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Abstract: Detecting objects in aerial images is a challenging task due to multiple orientations and
relatively small size of the objects. Although many traditional detection models have demonstrated
an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window
manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs)
have successfully been used for object detection, and they have demonstrated considerably superior
performance than that of traditional detection methods; however, this success has not been expanded
to aerial images. To overcome such problems, we propose a detection model based on two CNNs.
One of the CNNs is designed to propose many object-like regions that are generated from the
feature maps of multi scales and hierarchies with the orientation information. Based on such a
design, the positioning of small size objects becomes more accurate, and the generated regions
with orientation information are more suitable for the objects arranged with arbitrary orientations.
Furthermore, another CNN is designed for object recognition; it first extracts the features of each
generated region and subsequently makes the final decisions. The results of the extensive experiments
performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set
(OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection
accuracy but also the detection speed.

Keywords: object detection; aerial image; convolutional neural network; deep learning;
multiple orientations

1. Introduction

The rapid breakthrough of remote sensing satellite and unmanned aerial vehicle (UAV)
technologies has ensured the easy availability of a large number of aerial images. Recently, such
aerial images have been widely used in the daily activities of human society. For example, in urban
planning, the UAV systems can promptly obtain the ground information including the outer frame
information and vector information of city houses, and using this information, digital line graphics can
be rapidly generated [1]. In the field of intelligent transportation, the high-resolution remote sensing
images obtained by UAV systems are used to detect traffic accidents or vehicle flows [2]. Additionally,
it is convenient to monitor the growth of crops in agricultural regions by using UAVs [3]. Therefore,
extracting and mining valuable information from aerial images have attracted considerable attention.
Object detection is a crucial task in computer vision, which focuses on understanding the image
information efficiently and widely applied in some practical applications, such as in surveillance [4]
and security systems [5,6]. However, object detection in aerial images is a challenging task because of
the obscure and cluttered backgrounds and the presence of arbitrarily oriented and relatively small
objects. In addition, in the aerial images, the objects always exhibit an overhead appearance, which
may cause difficulty in extracting the discriminative features, thereby leading to confusion or false
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detection. Practically, an object detection model is required to exhibit a high performance in terms of
detection accuracy as well as speed.

Generally, the object detection technology focuses on two key sub-tasks: positioning the objects
and extracting the features for recognizing. Object positioning aims to find the location of an object,
which is usually defined by a rectangular bounding box. In the last few decades, the mainstream
technique involves a sliding-window fashion, which means that the detection windows are shifted
at different locations over the image with a specific stride. Dalal et al. [7] designed a pedestrian
detector based on this strategy. Additionally, the classical DPM (deformable parts model, proposed by
Felzenszwalb et al. [8]) employed a set of part components and adopted this strategy to detect an object
over an image pyramid, which demonstrated an acceptable performance. Subsequently, many variants
or improved approaches were designed based on this technique [9–12]. However, the sliding-window
strategy is time-consuming because too many candidate regions are generated when traversing over
an image pyramid, which is expected to reduce the computational complexity in object positioning.
Consequently, extensive studies [13–26] proposed techniques called region proposal methods to reduce
the number of candidate regions. Uijlings et al. [13] developed a regional proposal approach to
generate candidate regions; the authors adopted a hierarchical segmentation and grouping strategy
and measured the generated regions in terms of the objectness (which is defined as a probability
value that determines the image region to be an object of any class). This approach is called selective
search, and it generates only thousands of candidate regions from an image, which is considerably
less than the number of regions generated by the sliding-window technique (approximately 105 for a
medium-sized image). Although the selective search method reduces the number of candidate regions,
it spends a large amount of time on the similarity calculation and grouping of each small segmented
region. To reduce the time consumption in the process of region generation, a previous work [26]
proposed a super-pixel segmentation approach named simple linear iterative clustering (SLIC), which
exhibited high efficiency and simplicity; however, the segmented regions were irregular polygons,
which are coarse and lead to inaccurate object positioning. With the development of deep learning,
convolutional neural networks (CNNs) have presently become the most important method to generate
candidate regions; Ren et al. [27] proposed the region proposal network (RPN), which adopts the
anchor scheme to generate a set of candidate regions at each position of the feature map output from
the CNN. Although the RPN obtained a better position accuracy compared to that of the traditional
methods such as selective search and SLIC, its performance is not as satisfactory for small sized object.
Therefore, Kong et al. [28] improved the RPN and proposed the HyperNet which generates multiple
feature maps into one uniform feature space and exhibits better performance in terms of the small-sized
object positioning. Recently, a large number of detection models [29–33] have adopted CNN-based
methods to generate region proposals.

For the feature extraction and recognition, some researchers [7,8,34–39] attempted to design
the discriminative features and train a classifier. A study [7] proposed a novel gradient feature
named the histogram of oriented gradients (HOGS), based on which the authors trained a support
vector machine (SVM) classifier to detect pedestrians, exhibiting satisfactory performance. In [8],
the authors compressed the original HOG feature into 31 dimensions and trained a latent SVM, which
demonstrated high efficiency for detection of objects in multiple categories. Additionally, various
features were designed to deal with object detection problems, such as the scale-invariant feature
transform (SIFT) [34] and its accelerated version named the speed up robust feature (SURF) [35];
these features are called hand-crafted features. Recently, with the rapid progress and development of
deep learning, CNN has demonstrated a powerful feature representation capability, owing to which
it can replace the aforementioned hand-crafted features to become the most important method of
feature extraction. In another study [36], Krizhevsky et al. designed a CNN model called AlexNet and
trained it on a dual GPU (graphics processing unit) architecture. In 2012, this model obtained excellent
results [37] in the image classification challenge ILSVRC2012. Since then, an increase in the amount of
CNN architectures have been proposed to handle various tasks in the field of computer vision, such as



Remote Sens. 2019, 11, 2176 3 of 23

the Z&F-Net [37], VGG-16, VGG-19 [38], and Inception [39]. Furthermore, combined with the soft-max
layer, the trained CNN model can be used not only for feature extraction but also for classification.
This type of “end-to-end” configuration is superior to the traditional two-stage approach [7,8].

Furthermore, some studies [40–42] proposed a type of uniform detection framework, which
adopted only one CNN architecture to combine the generation of candidate regions and object
recognition into one stage. Specifically, the authors in [40] handled the detection task as a regression
problem in which the object’s bounding box and its probabilities of the associated class were directly
predicted. Liu et al. [41] proposed the single-shot multi-box detection model (SSD), which could directly
output the confidence score of the object-like regions. Compared with the RPN-based method [27], these
studies [40–42] reported improvement in the detection speed due to the less complicated architecture.

In the context of the object detection in aerial images, most works are focused on detecting vehicles
because vehicles are common objects in such imagery and play a key role in many applications such
as traffic analysis and reconnaissance missions. Traditionally, the methods are based on handcrafted
features and a slide window fashion; in addition, certain road information is always used as auxiliary
information, such as the orientation information. Recently, CNN has become the main approach
in object detection. Although the existing CNN based detectors [27–33] have achieved promising
results in general images, their performance is not satisfactory for aerial images. The small size of
the objects in an aerial image (the average size of an object is approximately 40 × 20 pixels) makes
it challenging for the RPN [27] to generate small-sized regional proposals because the RPN adopts
the feature map generated from the deeper convolutional layer of the CNN, which is too coarse to
enable positioning. Furthermore, the objects in aerial images are aligned in multiple orientations [43];
however, the proposals generated from the CNN model are always horizontal, which means that the
position of an object may not be accurate. Consequently, the horizontal region proposals can lead to
detection loss and cannot be applied in practice for aerial images.

To this end, we propose a CNN-based model to overcome the problems of detection of small-sized
objects and objects with multiple orientations in aerial images. The proposed model includes two
CNNs, which divide the detection task into two stages: first, one of the CNNs is trained to generate the
candidate region proposals with multiple orientations; subsequently, the generated region proposals
are fed into another CNN for object recognition. The contributions of this paper can be described
as follows:

• We designed a CNN-based detection model for the objects in aerial images, which is different
from the recent CNN-based models and traditional models (that adopt hand-crafted features and
the sliding-window scheme). Our model consists of two independent CNNs: MORPN (multiple
orientation regional proposal network) and ODN (object detection network): the MORPN is
applied to generate multiple orientation region proposals, and the ODN is used to extract the
features and make decisions.

• To deal with the objects with a small size and multiple orientations in the aerial image, we proposed
the MORPN. For the small-sized objects, the proposed MORPN employs a hierarchical structure
that combines the feature maps of multiple scales and hierarchies to generate the region proposals.
For the objects with multiple orientations, to improve the positioning accuracy, the angle
information is adopted to generate the oriented candidate regions, unlike the classical CNN-based
models that generate only horizontal region proposals. Moreover, an object detection network
named ODN is trained to extract deep features and make decisions.

• The proposed detection model was tested on two real-world aerial image datasets: VEDAI
(vehicle detection in aerial imagery) [44] and OIRDS (overhead imagery research data set) [45].
Extensive experiments were conducted, and the evaluation results indicated that the proposed
model achieved significant improvement in the detection performance compared to that of
its counterparts.
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The rest of this paper is organized as follows. In Section 2, we summarize the related works
pertaining to object detection in aerial images. Section 3 describes the basic theories and analyses of
the MORPN and ODN. In Section 4, we describe the extensive experiments conducted on the two
datasets and discuss the testing results. In Section 5, we conclude this paper and describe the scope for
future work.

2. Related Work

The detection of objects in aerial images has been extensively studied over the last few decades,
although most works [46–56] focused on extracting the discriminative feature and generating accurate
region proposals. Xu et al. [46] employed the Viola–Jones approach, the histogram of oriented gradients
(HOG) features and the linear support vector machine (SVM) to design a model for vehicle detection
in UAV imagery, which exhibited a high performance. However, this scheme has a limitation, that is,
the roadway information is required to adjust the orientation of the images. In addition, this scheme is
not suitable for the objects arranged in multiple orientations, for example, in the aerial images without
any roadway information. To deal with the rotated object detection problem in optical remote sensing
images, Wang et al. [51] proposed the rotation-invariant matrix (RIM) features. These features were first
encoded into fisher vectors, and subsequently, a spatial pyramid pooling strategy was adopted to obtain
richer information. This model exhibited satisfactory performance in detecting certain medium-sized
objects such as airplanes; however, it only outputs the horizontal bounding box, which is not suitable
for the densely arranged and oriented objects. In another study [52], the researchers developed a
vehicle detection method for aerial images, which utilized the GIS road vector map and morphological
method and obtained an overall accuracy of 91.5% for 17 highway scenes; however, this method is not
suitable for the objects in other scenes such as those of urban, suburban and residential areas.

Recently, CNNs have become the most prominent technique for object detection in aerial
images, and most of the related approaches are developed based on two schemes. In some cases,
the CNN is applied to replace the traditional hand-crafted features for feature extraction [47,48].
Ammour et al. [47] adopted a CNN as a feature extractor to detect objects in UAV images; they first
employed a segmentation approach to generate the candidate regions from the input image and later
fed the regions into a CNN model (which was pre-trained) for feature extraction. Finally, an SVM
was trained to make the decisions. One study [48] adopted a feature extraction method that fused the
spatial information of each candidate region. Ševo et al. [53] fine-tuned an Inception [39] model on
the UCMerced dataset and U.S. Geological Survey (USGS) image dataset to realize object detection.
Al-Najjar et al. [54] trained a CNN model to classify seven types of land covers on fused datasets
(unmanned aerial vehicle imagery combined with the digital surface model (DSM)), and it was noted
that the combination could help improve the accuracy. Because the extracted features from a CNN are
more discriminative than the traditional hand-crafted features (such as HOG), the aforementioned
models exhibit a satisfactory performance in aerial images. However, the detection phases of the
models are complex, involving feature extraction, feature encoding and model fine-tuning.

Furthermore, a CNN model can be used for not only feature extraction but also the generation
and classification of the candidate regions. Yan et al. [55] proposed a method that used the adaptive
intersection-over-union (IoU) information to guide the detection of small-sized objects in aerial imagery.
In addition, they designed a type of IoU-based weighted loss, which further improved the detection
accuracy. Tang et al. [49] and Kong et al. [28] respectively proposed the hyper region proposal
network (HRPN) and HyperNet, to locate small-sized objects accurately. Their work employed stacked
multi-feature maps, which yielded a better positioning accuracy compared to that of the classical RPN.
Deng et al. [50] improved the RPN and Fast R-CNN and proposed a two-way CNN model to realize
small-sized object detection. Although the above CNN-based detection models attempted to address
the problem of small-sized object detection and could demonstrate satisfactory performance for aerial
images, the orientation information was always ignored in these studies [49,50,55] as the RPN-based
models can generate only horizontal regions. In contrast, the oriented region proposals are more
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similar to the real conditions and can help improve the detection accuracy. From the illustrations in
Figure 1, it can be clearly seen that the horizontal bounding boxes (in Figure 1a) always overlap each
other when the objects are arranged in a dense manner, which leads to the generation of inaccurate
region proposals; in contrast, the oriented bounding box (in Figure 1b) can avoid such problems.

Figure 1. (a) The bounding boxes without orientations (horizontal bounding box) may lead to
overlapping or even missing, which can decrease the detection accuracy. (b) The bounding boxes with
orientations can avoid such problems.

3. Methods

The proposed model is illustrated in Figure 2. The model consists of two CNNs: the first CNN,
called the multiple orientation region proposal network (MORPN) is designed to propose multiple
orientation region proposals; the second CNN is the object detection network (ODN), which performs
feature extraction and recognition for the oriented region proposals generated by the first network.
The detection process can be described as follows: 1) The image is input to the MORPN to generate the
region proposals; 2) the image and its corresponding generated region proposals are fed to the ODN
as input, and the confidence score of each region is obtained; 3) the detected regions are determined.
Usually, we employ a threshold for the evaluation; if the detection score of detection is greater than
the threshold, it is considered a true detection. The proposed model has the following differences
with the existing CNN-based detection models [27,28]: 1) Unlike the RPN and HyperNet, which
can only generate horizontal region proposals, the multiple angle information is combined with the
region proposals, and the models detect the objects with an oriented bounding box; 2) unlike the
HyperNet, which constructs a stacked feature map for generating the region proposals, we design a
hierarchical structure that combines the feature map from various scales (output of the shallow and
deep convolutional layers) to detect small-sized objects. Although the output of the deep convolutional
layers exhibits an inferior performance in terms of the object positioning, it is associated with a higher
detection recall; furthermore, the output of the shallow layers has an inferior detection recall but can
help in the accurate positioning of small-sized objects. To exploit the advantages of both the layers,
the feature maps output from the deep and shallow layers are combined in the proposed model; 3) we
train the two networks independently, which is different from the approach adopted in previous
studies [27,28]. This aspect implies that we do not need to train the sharing and un-sharing layers of
the two networks. During the training stage, the two CNNs are trained independently. The detailed
description of this model is provided in the following subsections.
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Figure 2. The complete architecture of the proposed model.

3.1. Backbone Architecture

The proposed MORPN and ODN adopt the VGG-16 model [39] as the backbone architecture.
The VGG-16 is a deep CNN model, which has achieved significant success in the field of computer
vision. The architecture of the VGG-16 model is shown in Figure 3. The model consists of 13
convolutional layers, 5 max-pooling layers and 3 fully connected layers. The convolutional layers
are used to generate the feature maps, and the pooling layers down-sample the input feature and
maintain sufficient information. The generated deep feature maps are input into the fully connected
layers fc6, fc7 and fc8. The fc6 and fc7 layers generate a feature vector of 4096D (where D denotes the
dimensions), and the fc8 layer generates a feature vector of 1000D. Finally, a soft-max layer takes this
1000D feature vector as the input to make the final decision.

Figure 3. The architecture of the VGG-16 model.

The VGG-16 model adopts the convolutional kernel with a size of 3 × 3 and a stride of 1 for all the
convolutional layers. Moreover, it adopts the max-pooling strategy with a 2 × 2 pixel window and
stride of 2 for each pooling layer.
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3.2. Region Proposal Approach

The region proposal approach is used to generate the object-like regions, and the RPN [27] is the
first heuristic approach that adopts a CNN to accelerate the generation progress of the region proposals
and increase the positioning accuracy. The RPN (shown in Figure 4) is designed based on the VGG-16,
which reserves the convolutional layers (from conv1_1 to conv5_3) and deletes the fc6, fc7 and fc8 layers;
subsequently, the model slides a small convolutional network over the feature map generated by the
deepest convolutional layer. Two sibling layers named reg_layer and cls_layer are connected behind the
small network to perform the box regression and classification, respectively.

Figure 4. The architecture of the region proposal network (RPN).

The RPN adopts the anchor scheme to generate the region proposals. To account for the
various object sizes, the sliding window generates k proposals at each sliding position of the feature
map. As reported in [27], the parameter k is controlled by the scale and aspect ratio. Consequently,
the reg_layer and cls_layer produce 4k outputs and 2k scores, respectively. Each region has 4 coordinates
and 2 scores to represent its position and confidence, respectively.

However, in aerial images, the objects usually have a small size with multiple orientations.
The horizontal proposals generated by the RPN are not suitable for such objects. Therefore, a more
efficient and robust object detection model should not only generate small-sized region proposals but
also provide proposals with the orientation information corresponding to the regions.

3.3. MORPN

The MORPN utilizes the VGG-16 as the backbone, and it is designed to address the problem of
small-sized and oriented objects in aerial images. The MORPN is used to generate the object-like
regions and their corresponding objectness scores from an input image. First, to propose the small
candidate regions, the architecture with hierarchical feature maps is constructed instead of using the
deepest feature map of the CNN model. Second, the oriented anchor scheme is employed to generate
the candidate regions with various orientations.

(1). Hierarchical feature map.
Similar to the hyper feature map (which stacks multi convolutional layers together) proposed

in [28,46], we construct a hierarchical structure by employing the output of the shallow and deep
features from the convolutional layers. The feature map output from the shallow convolutional layer
can efficiently locate the position of the object but has a reduced recall; furthermore, the feature map
generated from the deeper layers can obtain a higher detection recall but exhibits inferior performance
in terms of object positioning.
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Similar to the RPN, we use the VGG-16 model as the backbone of the proposed MORPN,
and subsequently, we make the following changes: 1) The soft-max layer and 3 fully connected layers
from fc_6 to fc_8 are deleted; 2) two small networks named reg_conv_1 and reg_conv_2 are added behind
the convolutional layers conv4_3 and conv5_3; these two small networks are the two convolutional
layers; 3) 512 convolutional kernels with a size of 3 × 3 × 512 are adopted in these two small networks,
which are employed to produce the 512D feature vectors over the hierarchical feature maps; 4) the
512D feature vector is simultaneously fed into the pred_bbox and pred_score layers. The details of this
architecture are shown in Figure 5.

Figure 5. The architecture of multi-feature map.

(2). Oriented anchors.
We propose the oriented anchor scheme to generate the proposals of regions with multiple

orientations and adopt the regression technique for the bounding box, which makes the proposals
more suitable for the object regions. During the training phase, the ground truth of the object is defined
as (x, y, w, h, θ), which represents an oriented bounding box with 5 tuples. The coordinate (x, y) is the
centroid of the bounding box, w represents the long side (width) of the bounding box, h represents
the height of the bounding box, and θ is the angle from the positive direction of the x-axis to the
direction parallel to the long side of the oriented bounding box. Only half of the angular space [0, π)
can cover the entire orientation of the generated proposals because the generated proposal and its
contrast proposal represent the same detected region, which does not reduce the recall rate. For θ in
the range of [π, 2π), its value is updated as θ: = θ-π.

Compared with the traditional anchor scheme, the oriented anchor scheme is suitable for objects
in aerial images. The angle parameter θ of the proposal is adopted to determine the orientation of the
object. To avoid the computational load of the orientation coverage, we establish a balance; therefore,
only 6 orientations (0, π/6, π/3, π/2, 2π/3 and 5π/6) are employed in our experiments. Moreover,
the other two parameters (aspect ratio and scale) used in the traditional RPN are adopted as well.
We employ 3 aspect ratios [1:1, 2:1, and 1:2] and 4 scales [82, 162, 322, and 642]. Through this scheme,
72 generated regions are obtained at each position of the feature map. The two sibling output layers
pred_bbox and pred_score generate 360 outputs (72 × 5) and 144 scores (72 × 2), respectively. The oriented
anchor scheme is illustrated in Figure 6.
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Figure 6. (a) The oriented bounding box with 5 tuples; the (b) 3 aspect ratios and (c) 6 orientations of
the rotated bounding box.

(3). Loss function.
The MORPN has two output layers, pred_bbox and pred_score, which are employed to output

the position of the region proposal and its corresponding objectness score. To train the MORPN in a
single stage, a multi-task loss function [57] is employed during training. As shown in Equation (1),
the function L consists of two sub-functions adopted for the bounding-box regression and classification.

L(pt, lt) = Lcls(pt, pg) + λ ∗ pg
∗ Lbr(lt, lg) (1)

In Equation (1), pt represents the probability that the region is an object, which is the output of the
pred_score layer. The label pg indicates the ground truth (1 and 0 for the positive and negative regions,
respectively). Lcls represents the log loss between the background and object-like region. In addition,
the parameter λ is the balance parameter in this loss function, which is set as 10 in the training stage.

The label lt is the output of the pred_bbox layer, which is a vector of 5 parameters (x, y w, h, θ) used
to predict the bounding box; lg represents the ground truth. For the loss function Lbr, we adopt the
smooth L1 loss function [57]. Equations (2) and (3) provide a detailed description of these aspects.

Lbr(lt, lg) = SL1(lt − lg) (2)

SL1(z) =
{

0.5z2 if|z| < 1
|z| − 0.5 others

}
(3)

(4). Settings of model training.
During the training stage, positive labels are assigned to the regions that simultaneously satisfy

the following conditions: a) The highest intersection-over-union (IoU) ratio (defined in Equation (4))
between the ground truth and the regions is larger than 0.7, and b) the intersection angle between
the ground truth and the regions is less than π/12. An anchor is defined as a positive sample when a
ground truth box lies in its fit domain. In terms of the angle range [0, π) and the six orientations defined
in our work, the fit domain is divided into six equal parts. Therefore, the arbitrary ground truth box fits
the anchors with an adaptive fit domain. The negative labels are assigned to the regions that satisfy the
following conditions: a) the IoU ratio is less than 0.3, or b) the intersection angle between the ground
truth and the regions is larger than π/12 (with the condition that the IoU ratio is larger than 0.7).

IoUratio =
Areg ∩Agt

Areg ∪Agt
(4)

In Equation (4), Areg is the area of the region proposals, and Agt is the area of the ground truth
bounding box. The IoU computation of the oriented proposals is different from that of the horizontal
proposals because the overlap parts are always polygonal regions. Therefore, in this study, we compute
the IoU ratio considering the triangulation [58]. By using the triangulation, the polygonal regions can
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be divided into a set of triangle regions, and the polygonal area can be computed by summing the
triangles; subsequently, the IoU ratio can be computed.

The MORPN is initialized by the VGG-16 model, which is first pre-trained on the ILSVRC
dataset, and we adopt the stochastic gradient descent (SGD) technique as the optimization method.
Additionally, we adopt a mini-batch of 256 for an input image, and the numbers of positive and
negative examples have a ratio of 1:1. Once the number of positive examples is less than 128 in an
image, the negative ones are padded.

3.4. ODN

(1). Architecture
The ODN also adopts the VGG-16 model as the backbone. To extract the feature vector with a fixed

length from the region proposals (having multiple sizes, scales and orientations), a MOROI (multiple
orientation region of interest) polling layer is added. Behind the MOROI pooling layer, we add the
fc_6 and fc_7 layers, which are the two fully connected layers. The ODN is required to output the
position and corresponding confidence score of the object. Hence, we add two fc (fully connected)
layers behind the fc_7 layer. The detailed illustrations of these aspects are shown in Figure 7.

Figure 7. The architecture of the object detection network (ODN).

The input of the ODN includes 1) the image similar to the input of the MORPN, and 2) the region
proposals output from the MORPN; these region proposals are directly mapped into the MOROI
pooling layer.

Unlike the ROI pooling layer in the RPN, which can only deal with the horizontal region proposals,
the MOROI pooling layer in the ODN is used to handle the oriented region proposals. From each
region proposal, a fixed-length feature vector is generated and later input into a fully connected layer
fc_6, which generates a feature vector of 4096D. The fc_7 layer adopts the similar settings as those
of fc_6. In addition, we add two sibling fc (fully connected) layers behind the fc_7 layer, namely,
the pred_bbox and pred_score layers. These two layers yield the bounding box and confidence score of
the predicted object, respectively.

(2). Settings of the model training.
The loss function of the ODN is equivalent to that of the MORPN (shown in Equation (1)). In the

training stage as well, we adopted the same pre-trained VGG-16 model and the hyper parameters
(trained on ImageNet) as those described in Section 3.3.

(3). Multiple orientation region of interest (MOROI) layer.
The MOROI pooling layer is used to extract the fixed-length feature vectors. Practically, the region

proposal is divided into H ×W sub-regions. Therefore, each sub-region has the same orientation as
that of the region proposal, and its size is h

H ×
w
W . Additionally, the standard max pooling is performed
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independently in each sub-region and feature map channel. The computation of the MOROI pooling is
described in Table 1. {

x′ ← (x0 − x) cosθ+ (y0 − y) sinθ+ x
y′ ← (y0 − y) cosθ− (x0 − x) sinθ+ y

(5)

{
px ← x′ × Sa + n cosθ+ m sinθ+ 1

2
py ← y′ × Sa − n sinθ+ m cosθ+ 1

2
(6)

where m ∈ {0, . . . Sh × Sa − 1}, n ∈ {0, . . . Sw × Sa − 1}

Table 1. Max pooling process of the multiple orientation region of interest (MOROI) layer.

For an input-oriented region proposal defined by (x, y, h, w, θ) with a spatial scale Sa
1. Calculate the sub-region size: Sw ←

w
W , Sh ←

h
H

2. Find the top-left coordinate of each sub-region as follows: x0, y0 ← x− w
2 + jSw, y− h

2 + jSh
Where, i ∈ {0, . . .H − 1}, j ∈ {0, . . .W − 1}
3. Calculate the rotated coordinate of (x0, y0) by using Equation (5) (presented below)
4. Perform max-pooling on each sub-region
a. set v = 0;
b. compare the value of the feature map with v at each position (px, py) by using Equation (6) (presented below)
c. set v as the max value of this region
d. set the position (i,j) of the output feature map as Feature(i,j) = v
5. Repeat the steps from 2 to 5 until the Feature(i,j) at each sub-region is calculated.

4. Experimental Results and Discussions

We validate the proposed model on two datasets: the VEDAI dataset [44] and OIRDS [45].
The model performance is evaluated in terms of speed and accuracy. Section 4.1 describes the
evaluation metrics. All the programs in our experiments are implemented based on MATLAB2014a
and Caffe. The running environment includes a (Titan X) GPU with a 12 GB memory and a multi-core
(Intel Core i7) CPU.

4.1. Evaluation Metrics

To evaluate the proposed detection model, we employ the following four metrics in
our experiments:

(1) Recall rate.
The recall rate [59], as defined in Equation (7), indicates the ratio of the number of detected

objects to the number of all related objects. Here, TP denotes the true positive, and FN denotes the
false negative.

Recall =
TP

TP + FN
(7)

(2) Average precision (AP)
The average precision [60] is a value that intuitively indicates the performance of the detectors,

and it is defined as in Equation (8).

ap =

∫ 1

0
p(r)dr (8)

Here, r represents the recall, and p represents the precision [55], which is defined in Equation (9).
FP in Equation (9) refers to the false positive. The average precision (AP) is calculated by evaluating
the area under the precision–recall curve.

Precision =
TP

TP + FP
(9)

(3) Precision–recall curve (PRC).
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The precision–recall curve is determined considered the precision and recall; the x-axis is defined
by the recall, and the y-axis is defined by the precision.

(4) F1-Score
The F1-Score [55] can be defined as in Equation (10).

F1_Score =
2× Precision×Recall

Precision + Recall
(10)

Overall, the F1-Score and AP are the equilibrium indicators, which reveal the performance of the
detectors. The F1-Score and AP values are positively correlated with the performance. During the
testing, if the IoUratio of the detection greater than 0.5, it is defined as true, or else, it is false.

4.2. Baselines

To validate the performance of the proposed model, we compared the models that employed
different region-proposal schemes, including the selective search, segmentation, RPN, multi-feature
maps without orientation (this approach adopted the similar framework as that of the MORPN but the
orientation information was not used for region generation) and “one-stage” detection model (such as
SSD and Yolo V2, which adopt only one CNN to handle the proposal generation and object recognition).
Moreover, different CNN architectures such as the VGG-16 and Z&F models were considered as well.
The following baselines were selected for comparison.

1. Fast RCNN [57]: The model adopted in the experiments employed the selective search scheme
as the region proposal technique, and the generated region proposals were fed into a CNN for box
regression and classification. We employed the VGG-16 as the backbone. This method is referred to as
FastVGG-16.

2. Faster RCNN [27]: This model adopted the RPN as the region proposal approach, and
approximately 300 region proposals were generated by the RPN. We adopted the VGG-16 and Z&F
models as the backbone, and they are referred to as FasterVGG-16 and FasterZ&F, respectively.

3. Segmentation and detection approach [26]: First, we segmented the testing image into
approximately 700 candidate proposals without overlap and later fed these regions into the CNN-based
model for classification. In our experiments, a super-pixel segmentation approach named the simple
linear iterative clustering was adopted. The VGG-16 and Z&F models were adopted as the backbone,
and they were respectively referred to as SLIC VGG-16 and SLICZ&F.

4. Cascaded model: This model employed two cascaded CNNs. Similar to the proposed model,
this model adopted multiple and hierarchical feature maps to locate the small objects. The difference is
that this model generated only the horizontal region proposals. The VGG-16 model was adopted as
the backbone, and it was referred to as Cascaded VGG-16.

5. SSD [41]: The model adopted in the experiments employed only one CNN for the proposal
generation and object detection. The SSD model adopted the VGG-16 as the backbone, which added a
set of extra feature layers behind the Conv5_3 layer to improve the accuracy for multi-scale objects.
In the experiments, we referred to this model as the SSD.

6. Yolo V2 [42]: The model adopted in the experiments employed the darknet-19 as the backbone,
which consists of 19 convolutional layers and 5 max-pooling layers. The darknet-19 mainly adopts
the convolutional kernel with a size of 3 × 3 similar to that used in the VGG-16. In our experiments,
this model was referred to as Yolo V2.

4.3. VEDAI Dataset

The VEDAI dataset is a benchmark dataset, which includes aerial images having two sizes: VEDAI
1024 (1024 × 1024 pixels) and VEDAI 512 (512 × 512 pixels). These images were recorded in Utah,
US during spring 2012 and comprise nine classes of vehicles. The ground sampling distance of VEDAI
1024 is 12.5 cm/pixel, and it is 25 cm/pixel for VEDAI 512. Figure 8 shows some examples of the images
in this dataset, which illustrates various backgrounds of the images, such as highways, crops and
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residential areas. The detailed data distribution of this dataset is presented in Table 2. Nine classes are
present in this dataset, however, the objects of some categories such as planes, boats and others are
scarce. In our experiments, we discarded these categories and merged the remaining categories (cars,
pick-ups, trucks, camping cars, tractors and vans) into a class named vehicle. Hence, approximately
3300 vehicles were adopted for training and testing.

Figure 8. Examples from the vehicle detection in aerial imagery (VEDAI) dataset [40].

Table 2. Data distribution of the VEDAI dataset.

Type Tag Number Type Tag Number Type Tag Number

Car car 1340 Plane pla 47 Tractor tra 190
Pick-up pic 950 Boat boa 170 Van van 100
Truck tru 300 Camping car cam 390 Other oth 200

In the training phase, we randomly selected 1000 images from the VEDAI dataset as the
training set. Each input image was pre-processed by resizing its shorter side to 600 pixels. Additionally,
we employed the equivalent parameters and settings for the MORPN and ODN during the training
stage. Four parameters, as described in Table 3, including the weight decay, momentum, iterations
and learning rate were considered. Both the networks were trained in 40,000 iterations. To make the
trained model more accurate, we adopted the variable learning rate during various stages: in the first
30,000 iterations, a learning rate of 0.001 was adopted; for the remaining 10,000 iterations, we adopted
a finer learning rate (0.00001).

Table 3. Hyper parameters for the training stage.

Parameter Value

Weight decay 0.0005
Momentum 0.9

Iterations 40,000

Learning rate first 30,000 iters: 0.001
remaining 10,000 iters: 0.0001

During the testing phase, we used the remaining 247 images of the VEDAI dataset to evaluate
the performance. We tested the proposed model and the baselines mentioned in Section 4.2. From
the test results presented in Tables 4 and 5, it could be noted that the proposed model outperforms
the other baselines on the VEDAI 1024 set in terms of the recall rate (75.1), AP (63.2%) and F1-score
(0.469). Moreover, on the VEDAI 512 set, the proposed model still demonstrates the best performance,
yielding the best recall rate (73.7%), AP (59.5%) and F1-Score (0.451). The CascadedVGG-16 model
demonstrates the second-best performance (the AP is 72.3% and F1-Score is 0.320), which indicates
that the hierarchical feature map is superior to the models that adopt only one feature map (FastVGG-16,
FasterVGG-16 and FasterZ&F). The SSD and Yolo V2 models demonstrate a worse performance compared
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to that of our model and the CascadedVGG-16 model because the feature maps used for generating
the region proposal are not fine for small-sized objects. The segmented approaches (SLIC VGG-16 and
SLICZ&F) demonstrate the most inferior performance because the region proposals generated from the
SLIC are coarse and irregular. Figure 9a,b respectively illustrates the PRC on the VEDAI 1024 and
512 sets. Clearly, the areas under the orange PRCs (proposed method) are the largest. This finding
indicates that the proposed method demonstrates the best performance on the VEDAI 1024 and 512 sets,
which is consistent with the results presented in Tables 4 and 5, where the best results are marked
in bold.

Table 4. Detection results of different models on the VEDAI 1024 set.

Evaluation
Metric

VEDAI 1024

FastVGG-16 FasterVGG-16 FasterZ&F
SLIC

VGG-16
SLICZ&F

Cascaded
VGG-16

SSD
[41]

Yolo V2
[42]

Our
Model

Recall Rate 72.2% 73.9% 63.5% 58.8% 58.3% 72.3% 70.5% 73.8% 75.1%
AP 39.8% 42.1% 30.8% 23.2% 25.4% 54.6% 46.1% 50.3% 63.2%
F1-Score 0.229 0.232 0.216 0.064 0.066 0.320 0.295 0.313 0.469

Table 5. Detection results of different models on the VEDAI 512 set.

Evaluation
Metric

VEDAI 512

FastVGG-16 FasterVGG-16 FasterZ&F CascadedVGG-16 SSD [41] Yolo V2
[42]

Our
Model

Recall Rate 69.4% 71.4% 60.9% 69.7% 69.1% 70.3% 73.7%
AP 37.3% 40.9% 32.0% 50.2% 43.1% 46.9% 59.5%
F1-Score 0.224 0.225 0.212 0.305 0.292% 0.309% 0.451

The results are different between VEDAI 1024 and VEDAI 512 mainly based on the following
reasons. Firstly, the testing set of VEDAI 1024 and VEDAI 512 have different size. Although the testing
images are resized to the same size when fed into the proposed model, the detection results are mapped
to the images of different sizes (testing images are 1024 × 1024 and 512 × 512 for VEDAI 1024 and
VEDAI 512 respectively). This mapping involves the bounding box regression [8], and the regression
parameter leaned from the pred_bbox layer. For different dataset, the learned regression parameters are
different. Secondly, the IoUratio decide whether the detections are defined as true. Because the objects
in the aerial image have relatively small size, a little offsite (generated by the aforementioned mapping)
of the bounding box will lead to the larger change of IoUratio, which also causes the differences between
two testing sets with different image size.

The MORPN is the key component of the proposed model, and the positioning accuracy of
the generated region proposal is a key factor that determines the final results. We evaluated the
performance of the positioning corresponding to the proposed MORPN and other RPN-based region
proposal approaches. The “one-stage” detection models such as the SSD and Yolo V2 were not selected
for comparison because these models employed only one CNN for not only object positioning but
also detection. In the RPN-based model and the proposed model, the positioning and detection are
performed by two independent CNNs. The following experiments focused mainly on the positioning
performance of the region proposal networks. In [27], the VGG-16 and Z&F models were adopted as
the backbone of the RPN, and the recall–IoU curve was proposed as the evaluation criterion. Therefore,
we employed the same criterion (as shown in Figure 10). From the results shown in Figure 10, it can
be noted that the proposed model yields the best recall rate with the IoU rate ranging from 0 to 1;
therefore, the MORPN exhibits the best positioning performance.
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Figure 9. Precision–recall curves generated on two sub-testing sets: (a) VEDAI 1024 (b) VEDAI 512.

Furthermore, we evaluated the detection speed and training speed in our experiments.
The detection time was evaluated in frames per second (fps), and the training time was evaluated in
hours (h). Figures 11 and 12 show the results on different datasets; the detection time and training time
are referred to as Det. Time and Tra. Time, respectively. In terms of the detection time, the FastVGG-16

model demonstrates the worst performance, the Yolo V2 and SSD models demonstrate the top two
best performances, and the other models exhibit comparable performances. Because the FastVGG-16

adopts the selective search [13] scheme as the proposal generation approach, it consumes more time
for proposal generation than the other models. The Yolo V2 and SSD models perform well in terms
of the detection speed because the two models adopt only one CNN architecture to perform the
bounding box regression and objection detection. However, the detection accuracy of the Yolo V2
(50.3% on VEDAI 1024, 46.9% on VEDAI 512) and SSD (46.1% on VEDAI 1024, 43.1% on VEDAI 512)
models are worse than those of the CascadedVGG-16 model and the proposed model, which adopt two
CNN architectures to realize the positioning and detection. The SLIC VGG-16 and SLICZ&F models
exhibit a detection speed that is similar to that of our model; however, their detection accuracies are
extremely low (23.2% and 25.4%) because the region proposals generated by the adopted segmentation
technique are extremely coarse, which degrades the positioning accuracy. The proposed model and
CascadedVGG-16 exhibited nearly similar performances because these two models adopt a similar
architecture. The FasterZ&F and FasterVGG-16 models have a slightly higher detection speed than those
of our model. This phenomenon occurs because, in the case of the FasterZ&F, the shallower CNN
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model (Z&F model) yields less computation complexity; however, the detection accuracy of this model
(30.8% on VEDAI 1024, and 32% on VEDAI 512) is extremely poor. The FasterVGG-16 does not use the
hierarchical architecture to generate the region proposals, leading to less time consumption. However,
this gap is not remarkably large in practical use.

In terms of the training time, the training stage of CNN is always time-consuming. The FastVGG-16,
SLIC VGG-16 and SLICZ&F models incur less time because these models adopt the CNN architecture only
for classification, and this process is relatively simple. In contrast, the other models adopt a CNN for
not only proposal generation but also object detection; therefore, they consume considerably more time
during training. In particular, the FasterZ&F and FasterVGG-16 models incur a large time consumption
because they alternatively train two CNN models two times. In practical use, the detection time is
considered more than the training time because if a model is trained and deployed, it will rarely
be re-trained.

Figure 10. Recall–IoU (intersection-over-union) curves of two sub-testing sets: (a) VEDAI 1024 (b)
VEDAI 512.
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Figure 11. Detection time and training time on the VEDAI 1024 set (a) detection time (b) training time.

Figure 12. Detection time and training time on the VEDAI 512 set (a) detection time (b) training time.

Some detection examples of the VEDAI 1024 set are shown in Figure 13, in which the bounding
boxes are denoted in red, blue and yellow. The red boxes represent the detected objects, the blue boxes
represent the false detections, and the yellow ones represent the undetected objects. In Figure 13, some
long trucks are detected incorrectly because the ground truths of these trucks are considerably larger
than those of the generated candidate regions, which makes the IoU rate smaller than 0.5. Additionally,
some objects are undetected owing to the cluttered background, which leads to missing information.
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Figure 13. Examples of detection results on the VEDAI [44] dataset. The red boxes (bounding box)
are the truly detected objects, the blue boxes are the false detections and the yellow boxes are the
undetected objects.

4.4. OIRDS

The OIRDS project [45] provides an aerial imagery dataset captured from the existing sources
of freely available imagery. The dataset includes approximately 900 labeled images, which contain
approximately 1800 labeled objects that are various types of vehicles. These images have a resolution
ranging from 256 × 256 pixels to 640 × 480 pixels. Additionally, the ground sampling distance is
approximately 15 cm/pixel.

We performed the validation on four models, including the FasterVGG-16, FasterZ&F, and
CascadedVGG-16 models and the proposed model. Approximately 500 images were randomly selected
from the OIRDS and combined with the VEDAI 1024 training set for training. The hyper parameters
and settings were equivalent to those employed in the former section.

In the training phase, we defined all the labeled objects as the vehicle category and discarded
the challenging examples, which were annotated with a lower probability (the annotated images in
the OIRDS were tested by many raters; the object agreed to by all the raters was defined as having a
probability of 100%. We discarded the objects with a probability of less than or equal to 25%). During
the testing, approximately 300 images were selected for testing. Table 6 presents the comparison
results, where the best results are marked in bold. In terms of the detection accuracy, the proposed
model demonstrates the best recall rate (82.9%), AP (75.9) and F1-Score (0.795), which indicates that
the proposed method achieves the best performance on the OIRDS. The PRC (precision–recall curve) is
shown in Figure 14. The area under the orange PRC (the proposed method) is the largest. Additionally,
we compared the positioning performance of several RPN-based models by considering the recall–IoU
curve, as shown in Figure 15. Clearly, the proposed model yields the best recall rate at the full range
([0, 1]) of the IoU values. Several detection examples are shown in Figure 16, in which the bounding
boxes are denoted in red, blue and yellow. The red boxes represent the detected objects, the blue boxes
represent the false detections, and the yellow boxes represent the undetected objects. From the results
shown in Figure 16, it can be noted that most of the objects are truly detected. However, there still



Remote Sens. 2019, 11, 2176 19 of 23

remain certain background regions that have an appearance similar to that of the vehicles, leading to
incorrect detection. Due to the cluttered backgrounds, some objects are undetected.

Table 6. Detection results of different models on the overhead imagery research data set (OIRDS).

Evaluation
Metric FasterVGG-16 FasterZ&F CascadedVGG-16 SSD [41] Yolo

V2 [42]
Our

Model

Recall Rate 76.5% 67.9% 79.3% 77.9% 78.5% 82.9%
AP 63.8% 53.6% 72.7% 65.3% 69.2% 75.9%
F1-Score 0.765 0.657 0.783 0.769 0.775 0.795

Figure 14. Precision–recall curve and comparison results on the OIRDS.

Figure 15. Recall–IoU curve and the comparison results on the OIRDS.
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Figure 16. Examples of detection results on the OIRDS [45]. The red boxes (bounding box) denote
the truly detected objects, the blue boxes are the false detections and the yellow boxes are the
undetected objects.

5. Conclusions

To realize the detection of small-sized and oriented objects in aerial images, we propose an object
detection model based on two improved CNNs: the MORPN and ODN, which are used to generate
the region proposals and make decisions, respectively. Compared with the existing region proposal
networks, the proposed MORPN has two improvements: first, a hierarchical architecture including
multiple scales is established. Because the hierarchical architecture takes advantage of the feature
map generated from the deep and shallow convolutional layers, it can generate more accurate region
proposals, especially for the small-sized objects in aerial images. Second, we propose an oriented
anchor scheme to address the detection problem of objects with multiple orientations because the
region proposals generated based on this scheme are suitable for the objects with arbitrary orientations.
Moreover, we train the ODN for classification. This ODN is combined with the MORPN to build a
detection model. The results of the extensive experiments conducted indicate that the proposed model
performs well in terms of both the detection accuracy and speed.

However, the proposed method still has some limitations. One of the limitations is in terms of
the detection of challenging objects; for example, the detection of partially occluded or extremely
small objects. The other limitation is the false alarm problem; for example, certain objects exhibit an
appearance similar to that of the background, which can lead to confusion. In future work, we aim to
design a deeper CNN to improve the performance of the feature extraction and object positioning.
Moreover, compressing the model weights and making it suitable for a platform with less computational
capacity is another meaningful research direction.
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