Remote Sensing

Supporting Material for

GNSS radio occultation pushes forward the monitoring of volcanic clouds: The case of the 2008 Kasatochi eruption

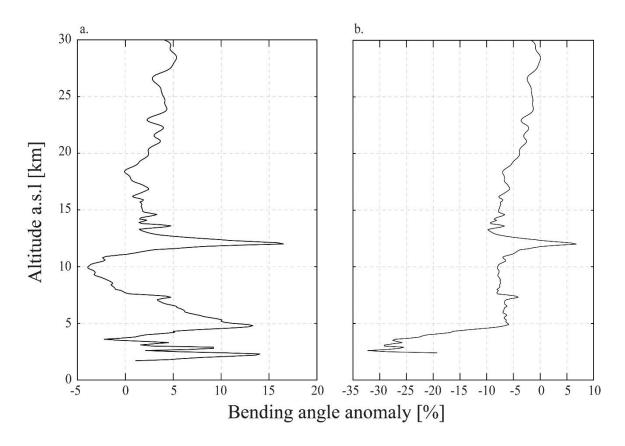
Valeria Cigala¹, Riccardo Biondi¹, Fred Prata², Andrea K. Steiner^{3,4}, Gottfried Kirchengast^{3,4}, and Hugues Brenot⁵

¹Università degli Studi di Padova, Padua, IT

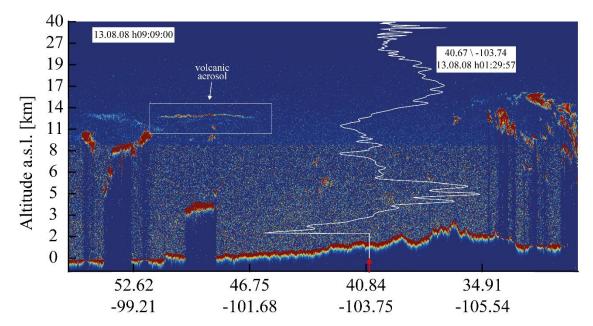
²AIRES Pty Ltd, Mt Eliza, Victoria, AU

³Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, AT

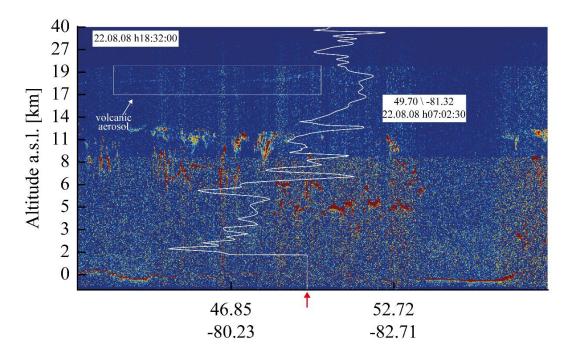
⁴Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, AT


⁵Royal Belgium Institute for Space Aeronomy, Brussels, BE

Contents of this file:


Figures S1 to S4 Tables S1 to S3

Introduction


The file uploaded as Supplementary Material consists of 1) one figure where the bending angle anomaly calculated from the 10° latitude band climatology and the 2.5°x2.5° grid climatology; 2) three Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) backscatter images of the outlier data points, collocation number 5, 22, and 23, the related bending angle anomaly profiles are superimposed on the images. In these cases, the automated peak detection algorithm does not estimate the right volcanic cloud altitudes. A non-perfect spatial and temporal collocation between the volcanic cloud and the radio occultation (RO) profile is the main reason for the wrong estimation. To that, it adds the case where the volcanic cloud altitudes estimated from the Global Navigation Satellite System (GNSS) RO bending angle anomaly and CALIOP backscatter; 4) a table summarizing the date and time of each collocation; and 5) a table summarizing the error estimations as presented in Figure 3 in the main text.

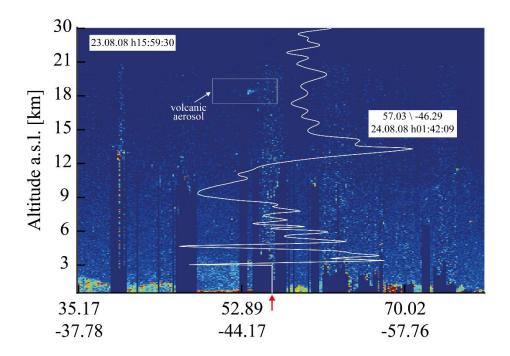

Figure S1. Plot a. shows the banding angle anomaly calculated as described in the main text using a 10° latitude band climatology and shows the same example (collocation number three) as in Figure 1 in the main text. Plot b. shows the banding angle anomaly for the same collocation but calculated using a $2.5^{\circ}x2.5^{\circ}$ grid climatology. The peak corresponding to the volcanic cloud is present in both cases, in plot a. the peak is more prominent than in plot b. The same was seen for all the collocated profiles; thus, we have decided to use the 10° latitude bands.

Figure S2. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) backscatter image (product of level 1) acquired on 13.08.08 with superimposed the collocated bending angle anomaly representing collocation number 5. The radio occultation (RO) profile is not well collocated with the volcanic cloud, and it is also noisy. The automated peak detection detects a peak at about 16 km, while here the volcanic cloud is at about 12 km. The red arrow represents the zero in the bending angle anomaly.

Figure S3. CALIOP backscatter image (product of level 1) acquired on 22.08.08 with superimposed the collocated bending angle anomaly representing collocation number 22. The RO profile is spatially well collocated with the volcanic cloud. However, the automated peak detection detects a peak at about 12 km, while the volcanic cloud is at about 18 km. The red arrow represents the zero in the bending angle anomaly.

Figure S4. CALIOP backscatter image (product of level 1.5) acquired on 23.08.08 with superimposed the collocated bending angle anomaly representing collocation number 23. The RO profile is spatially well collocated with the volcanic cloud, which is not largely extended, and in the 12 hours range. The automated peak detection detects a peak at about 12 km, while the volcanic cloud is at about 18 km. The product of level 1.5 is a new type of product available from NASA. It is in the 532 nm wavelength, as the product of level 1, however, in this case, meteorological clouds are cleared out and only the aerosol is left. The pixel resolution is also coarser than in level 1. The red arrow represents the zero in the bending angle anomaly.

	RO cloud altitude [km]	Lat RO	Lon RO	CALIOP cloud top [km]	CALIOP cloud average [km]	CALIOP cloud bottom [km]
1	10.9	53.678	-168.259	12.07	10.13	8.19
2	12.2	50.231	-163.291	13.09	12.43	
	12	47.431	-134.352	13.68	12.725	11.77
3	10.4	68.851	-134.332	12.61	12.725	11.77
4	16.6	40.657	-103.740	12.55	12.28	11.95
5	10.0	59.239	-18.441		10.19	12.07
6				12.01		8.36
7	10.2	68.069	-35.778	12.25	10.96	9.67
8	12.8	49.909	-97.222	13.09	12.16	11.23
9	18.1	46.500	-123.347	17.76	17.31	16.86
10	11.7	67.534	153.773	12.07	11.50	10.94
11	18	39.265	-97.679	18.54	17.88	17.22
12	11.2	59.653	-25.923	12.55	12.01	11.47
13	11	72.446	-23.219	12.43	11.11	9.79
14	15.5	56.899	-87.943	18.12	17.88	17.64
15	10.6	64.834	19.158	13.51	12.07	10.64
16	10	76.959	-27.592	11.24	10.94	10.64
17	12.3	70.498	139.208	12.37	10.58	8.78
18	12.6	46.127	97.335	12.25	10.58	8.90
19	11.9	72.890	146.049	12.07	10.79	9.50
20	11.5	72.770	71.836	12.37	11.24	10.10
21	11.3	64.633	-164.266	11.59	10.28	8.96
22	12.1	49.699	-81.321	19.14	18.27	17.40
23	12.8	57.032	-46.285	18.12	17.76	17.40
24	13.4	62.385	151.075	12.97	12.07	11.17
25	12.6	61.624	165.281	13.09	11.21	9.32
26	10.1	75.323	124.855	11.65	10.37	9.08
27	11.7	79.640	-29.009	12.85	11.29	9.74
28	11.2	71.802	-131.622	12.85	11.29	9.74

Table S1 Altitude estimations table. The table summarizes the collocations altitudes estimated from the Global Navigation Satellite System (GNSS) RO bending angle (BA) anomaly and CALIOP backscatter. This data has been used to create Figure 2. Furthermore, the latitude (Lat) and longitude (Lon) of the collocated RO profiles are reported.

	Date RO	Date CALIOP	Date AIRS	Date IASI	Date GOME
,	8 August 2008	8 August 2008	8 August 2008		
1	03:56:53	13:43:30	13:42:00		
2	9 August 2008	9 August 2008	9 August 2008		
	21:09:31	23:59:30	12:48:00		
3	12 August 2008	11 August 2008	11 August 2008	11 August 2008	
	00:24:00	22:07:30	22:06:00	18:42:16	
4	13 August 2008	13 August 2008	13 August 2008	13 August 2008	
*	17:15:58	07:22:10	07:18:00	14:31:19	
-	13 August 2008	13 August 2008	13 August 2008		12 August 2008
5	01:29:57	09:09:00	09:06:00		16:41:49
_	14 August 2008	15 August 2008	14 August 2008	14 August 2008	
6	16:37:45	03:54:50	12:48:00	12:30:51	
7	15 August 2008	15 August 2008	15 August 2008		
´	10:33:27	05:31:10	05:30:00		
	14 August 2008	15 August 2008	15 August 2008	15 August 2008	
3	22:27:25	08:54:10	08:48:00	03:24:14	
	15 August 2008	15 August 2008	15 August 2008	15 August 2008	
)	12:37:43	10:34:00	21:36:00	05:04:45	
	17 August 2008	17 August 2008		17 August 2008	
0	09:09:24	16:51:10		01:17:32	
_	18 August 2008	17 August 2008		17 August 2008	
1	03:19:32	19:49:20		16:38:20	
_	17 August 2008	18 August 2008	17 August 2008		
2	16:38:26	04:25:40	13:18:00		
	18 August 2008	19 August 2008	18 August 2008		
3	17:39:33	05:05:10	05:54:00		
	20 August 2008	20 August 2008	20 August 2008		
4	14:28:57	18:46:20	18:42:00		
15	21 August 2008	21 August 2008		21 August 2008	
	22:21:36	11:17:30		18:17:06	
16	21 August 2008	21 August 2008		20 August 2008	
	01:35:36	13:00:10		18:42:59	
17	22 August 2008	21 August 2008			22 August 2008
	00:51:43	18:04:30			00:21:27
	21 August 2008	21 August 2008		22 August 2008	
18	19:29:51	19:50:20		03:02:30	
19	22 August 2008	22 August 2008		22 August 2008	
	04:54:05	02:09:50		01:13:09	
20	22 August 2008	22 August 2008			22 August 2008
	02:57:40	07:06:30			05:24:45

Table S2. Table summarizing the date and time of each collocation for the RO profiles, CALIOP, atmospheric infrared sounder (AIRS), infrared atmospheric sounding interferometer (IASI), and Global Ozone Monitoring Experiment-2 (GOME-2). In a few cases, the same RO profile is collocated with two satellite sensors between AIRS, IASI, and GOME-2 at a different time thus giving additional confidence that the volcanic cloud (VC) was present at the time of the RO profile acquisition. Time is in UTC.

21	22 August 2008	22 August 2008	21 August 2008
21	04:41:36	13:52:50	20:11:51
22	22 August 2008	22 August 2008	22 August 2008
22	07:02:30	18:32:00	02:38:38
22	24 August 2008	23 August 2008	23 August 2008
23	01:42:09	15:59:30	13:55:24
24	24 August 2008	25 August 2008	25 August 2008
24	23:57:44	02:37:40	00:23:25
25	25 August 2008	26 August 2008	26 August 2008
25	18:35:00	01:41:50	00:22:53
26	28 August 2008	28 August 2008	28 August 2008
26	03:38:17	03:12:30	02:29:32
27	29 August 2008	29 August 2008	28 August 2008
27	00:13:24	12:11:50	17:09:42
20	29 August 2008	29 August 2008	28 August 2008
28	08:43:45	12:18:00	22:43:57

Table S3. Error estimation table. The table summarizes the correlation coefficient (R^2), the root-mean-square error (rmse) and standard deviation (std) of the estimation between the RO BA anomaly profiles and the CALIOP backscatter images.

	Correlation $coefficient (R^2)$	Root mean square error (rmse) [km]	Standard deviation (std) [km]
RO – CALIOP top	0.65	2.25	1.62
RO – CALIOP average	0.67	1.98	1.51
RO – CALIOP bottom	0.67	2.36	1.42
RO – CALIOP top w/o outliers	0.90	1.38	0.81
RO – CALIOP average w/o outliers	0.88	1.08	0.66
RO – CALIOP bottom w/o outliers	0.83	1.86	1.04
RO – CALIOP top 4h range	0.93	1.07	0.65
RO – CALIOP average 4h range	0.92	1.02	0.65
RO – CALIOP bottom 4h range	0.90	1.92	1.15