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Abstract: On 15 November 2017, liquefaction phenomena were observed around the epicenter after a
5.4 magnitude earthquake occurred in Pohang in southeast Korea. In this study, we attempted to detect
areas of sudden water content increase by using SAR (synthetic aperture radar) and optical satellite
images. We analyzed coherence changes using Sentinel-1 SAR coseismic image pairs and analyzed
NDWI (normalized difference water index) changes using Landsat 8 and Sentinel-2 optical satellite
images from before and after the earthquake. Coherence analysis showed no liquefaction-induced
surface changes. The NDWI time series analysis models using Landsat 8 and Sentinel-2 optical images
confirmed liquefaction phenomena close to the epicenter but could not detect liquefaction phenomena
far from the epicenter. We proposed and evaluated the TDLI (temporal difference liquefaction
index), which uses only one SWIR (short-wave infrared) band at 2200 nm, which is sensitive to
soil moisture content. The Sentinel-2 TDLI was most consistent with field observations where sand
blow from liquefaction was confirmed. We found that Sentinel-2, with its relatively shorter revisit
period compared to that of Landsat 8 (5 days vs. 16 days), was more effective for detecting traces of
short-lived liquefaction phenomena on the surface. The Sentinel-2 TDLI could help facilitate rapid
investigations and responses to liquefaction damage.
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1. Introduction

On 15 November 2017, a magnitude 5.4 earthquake occurred in Pohang in southeast Korea
(Figure 1). It is the second largest earthquake in the modern history of South Korea [1].
Earthquakes change the arrangement of soil particles and increase the pore water pressure, often causing
ground liquefaction [2,3]. Liquefaction can cause subsidence or weakening of the ground, resulting in
damage to buildings or underground facilities (e.g., water, sewerage, and gas pipes). An accurate
analysis of the area where liquefaction occurs is important for establishing damage recovery measures
and preventing damage. Direct field surveys are less efficient in terms of cost and safety when
the liquefaction area is too large, or access is limited due to earthquake damage. In addition,
unlike other earthquake damage, such as surface rupture, liquefaction phenomena only remain
on the surface for a short time. Remote sensing technology using satellite imagery can quickly
detect liquefaction phenomena related to earthquakes and can help to establish a site investigation
plan [1,3]. Previous studies used satellite and unmanned aerial photographs to investigate various
surface deformation phenomena, prior to field surveys, after the Pohang earthquake. They confirmed
secondary ground deformations, such as ground cracks and rock falls around the epicenter, as well
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as about 600 sand blows related to soil liquefaction (Figure 1). However, these studies only used
images from after the earthquake for liquefaction investigation. Furthermore, only visual analysis of
the images was performed, and remote sensing analysis to detect changes in the physical properties of
the surface due to liquefaction was not performed.

Figure 1. The Sentinel-2 true color image of the Pohang earthquake (magnitude 5.4) epicenter area.
The red star is the epicenter, while the white circles show the locations of sand blow identified through
visible investigation using drone and satellite images taken after the earthquake, and the yellow circles
show the liquefaction sand blow locations identified through a field survey [1,3]. The green circles are
the locations where the photos of liquefaction seen in Figure 2 were taken.

Detection of liquefaction phenomena using synthetic aperture radar (SAR) images is mainly
based on coherence values that show variation when comparing images from before and after an
earthquake [2,4]. SAR is highly sensitive to various surface changes without being affected by
atmospheric conditions and is effective at mapping earthquake-induced surface deformation. However,
SAR images have a relatively low spatial resolution compared to optical images, and as such, it can
be difficult to isolate the liquefaction-induced coherence changes from those caused by various other
types of surface deformation. Liquefaction detection using optical satellite imagery (e.g., Landsat,
LISS-III) detects surface changes due to liquefaction using spectral bands, such as visible and SWIR
(short wavelength infrared) rays sensitive to soil moisture [5–11]. Since optical satellite images are
sensitive to atmospheric conditions, there are some limitations on their use. However, optical satellite
images have a relatively high spatial resolution compared to SAR images and can directly detect
liquefaction phenomena caused by the earthquake.

This study evaluates the use of optical and SAR images for detecting earth surface liquefaction
caused by the Pohang earthquake, as well as the performance of analytical techniques. SAR coherence
changes were analyzed using Sentinel-1 coseismic image pairs. Additionally, NDWI (normalized
difference water index) and SWIR (short wave infrared) time series analyses were performed using
Landsat 8 and Sentinel-2 optical images from before and after the earthquake. Landsat 8’s revisit
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period is 16 days, while Sentinel-2’s revisit period is 5 days, resulting in a high temporal resolution that
is advantageous for quick responses to earthquake liquefaction. In addition, no seismic liquefaction
studies have used Sentinel-2 data at the time of publication.

2. Data and Methodology

2.1. SAR Data Analysis

Earthquake-induced changes in the ground surface cause a decrease in the coherence value due to
a signal mismatch between SAR pair images from before and after the earthquake [4,12–14]. This is
called decorrelation. We calculated the coherence of the coseismic Sentinel-1B SAR image pair and the
coherence of the preseismic Sentinel-1B SAR image pair to detect liquefaction caused by the Pohang
earthquake. Images from 23 October and 4 November 2017 were used for the preseismic dataset,
and images of 4 November and 16 November 2017 were used for the coseismic dataset.

2.2. Optical Data Analysis

Due to the Pohang Earthquake in 2017, water and sand below the surface of the earth were
discharged to the surface (Figure 2). According to field surveys, liquefaction is mostly observed in
Quaternary sediments [3], generally in rice paddies and farmland areas. Because spectral reflectance
values of soil and vegetation change according to water content [15–17] (Figure 3), the spectral
reflectance of the liquefied and unliquefied surfaces will be different. We used this principle to map
the distribution of surface liquefaction. However, changes in the water content of the surface can
occur due to weather effects (e.g., precipitation, solar radiation, humidity) or agricultural activities
(e.g., artificial watering). According to the Korea Meteorological Agency, precipitation was 0.0 mm
and humidity and solar radiation did not significantly change between 31 October and 23 November
2017. In addition, at the time of the liquefaction phenomena, agricultural activities had already been
completed. Therefore, we assume that the change of surface water content by other factors was
negligible relative to the liquefaction phenomena.

Figure 2. On-site photos taken on 23 November 2017. The location of each photograph is shown in
Figure 1. (a)–(f) Surface liquefaction or induced sand blow. (g) Artificially watered rice paddy.
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Landsat 8 and Sentinel-2 images, from before and after the earthquake, were used to detect the
liquefaction areas (Table 1). Landsat 8 and Sentinel 2 have spectral bands that are effective for detecting
changes in reflectance associated with the moisture content of the surface (Table 2; Figure 3). First,
radiometric and atmospheric calibration was performed to obtain reflectance images. The Landsat 8
images were calibrated using the dark object subtraction method [18] in MATLAB, and the Sentinel-2
images were calibrated using Sen2Cor [19], provided by the German Aerospace Center (DLR; Cologne,
Germany). Subsequently, co-registration was performed based on the pre-earthquake images in order
to reduce the geometrical errors between each image pair before and after the earthquake.

Table 1. Optical images used in this study.

Satellite: Imager Pre-Earthquake Sensing Date Post-Earthquake Sensing Date

Sentinel-2A/B: MSI 11 November 16 November
Landsat 8: OLI 31 October 16 November

NDWI was developed to measure water in the vegetation and to detect open water [16,20,21].
It was also used to detect liquefaction-damaged soil [9]. The NDWI proposed by Gao [16] uses the NIR
and SWIR bands (1240-nm wavelength) and is sensitive to changes in vegetation water content. In this
study, since Landsat 8 and Sentinel-2 do not have a 1240-nm wavelength band, it was replaced with
a 1600-nm band (Equation (1)). Previous studies have shown that the SWIR band around 1600 nm
can be used effectively for the detection of vegetation and soil moisture [22–24]. McFeeters [20]
proposed an NDWI for open water detection using the high reflectance of water in the green band
and low reflectance in the NIR band (Formula 2). This index emphasizes the spectral characteristics
of water while minimizing the effects of soil and vegetation. Xu [21] proposed a modified NDWI
(mNDWI, Equation (3)) that uses the SWIR in the 1600-nm wavelength band instead of the NIR band to
compensate for the problem that occurs in built-up areas where the NDWI of McFeeters [20] is affected
by noise. The following three NDWIs were used in this study:

NDWIGao =
NIR860nm − SWIR1600nm
NIR860nm + SWIR1600nm

, (1)

NDWIMcFeeters =
Green560nm −NIR860nm

Green560nm + NIR860nm
, (2)

mNDWIXu =
Green560nm − SWIR1600nm
Green560nm + SWIR1600nm

, (3)

Landsat 8 band 3 and Sentinel-2 band 3 were used as the green bands, Landsat 8 band 5 and
Sentinel-2 band 8a were used as the NIR bands, and Landsat 8 band 6 and Sentinel-2 band 11 were used
as the SWIR1600nm bands (Table 2; Figure 3). We calculated the three NDWIs for before and after the
earthquake (Indexpre_earthquake and Indexpost-earthquake) using Landsat 8 and Sentinel-2 images. Using the
differences found for each value, earthquake-induced liquefaction area was detected, and the results
were compared (Equation (4)).

∆Index = Indexpost_earthquake − Indexpreearthquake , (4)

A positive ∆Index means that the surface water content increased after the occurrence of the
earthquake, while a negative value means the surface water decreased.
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Table 2. Wavelength (λ) and spatial resolution (Res.) of the Landsat 8 and Sentinel-2 bands.

Sentinel-2 (MSI)

Band λ

(nm) Res. (m) Band λ

(nm) Res. (m)

1 Coastal aerosol 433–453 30 1 Coastal aerosol 433–453 60
2 Blue 450–515 30 2 Blue 458–523 10
3 Green 525–600 30 3 Green 543–578 10
4 Red 630–680 30 4 Red 650–680 10
- 5 Red edge 1 698–713 20
- 6 Red edge 2 733–748 20
- 7 Red edge 3 773–793 20

5 Near infrared
(NIR) 845–885 30 8 Near infrared

(NIR) 785–900 10

- 8a NIR-narrow 855–875 20
- 9 Water vapor 935–955 60
9 Cirrus 1360–1390 30 10 Cirrus 1360–1390 60
6 SWIR 1 1560–1660 30 11 SWIR 1 1565–1655 20
7 SWIR 2 2100–2300 30 12 SWIR 2 2100–2280 20
8 Panchromatic 500–680 15 -

Figure 3. Changes in spectral reflectance according to moisture content in the vegetation and soil.
(a) Leaf canopy [17]. (b) Newtonia silt loam [15].

Typical NDWIs use a combination of bands, including those sensitive to soil and vegetation
moisture (one or two), as well as non-sensitive bands. These methods allow for a more accurate
interpretation of moisture changes in the soil and vegetation than those that use only one sensitive
band [17]. However, it has not been verified that methods using both sensitive and non-sensitive
bands are more effective in detecting surface changes due to liquefaction. In this study area,
liquefaction induced groundwater eruptions or the wetting of soil (Figure 2). Here, we propose
the temporal difference liquefaction index (TDLI; Equation (5)), which is the result of a time series
analysis method using only one SWIR band. The SWIR-1 band (1600-nm center wavelength) is used in
NDWIs because it is more sensitive to the moisture content in the vegetation than the SWIR-2 band
(Figure 3). However, most of the liquefaction areas consisted of more soil than vegetation due to the
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harvest (Figure 2). SWIR-2 band (2200-nm center wavelength) was used to find the TDLI since it is the
band most sensitive to increases in soil moisture content [15,17,25–28] (Figure 3); the TDLI was then
compared with the time series analysis method using the difference of three NDWIs.

TDLI =
Pre_earthquake_SWIR2200nm − Post_earthquake_SWIR2200nm

Pre_earthquake_SWIR2200nm + Post_earthquake_SWIR2200nm
, (5)

When TDLI is positive, the water content in the pixel area has increased; therefore, the larger the
value, the larger the possibility of liquefaction. On the other hand, when the TDLI is negative, the water
content has decreased; therefore, the smaller the value, the lower the possibility of the liquefaction
phenomenon. Landsat 8 band 7 and Sentinel-2 band 12, which have center wavelengths of about
2200 nm, were used for the SWIR2 band (Table 2).

3. Results and Discussion

3.1. SAR Data Analysis

Figure 4 shows the coherence value between the Sentinel-1B SAR image pairs before and after
the Pohang earthquake. The coseismic coherence (Figure 4b) decreased significantly compared to
the preseismic coherence (Figure 4a) in most urban areas (west of the epicenter). The areas where
the decrease of coherence was remarkable generally corresponded to areas where the buildings were
damaged by the earthquake (Figure 4, white dashed line). Some buildings in the area were greatly
tilted by the earthquake [1]. Damage to structures can be caused not only by seismic ground motion,
but also by differential settlement induced by liquefaction. Therefore, part of the coherence reduction
that appears in this area could be related to the liquefaction phenomena. However, in the sand blow
region where field observations of liquefaction were made, it was difficult to find a particular change in
coherence (Figure 4, inside the red broken line). The SAR decorrelation related to building damage in
urban areas was caused by the displacement of the observed surface. Therefore, it was concluded that
the change in surface water content due to liquefaction indicated on farmland did not greatly affect the
decorrelation. Meanwhile, in the northern part of the study area, the coherence was increased in the
SAR image pair due to the earthquake. This region had little liquefaction damage [1], and most of it is
arable land. The coherence increase in this field is due to the agricultural activities up until the end
of October.

Figure 4. Coherence mapping results of Sentinel-1 C-band SAR images. The green star is the location
of the epicenter and the red dashed line shows the approximate area of the sand blow associated with
liquefaction. Coherence reduction areas between the pre- and post-earthquake pairs are indicated
by white dashed lines. (a) Preseismic coherence (23 October–4 November). (b) Coseismic coherence
(4–16 November).
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3.2. Optical Data Analysis

Figure 5 shows the NDWI difference before and after the Pohang earthquake. A larger difference
in the index value (red pixels) indicates a greater increase in the moisture content on the surface.
NDWIGao using Landsat 8 (Figure 5a) showed the highest value in the sand blow area at the epicenter
(No. 1). This means that the water content increased in this area. NDWI both increased and decreased
in the sand blow regions located to the north (No. 2) and northwest (No. 3) of the epicenter, but overall
water content seemed to decrease. In other farmland areas, there was a remarkable decrease in water
content (decrease in NDWI value). This reduction is presumed to be due to the temporal resolution
of the Landsat image (16 days). The pre-earthquake sensing date of Landsat 8 was close to the
harvesting time, and the Landsat 8 image after the earthquake observed the surface after the harvest
was completed. Therefore, it seems that the water content of the farmland had decreased during the
sensing interval. The NDWIGao difference using Sentinel-2 (Figure 5b), as in Landsat 8 NDWIGao,
was most obvious in the sand blow area at the epicenter (No. 1). An increase in the NDWI value was
also observed at some locations within the Nos. 2 and 3 sand blow regions. Site No. 5 was confirmed
using field surveys as being an artificially watered area not related to liquefaction (Figure 2g). Figure 5c
shows the result of calculating the NDWIMcFeeters difference using Landsat 8. In the areas not related
to liquefaction, the NDWI values generally increased and there were no distinct features in the sand
blow areas associated with liquefaction. Figure 5d shows the NDWIMcFeeters difference calculated with
Sentinel-2. Similar to the NDWIMcFeeters calculated with Landsat 8, no specific increase in moisture
content was visible in sand blow areas related to liquefaction. Figure 5e shows the mNDWIXu difference
using Landsat 8. Among the NDWI results using Landsat 8, liquefaction traces were most evident
in the sand blow region. However, in some areas, including urban areas (Figure 5e; Nos. 6 and 7),
a high index increase was observed, which could be confused with liquefaction. The result of the
mNDWIXu difference using Sentinel-2 (Figure 5f) showed a clear increase in the mNDWI value in the
sand blow areas, but no significant increase in the index value was observed in the remaining sand
blow main areas (Nos. 2 and 3). Furthermore, in some areas (No. 8) that were not related to the sand
blow, the index increased significantly. This appears to be noise that was not related to liquefaction.

The NDWIGao and mNDWIXu results show that the index increased significantly in the sand
blow region (No. 1) closest to the epicenter. This suggests that this area was most affected by seismic
liquefaction. On the other hand, the index values did not show any significant difference in the other
sand blow areas. This implies that the area was not significantly affected by liquefaction or the NDWI
time series analysis technique was not able to detect seismic liquefaction phenomena in this area.
However, a clear liquefaction phenomenon was observed on the surface at the Nos. 2 and 3 sand blow
areas (Figure 2a–c) through field survey. Therefore, it was confirmed that the existing NDWI analysis
methods have limitations in the detection of surface liquefaction phenomena due to earthquakes.
The NDWI techniques used in this study were not sensitive to changes in soil water content due to
liquefaction, because they were developed for detecting water in vegetation or open water.
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Figure 5. NDWI change mapping results. The larger the index value (red pixels), the higher the
moisture content. The red star is the location of the epicenter and the black dashed lines show the
approximate areas of the sand blow associated with liquefaction. (a,c,e) Difference in NDWI using
Landsat 8. (b,d,f) NDWI difference using Sentinel-2.

Figure 6 shows the results of the TDLI mapping. A higher index value (red pixels) indicates a
larger increase in moisture content on the surface. The TDLI of Landsat 8 (Figure 6a) shows a high
index value in the sand blow region (Nos. 1–3) due to liquefaction phenomena. The TDLI of Landsat 8
seemed to be similar to the mNDWI difference of Landsat 8 (Figure 5e) but shows a clearer change in
water content due to liquefaction in the sand blow zone (Nos. 2 and 3). Figure 6b shows the TDLI of
Sentinel-2, displaying an increase in water content due to liquefaction in the sand blow areas (Nos.
1–3) more clearly than the NDWI differences from Sentinel-2 (Figure 5b,d,f). In the TDLI of Landsat
8, the water content decreased in some parts of the liquefaction-derived sand blow region. This was
also seen in the NDWI difference using Landsat 8 (Figure 5a,c,e), and this was likely due to the 16-day
temporal resolution. The temporal resolution of Landsat 8 made it difficult to accurately detect surface
liquefaction due to the earthquake. On the other hand, since the Sentinel-2 image pair had a 5-day
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interval, it had a great advantage in detecting liquefaction phenomena, which only remain on the
surface for a short time. From a spatial point of view, Ghim et al. [3] found that the subcircular-type
sand blow of the Pohang earthquake had diameters of 0.3–22 m and the linear type sand blow had
lengths of 0.2–70 m (average 5.44 m). Thus, most of the sand blows corresponded to having a subpixel
size in Landsat 8 images (30-m resolution), which were mixed with other signals from the surface,
resulting in a low detection rate for the TDLI. On the other hand, Sentinel-2 has a higher resolution
(20 m), which reduced signal mixing and increased the detection quality. In the TDLI of Sentinel-2,
high index values appeared in the shadow area due to high-rise apartments (No. 6) or forest terrain
(No. 8). It is considered that noise was caused by a change in the sun’s azimuth angle or geometric
correction errors between the Sentinel-2 A/B image pairs, which may lead to a high rate of false alarms
for liquefaction detection.

Figure 6. TDLI mapping results. The larger the index value (red pixels), the higher the moisture content.
The red star is the location of the epicenter and the black dashed lines show the approximate areas
of the sand blow associated with liquefaction. (a) Landsat 8’s TDLI (band 7). (b) Sentinel-2’s TDLI
(band 12).

Table 3 shows the detection accuracy at field-observed sand blow points (Figure 1, yellow circles).
The detection accuracy is the ratio of the pixels detected as sand blows (pixel values bigger than the
threshold) among the sand blows identified through the field survey. The NDWIMcFeeters difference
method in Landsat 8 showed the highest detection accuracies of 99.387 and 82.822% for thresholds
0 and 0.025, respectively, but it showed the low detection accuracy from thresholds 0.050 to 0.150.
As shown in Figure 5c, these results overestimated the detection accuracy because the pixel value of
the entire study area was mostly positive. TDLI showed the highest liquefaction detection accuracy
in both Landsat 8 and Sentinel-2 images compared with the NDWI difference methods. In addition,
the Sentinel-2 TDLI had a higher detection accuracy than the Landsat 8 TDLI, which was the result
of Sentinel-2’s higher temporal and spatial resolution. We also applied TDLI using the Sentinel-2
SWIR-1 band that is used in typical NDWIs as an alternative TDLI. Its detection accuracy was 88.344%
(threshold 0) to 7.566% (threshold 0.150), which was lower than the proposed SWIR-2 band TDLI
(95.501% to 11.247%, respectively). This result is thought to be due to the surface environment in which
soil was more dominant over vegetation.
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Table 3. Detection accuracy of each methodology at pixels of field-observed sand blows.

Threshold

Detection Accuracy (%)

Landsat 8 Sentinel-2
NDWI Difference

TDLI
NDWI Difference

TDLIGao McFeeters mNDWI Gao McFeeters mNDWI

0.000 21.881 99.387 63.190 73.211 58.282 42.536 50.716 95.501
0.025 8.793 82.822 32.106 56.237 26.380 15.542 26.789 75.665
0.050 2.658 36.401 14.928 35.583 10.634 3.885 8.793 53.579
0.075 0.613 7.975 6.544 19.018 4.090 0.204 3.681 37.832
0.100 0.000 0.818 3.272 10.634 2.658 0.000 1.227 26.789
0.125 0.000 0.204 1.227 5.521 0.818 0.000 0.409 18.200
0.150 0.000 0.000 0.613 2.249 0.409 0.000 0.000 11.247

Figure 7 shows the TDLI of Sentinel-2 images from 16 and 21 November after the Pohang
earthquake. The TDLI values were low (blue pixels) in the areas that showed high index values
in the coseismic TDLI of the Sentinel-2 images (Figure 6b; Nos. 1–4). This indicated that where
the water content was increased during the coseismic observation, it became significantly reduced.
In other words, surface water drained rapidly from the liquefaction-damaged sites. On the other hand,
the index value increased continuously at site No. 5, which was confirmed as an artificially watered
rice paddy. As for the TDLI of the post-seismic Sentinel-2 pair, the high-rise apartment (No. 6) and
shadow areas (No. 8) due to the forest topography still had high index values, similar to the noise in
the coseismic Sentinel-2 TDLI (Figure 6b). In order to detect accurate liquefaction phenomena and
reduce the shadow noise, we extracted pixels that showed both an increase in the coseismic Sentinel-2
TDLI, and a decrease in the post-seismic Sentinel-2 TDLI (Figure 7b). Although this did not completely
remove all noise, it is clear that most of the liquefaction anomaly pixels appeared in the sand blow
region. Some liquefaction anomalies that appeared at site No. 9, which had a circular pattern similar to
the actual liquefaction anomalies, which was different to the straight-line pattern of noise. This feature
likely represented a liquefaction area not confirmed by the field survey.

Figure 7. Sentinel-2 post-seismic TDLI and detected liquefaction anomaly. (a) TDLI of a Sentinel-2
image pair after the Pohang earthquake (16 and 21 November). The red star shows the epicenter,
and the black dashed lines show the liquefaction-related sand blow areas, which were confirmed using
a field survey and visual analysis using aerial and satellite imagery. (b) Composite result of coseismic
and post-seismic TDLI. Detected liquefaction anomalies are shown as blue-green area. White dashed
lines show the field-confirmed sand blow areas.



Remote Sens. 2019, 11, 2184 11 of 13

4. Conclusions

In this study, we applied SAR and optical image analysis techniques to provide liquefaction
detection and evaluated the performance. Coherence analysis using Sentinel-1 SAR did not show the
characteristics of the liquefaction surface. The NDWI time series analysis models using Landsat 8
and Sentinel-2 optical images confirmed liquefaction phenomena in areas nearest to the epicenter but
could not accurately detect other liquefaction-affected areas. Conventional NDWI techniques have
been developed for the detection of water in vegetation or open water, which is limited to detecting
changes to surfaces that underwent liquefaction. We proposed and evaluated the TDLI, a time series
analysis method using only one SWIR band at 2200 nm, which is the most sensitive band to the
increase of soil and vegetation water content. TDLI outperformed other techniques that detected
the major sand blow areas derived from liquefaction (Nos. 1–3), and Sentinel-2 TDLI showed more
accurate results than Landsat 8 TDLI. Sentinel-2 has a higher spatial and temporal resolutions than
Landsat 8, which was advantageous for detecting liquefaction phenomena with a short retention
time. The short revisit period was also important for TDLI to prevent the intervention of other factors,
such as precipitation during the sensing interval that limited application of the proposed method.
In addition, since Sentinel-2 has a higher spatial resolution than Landsat 8, the detection accuracy was
improved by reducing the signal mixing of sand blow, which was mostly sub-pixel size. The results
of the TDLI analysis using Sentinel-2 images confirmed that the false detection of liquefaction may
occur close to high-rise buildings or areas of steep slope shadow. Additional studies to remove this
noise and further experiments on other liquefaction areas and weather conditions will be needed.
Nevertheless, the liquefaction detection technique using Sentinel-2 images with a high temporal and
spatial resolution can help to quickly investigate liquefaction damage and provide relief.
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