreover, there are several limits in the proposed WSSRN. Although the spatial resolution of the
surrounding non-overlapping area without HR information can be enhanced by WSSRN, it still seems
to be blurred, and if the spatial resolution difference between the HR data and LR data is too large,
the proposed WSSRN will be greatly affected. In our future work, we will consider introducing an
attention module into the neural network and combining a variational model with deep learning to
further improve the spatial enhancement.

Author Contributions: Conceptualization, H.J., L.J. and Y.Q.; Formal analysis, H.J.; Funding acquisition, L.J.;
Investigation, H.J.; Methodology, H.J. and L.J.; Project administration, L.J., Y.Q. and S.H.; Resources, L.J. and Y.Q.;
Supervision, L.J., Y.Q., L.H. and S.H.; Validation, H.J.; Writing—original draft, H.J.; Writing—review and editing,
L.J., Y.Q., L.H. and S.H. All authors read and approved the final manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number 2017YFA0604402,
National Natural Science Foundation of China, grant number 61971319, 41701400 and 41922008.

Acknowledgments: We are grateful for the free and open source Sentinel-2 data provided by ESA and the author
of VDSR method.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, J.; Liu, X.; Yuan, Q.; Shen, H.; Zhang, L. Antinoise Hyperspectral Image Fusion by Mining Tensor
Low-Multilinear-Rank and Variational Properties. IEEE Trans. Geosci. Remote Sens. 2019. [CrossRef]

2. Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. 2. Channel ratio
and chromaticity transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [CrossRef]

3. Chavez, P.S.; Kwarteng, A.Y. Extracting spectral contrast in Landsat thematic mapper image data using
selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348.

4. Tu, T.M.; Huang, P.S.; Hung, C.L.; Chang, C.P. A fast intensity hue-saturation fusion technique with spectral
adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309–312. [CrossRef]

5. Laben, C.A.; Brower, B.V. Process for enhancing the spatial resolution of multispectral imagery using
pan-sharpening. U.S. Patents 6,011,875, 4 January 2000.

6. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution
images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312.
[CrossRef]

7. Nencini, F.; Garzelli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform.
Inf. Fusion 2007, 8, 143–156. [CrossRef]

8. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF tailored multiscale fusion of high-resolution
MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [CrossRef]

9. Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. MTF-based deblurring using a wiener filter
for CS and MRA pansharpening methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2255–2269.
[CrossRef]

10. Liu, J.G. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for
improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [CrossRef]

11. Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE pan sharpening of very high resolution multispectral
images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 228–236. [CrossRef]

12. Garzelli, A. Pansharpening of multispectral images based on nonlocal parameter optimization. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 2096–2107. [CrossRef]

13. Fasbender, D.; Radoux, J.; Bogaert, P. Bayesian data fusion for adaptable image pansharpening. IEEE Trans.
Geosci. Remote Sens. 2008, 46, 1847–1857. [CrossRef]

14. Zhang, L.; Shen, H.; Gong, W.; Zhang, H. Adjustable model-based fusion method for multispectral and
panchromatic images. IEEE Trans. Syst. Man Cybern. B Cybern. 2012, 42, 1693–1704. [CrossRef]

15. Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. A new pansharpening algorithm based on total variation. IEEE
Geosci. Remote Sens. Lett. 2014, 11, 318–322. [CrossRef]

16. Shen, H.; Meng, X.; Zhang, L. An integrated framework for the spatio–temporal–spectral fusion of remote
sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2019.2916654
http://dx.doi.org/10.1016/0034-4257(87)90088-5
http://dx.doi.org/10.1109/LGRS.2004.834804
http://dx.doi.org/10.1109/TGRS.2002.803623
http://dx.doi.org/10.1016/j.inffus.2006.02.001
http://dx.doi.org/10.14358/PERS.72.5.591
http://dx.doi.org/10.1109/JSTARS.2016.2546061
http://dx.doi.org/10.1080/014311600750037499
http://dx.doi.org/10.1109/TGRS.2007.907604
http://dx.doi.org/10.1109/TGRS.2014.2354471
http://dx.doi.org/10.1109/TGRS.2008.917131
http://dx.doi.org/10.1109/TSMCB.2012.2198810
http://dx.doi.org/10.1109/LGRS.2013.2257669
http://dx.doi.org/10.1109/TGRS.2016.2596290


Remote Sens. 2019, 11, 2203 19 of 19

17. Jiang, C.; Zhang, H.; Shen, H.; Zhang, L. A practical compressed sensing-based pan-sharpening method.
IEEE Geosci. Remote Sens. Lett. 2012, 9, 629–633. [CrossRef]

18. Song, H.; Huang, B.; Liu, Q.; Zhang, K. Improving the Spatial Resolution of Landsat TM/ETM+ Through
Fusion With SPOT5 Images via Learning-Based Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2015, 53,
1195–1204. [CrossRef]

19. Huang, W.; Xiao, L.; Wei, Z.; Liu, H.; Tang, S. A New Pan-Sharpening Method With Deep Neural Networks.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 1037–1041. [CrossRef]

20. Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by convolutional neural networks. Remote
Sens. 2016, 8, 594. [CrossRef]

21. Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A Multiscale and Multidepth Convolutional Neural Network
for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11,
978–989. [CrossRef]

22. Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the Accuracy of Multispectral Image Pansharpening by
Learning a Deep Residual Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [CrossRef]

23. Palsson, F.; Sveinsson, J.; Ulfarsson, M. Sentinel-2 Image Fusion Using a Deep Residual Network. Remote
Sens. 2018, 10, 1290. [CrossRef]

24. Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252.
[CrossRef]

25. Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat
8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [CrossRef]

26. Wang, Q.; Shi, W.; Atkinson, P.M.; Zhao, Y. Downscaling MODIS images with area-to-point regression
kriging. Remote Sens. Environ. 2015, 166, 191–204. [CrossRef]

27. Yi, C.; Zhao, Y.; Chan, J.C. Hyperspectral Image Super-Resolution Based on Spatial and Spectral Correlation
Fusion. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4165–4177. [CrossRef]

28. Sun, X.; Zhang, L.; Yang, H.; Wu, T.; Cen, Y.; Guo, Y. Enhancement of Spectral Resolution for Remotely
Sensed Multispectral Image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2198–2211. [CrossRef]

29. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 38, 295–307. [CrossRef]

30. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26
June–1 July 2016; pp. 1646–1654.

31. Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images:
Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319.
[CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

33. Zhang, Q.; Yuan, Q.; Zeng, C.; Li, X.; Wei, Y. Missing data reconstruction in remote sensing image with a
unified spatial-temporal-spectral deep convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018,
56, 4274–4288. [CrossRef]

34. Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral image denoising employing a spatial-spectral
deep residual convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1205–1218. [CrossRef]

35. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International
Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

36. Li, J.; Yuan, Q.; Shen, H.; Meng, X.; Zhang, L. Hyperspectral Image Super-Resolution by Spectral Mixture
Analysis and Spatial–Spectral Group Sparsity. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1250–1254. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2011.2177063
http://dx.doi.org/10.1109/TGRS.2014.2335818
http://dx.doi.org/10.1109/LGRS.2014.2376034
http://dx.doi.org/10.3390/rs8070594
http://dx.doi.org/10.1109/JSTARS.2018.2794888
http://dx.doi.org/10.1109/LGRS.2017.2736020
http://dx.doi.org/10.3390/rs10081290
http://dx.doi.org/10.1016/j.rse.2016.10.030
http://dx.doi.org/10.1109/TGRS.2017.2683444
http://dx.doi.org/10.1016/j.rse.2015.06.003
http://dx.doi.org/10.1109/TGRS.2018.2828042
http://dx.doi.org/10.1109/JSTARS.2014.2356512
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.018
http://dx.doi.org/10.1109/TGRS.2018.2810208
http://dx.doi.org/10.1109/TGRS.2018.2865197
http://dx.doi.org/10.1109/LGRS.2016.2579661
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Width-Space-Spectrum Fusion 
	Network Framework 
	The Residual Convolutional Neural Network 
	Multi-Scale Feature Extraction 
	Recurrent Expanding Strategy 

	Experimental Results and Analysis 
	Datasets 
	Training Datasets 
	Test Datasets 

	Implementation Details 
	Parameter Setting and Network Training 
	Compared Algorithms and the Quantitative Evaluation 

	Sensitivity Analysis for the Overlapping Region 
	Coverage Ratio 
	Offset Position 

	Simulated Experiment 
	Real-Data Experiment 

	Discussion 
	Conclusions 
	References

