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Extreme weather/climate events have been increasing partly due to on-going climate change. Such
events become disasters where people live. In a sustainable society, the rapid detection and monitoring
of natural disasters are required. Remote sensing techniques are suitable for dealing with natural
disasters that have various characteristics in multiple spatial and temporal domains. Continued efforts
in finding ways to operationally-monitor and assess disastrous events such as heavy rains, floods,
drought, heatwave, and forest fires are consistently rewarded by integrating advanced remote sensing.
However, the development of robust disaster monitoring and assessment methods from regional
to national scales of disasters is still challenging as disastrous events typically result from complex
mechanisms. A multitude of data from visible to microwave remote sensing have been used for
conducting comprehensive monitoring and assessment solutions for disasters. Disaster monitoring and
assessment are the areas that have benefited most by recent advances in satellite, airborne, and ground
remote sensing. Novel techniques in image analysis and the scheduled launch of a series of new sensors
with enhanced specifications are also promising for disaster monitoring and assessment, which aims
at reducing the risks caused by disasters. This special issue aims at finding novel approaches using
various satellite-based images and airborne/ground instruments for the monitoring and assessment of
natural disasters including floods, droughts, cyclones, landslides, and land subsidence.

1. Overview of Contributions

Myoung et al. [1] modeled live fuel moisture (LFM) using the enhanced vegetation index (EVI)
of the moderate resolution imaging spectroradiometer (MODIS). The LFM is a conventional index
for indicating the danger level of wildfires. Linear models between EVI and other meteorological
factors and in situ LFM observations in California were developed in the study. There was a stronger
relationship between LFM and EVI when ancillary meteorological predictors were considered together
when compared to the model that only used the EVI. It was confirmed that the temporal discrepancy
between in situ measurements and satellite data has substantial impact on the accuracy of LFM
estimation. Furthermore, the spatial consistency between the in situ and satellite-based datasets were
examined. The proposed method was tested with the Coby fire that occurred in January 2014 in
California, USA. The fire ignition point and the burnt area were well matched with the place where the
LFM showed under 60%, which was considered as highly dangerous for wildfires.

Ryu et al. [2] investigated the usefulness of satellite-based burned ratios and vegetation indices
to explore post-fire recovery processes. Normalized burned ratio (NBR) and the difference between
pre- and post-fire NBRs were calculated using a MODIS product (i.e., MOD09 collection 6) of Terra.
The burned ratio of wildfire not only affects the loss of carbon resource, but also the carbon assimilation
ratio. For that, the gross primary production (GPP) of MODIS (MOD17A2H) was additionally compared
to monitor the post-fire recovery processes. These metrics were able to visualize the phenomena of
forest recovery in South Korea, which experienced a severe fire event in 2004.
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Yang et al. [3] investigated the relationship between urban structures and land subsidence using
the Envisat advanced synthetic aperture radar (ASAR) and TerraSAR-X high resolution SAR data.
In Beijing, an intensively developed urban area, the high-rise building areas showed significant land
subsidence when compared to the areas of low-rise buildings. The permanent scatter interferometric
synthetic aperture radar (PS-InSAR) technique was harmonized with high resolution SAR data and in
situ observations to reveal the mechanisms of land subsidence under the urban areas. The novelty of
this study lies in the block scale analysis with the advantage of using high resolution SAR.

Lim and Lee [4] simulated flood damage areas (FDAs) in North Korea by taking advantage of
satellite-based information derived from inaccessible areas. Expert-based multiple remote sensing
and GIS approaches were chosen for the delineation of flood inundated areas (FIAs) referenced to
visible Google Earth high resolution imagery. Sentinel-1 radar images were used to detect the FIAs.
The stream flows along the geomorphology were modeled by the Geomorphon model. The originality
of this study was included in the model selection by using multiple combinations of input variables.
Finally, the most robust model was able to delineate FDAs, which agreed well with the damage
information in the reports provided by the North Korean government.

Ma et al. [5] established a flash flood risk model in Yunnan Province in China, a typical
flood-prone area. Unlike typical floods, flash floods are known to be highly risky, making it difficult
for people to evacuate their residences. The model was developed using satellite-based meteorological,
topographical, hydrological, and anthropological indices as the input factors affecting flash floods by
using an artificial intelligence algorithm, named the least squares support vector machine (LSSVM).
The highest model performance in terms of accuracy was achieved by the LSSVM with a radial basis
function (RBF) kernel. In particular, the curve number in the topographical factors was the most
contributing factor to the flash flood risk model. The choice of model input variable and model
verification were carefully conducted and high risk areas were identified through the risk analysis.

Jang et al. [6] developed a forest fire detection model using geostationary satellite images,
Himawari-8 AHI, over South Korea. The model consisted of thresholding, random forest machine
learning, and post-processing. In South Korea, wildfires frequently occur at a small scale. For this
reason, accurate and rapid forest fire detection using high spatial and temporal resolution satellite data
is crucial. However, existing approaches have several critical limitations including a very high false
alarm rate. The three-step fire detection model proposed in this study focused on maintaining a high
probability of detection (>90%) without increasing a false alarm rate (i.e., significant reduction of a
false alarm rate when compared to the existing approaches). The proposed model was validated with
real fire events, resulting in a good performance even for small scale fires.

Zhang et al. [7] proposed a new dryness monitoring indicator, the ratio dryness monitoring
index (RDMI). Surface dryness monitoring is important to assess water deficiency as a disaster to
harm human lives and ecosystems. The RDMI was developed using distances from the “Edges on
the triangle” on the near-infrared (NIR) and Red reflectance feature space since the NIR and Red
wavelengths are closely related to moisture and vegetation. In particular, defining wet and dry edges
using NIR and Red reflectance is a novel component when compared to existing surface dryness
indices. The proposed approach was demonstrated in Xinjiang, China, where the biggest desert in
Asia is located. The results showed a conspicuous agreement with the distribution of landcover types.

Zuo et al. [8] combined two SAR data, Envisat ASAR and Radarsat-2, with the PS-In SAR method
to capture the temporal patterns of land subsidence and demonstrated the stage of land subsidence in
terms of temporal evolution in the east of the Beijing Plain in China, which is known as an area that has
largely subsided. A permutation entropy method was used to reverse the temporal evolution pattern
of land subsidence. The rate of subsidence results from the SAR timeseries was validated with in situ
data resulting in high accuracy (R2 = 0.94). The time-series of land subsidence showed uneven patterns
and agreed well with the decreasing pattern of groundwater, although the subsidence would progress
along with the geological conditions. Finally, the overexploitation of groundwater was considered as
the main cause of land subsidence from this temporal analysis.
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Tropical cyclones (TCs) are one of the most risky disasters in terms of casualties and economic
losses. However, the determination of TC initiation still requires human interpretation. Several studies
have been conducted to automate the process of identifying whether a TC will develop. Kim et al. [9]
developed an automatic TC initiation detection model with machine learning (ML) approaches and
compared those methods using four metrics: heat rate, false alarm rate, Peirce skill score, and lead
time. The ocean surface wind and precipitation from WindSat were used to build three ML-based
models—decision trees (DT), random forest (RF), and support vector machine (SVM)—and linear
discriminant analysis (LDA) as a conventional model. Both cases of developing and non-developing
tropical disturbances from the Joint Typhoon Warning Center (JTWC) best track were collected to train
the models. The results of all accuracy metrics showed a higher performance for the ML models than
for the LDA model. In particular, the ML models were able to detect TC initiation 26–30 h before a TC
was diagnosed as a tropical depression, which was 5–9 h earlier than the detection by LDA.

Ye et al. [10] proposed an original monitoring system for detecting debris flow by building a
wireless accelerometer network and evaluated it over a mountainous area in Japan. Defining the
phenomena of debris flow is challenging because of its drastic ignition and difficult access. A two-stage
data analysis process with anomaly detection and debris flow identification was implemented in the
framework. Signals were detected using a state-of-the-art machine learning approach, convolutional
neural networks. The network of connected sensors was able to provide a process of debris flow from
the initial to final stages. The system developed suggested an alternative method to detect the disaster
and the related analytical method.

Lee et al. [11] developed machine learning models to estimate the total precipitable water (TPW)
from Himawari-8 data using the ERA-Interim TPW as a reference for Northeast Asia under the clear
sky condition. The radiative transfer model was used for cloud screening. TPW, a column of water
vapor content in the atmosphere, can be a critical variable to delineate hydrological conditions. It is
also related to the intensity of disasters regarding the convective available potential energy (CAPE).
Machine learning methods, RF, extreme gradient boosting (XGB), and deep neural network (DNN)
were evaluated and compared. The DNN result outperformed the other models when validated using
ERA-Interim and radiosonde observation (RAOB) data. TPWs retrieved from geostationary satellite
images with a 10 min interval can provide valuable input to a disaster management system focusing
on heavy rains and floods.
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