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Abstract: Hainan Island is the second-largest island in China and has the most species-diverse
mangrove forests in the country. To date, the height and aboveground ground biomass (AGB) of the
mangrove forests on Hainan Island are unknown, partly as a result of the challenges faced during
extensive field sampling in mangrove habitats (intertidal mudflats inundated by periodic seawater).
Therefore, this study used a low-cost UAV-LiDAR (light detection and ranging sensor mounted on
an unmanned aerial vehicle) system as a sampling tool and Sentinel-2 imagery as auxiliary data
to estimate and map the mangrove height and AGB on Hainan Island. Hainan Island has 3697.02
hectares of mangrove forests with an average patch area of approximately 1 ha. The results show that
the mangroves on whole Hainan Island have an average height of 6.99 m, a total AGB of 474,199.31 Mg
and an AGB density of 128.27 Mg ha−1. The AGB hot spots are located in Qinglan Harbor and the
south of Dongzhai Harbor. The proposed height model LiDAR-S2 performed well with an R2 of 0.67
and an RMSE (root mean square error) of 1.90 m; the proposed AGB model G~LiDAR~S2 performed
better (an R2 of 0.62 and an RMSE of 50.36 Mg ha−1) than the traditional AGB model G~S2 that directly
related ground plots and Sentinel-2 data. The results also indicate that the LiDAR metrics describing
the canopy’s thickness and its top and bottom characteristics are the most important variables for
mangrove AGB estimation. For the Sentinel-2 indices, the red-edge and shortwave infrared features,
especially the red-edge 1 and shortwave infrared Band 11 features, play the most important roles in
estimating mangrove AGB and height. In conclusion, this paper presents the first mangrove height
and AGB maps of Hainan Island and demonstrates the feasibility of using UAV-LiDAR as a sampling
tool for mangrove forests.

Keywords: mangroves; Hainan island; aboveground biomass; UAV-LiDAR sampling; Sentinel-2;
random forest; feature importance

1. Introduction

Mangroves are special types of woody plants that grow exclusively in the intertidal zones of the
tropics and subtropics, such as bays, estuaries and rivers [1]. Most mangrove species are dispersed
as water-buoyant propagules, which allows them to employ currents both to replenish existing
stands and to establish new ones [2]. Since mangroves are transitional zones, in which land, sea,
and fresh water converge, their ecological functions are critical to the ecological health of surrounding
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marine ecosystems and adjacent upstream terrestrial environments [3]. Specifically, mangroves play
an important role in coastal community protection from typhoons and tsunamis, shoreline stabilization,
carbon sequestration, seawater purification, and fauna habitation, as well as being valued for aesthetic
purposes [4]. Despite their ecological importance, between 30% and 60% of the world’s mangroves
have been destroyed over recent decades [4,5].

Hainan Island, the second-largest island in China, lost approximately 60% of its mangrove forests
between the 1950s and the 2010s through its conversion to aquaculture, agriculture, and construction
land [6,7]. Hainan Island has the most species-diverse mangrove forests in China, accounting for 95%
of Chinese mangrove species [8]. The first Chinese national nature reserve for mangroves—Dongzhai
Harbor National Nature Reserve—is located on Hainan Island. Therefore, it is necessary to monitor
the mangroves of Hainan Island and evaluate their biophysical status in response to forest ecosystem
degradation and land use changes. Among characteristics such as the mangrove extent, height, biomass,
and other structural attributes, only the mangrove extent has been reported for Hainan Island [6],
and the other attributes have rarely been presented. Therefore, this study intends to estimate and map
the height and aboveground biomass (AGB) of the mangrove forests on whole Hainan Island.

Since remote sensing techniques can provide large-scale and accurate information on forests,
they have been widely used for forest inventory in the past two decades [9,10]. Usually, forest attributes
are estimated by statistical models that relate a certain number of ground measurements to remote
sensing features extracted from co-located remote sensing imagery. For example, Jachowski et al. [11]
related field estimated biomass with GeoEye-1 imagery and ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer) satellite elevation data, Pham and Brabyn [12] linked field plots
to SPOT-4/5 imagery, and Fatoyinbo et al. [5] coupled ground measurements with airborne LiDAR
data to retrieve mangrove AGB. Wang et al. [13] provided a review of remote sensing for mangrove
forests from 1956 to 2018 that includes a subsection on mangrove vertical structure and biomass.
However, when the study area is large or the target forest is diverse and complex, a large number of
field samples need to be collected in order to fit a satisfying model. Pereira et al. [14] proved that under
suitable sampling pattern and provided that accurate field data are used, discrete return LiDAR data
can accurately estimate and map mangrove AGB. Mangroves grow in intertidal mudflats inundated
by periodic seawater with muddy anaerobic soils, high temperature and high salinity. Furthermore,
many fresh oysters and shells attach themselves to the bottom roots of mangroves, especially those
of Rhizophora spp., leading to frequent injuries to investigators’ legs and feet. Therefore, it is more
difficult to conduct extensive field sampling in mangrove forests than terrestrial forests [13].

Over the past decade, three-dimensional (3D) measuring techniques from remote sensing have
been used for forest sampling to reduce field sampling work and inform on local information [15–17].
Wulder et al. [15] provided a comprehensive overview of using LiDAR sampling as a means to enable
large-area forest characterizations, in which LiDAR samples were used in a manner similar to field
samples. Matasci et al. [10] used transect-based national survey airborne LiDAR data as calibration
and validation samples, and used Landsat composites as auxiliary data to estimate and map boreal
forest cover, height, biomass and other structural attributes in large area. An imputation model
was employed to predict forest structural attributes with R2 values ranging from 0.49 to 0.61 for key
response variables. Huang et al. [18] used Geoscience Laser Altimeter System (GLAS) LiDAR data as
intermediate data to link field estimated AGB with Landsat images and Phased Array L-band Synthetic
Aperture Radar (PALSAR) data to estimate and map forest AGB in China. Their resultant R2 ranged
from 0.54 to 0.64. Puliti et al. [19] employed UAV digital stereo imagery as a sampling tool, which is
coupled with a small sample of field data and wall-to-wall Sentinel-2 imagery, to estimate growing
stock volume based on a hierarchical model-based inference. Though a relatively low adjusted R2

(0.30) was obtained, the standard error as percentage of the mean derived from the UAV sampling
case was satisfactory. However, airborne and satellite LiDAR sampling methods may be unsuitable
or inefficient for studying mangroves, because mangrove distribution is discontinuous [1,13]. A case
may arise in which only 10% of the obtained data capture mangroves from a flight using airborne
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LiDAR. Because stereo imagery is inherently limited, the digital stereo imagery sampling approach only
generates upper canopy points and faces difficulties in obtaining the vertical structure of mangroves.
LiDAR sensor mounted on an unmanned aerial vehicle (UAV-LiDAR) offers a potential alternative
method for mangrove sampling. Compared with traditional airborne and satellite LiDAR, the laser
pulses of UAV-LiDAR can penetrate tree canopies and capture the internal structure of trees at low cost
and with high mobility [20].

After UAV-LiDAR was selected as the sampling tool for this study, the globally and freely
available Sentinel-2 imagery was chosen as wall-to-wall auxiliary data. Since its launch, the generated
Sentinel-2 data perform well on terrestrial forest inventory [21,22]. Compared with Landsat imagery,
the Sentinel-2 imagery not only has a relatively high spatial resolution, but also has three additional
red-edge bands. Moreover, it has a short revisit period of five days, which is important for tropical
regions in which clouds are frequent. To date, only a few studies have used Sentinel-2 data to retrieve
mangrove AGB and no study has used it to estimate mangrove height. For example, Castillo et al. [23]
used Sentinel-1/2 imagery to estimate and map the AGB of mangroves and their replacement land uses.
Pham et al. [24] integrated Sentinel-2 and ALOS-2 PALSAR-2 data to retrieve the AGB of an artificial
mangrove forest.

The aim of this study is to estimate and map the height and AGB of mangrove forests on whole
Hainan Island using a UAV-LiDAR sampling method that combines field plots, UAV-LiDAR point
clouds and Sentinel-2 imagery. The specific objectives of the study are to (1) estimate and map the
height and AGB of the mangroves on Hainan Island; (2) assess whether UAV-LiDAR is feasible as
a sampling tool; and (3) examine which UAV-LiDAR metrics and Sentinel-2 indices are more important
for mangrove height and AGB estimations.

2. Materials

2.1. Study Area and Field Survey

Hainan Island, presented in Figure 1, is located in the south of China (108◦37′–111◦03′E,
18◦10′–20◦10′N) and has a total area of 33,900 km2. Hainan Island is characterized by a tropical
monsoon climate. The annual average temperature is about 24 ◦C, and the annual precipitation is
1639 mm, with a rainy season between May and October. Presently, there are approximately 3600 ha
of mangroves on Hainan Island [6,8,25]. The main distribution sites of these mangroves lie in the
northeast of Hainan Island, namely, Dongzhai National Nature Reserve (DNR) and Qinglan Provincial
Nature Reserve (QPR), which account for about 70% of the total area of Hainan Island’s mangroves.
The major mangrove species on Hainan Island are Rhizophora stylosa, Bruguiera sexangula, Ceriops
tagal, Lumnitzera racemosa, Avicennia marina, Kandelia candel, Rhizophora apiculata, Excoecaria agallocha,
and Sonneratia spp. [26].

The field survey was conducted in July and August 2018 and March 2019. A total of 97 field
plots, which include all major mangrove species on Hainan Island, were collected. A field plot has
a square or rectangular shape and a size between 100 and 600 m2 depending on mangrove species
composition, community structure complexity, and geographical location. We first marked the vertices
of the plots and measured their geographical coordinates by using a Real-Time Kinematic Global
Navigation Satellite System (RTK-GNSS) based on continuously operating reference stations (CORS)
with centimeter-level accuracy. Then, we measured the tree diameter at breast height (DBH, at 1.37 m)
and recorded the species of each tree. For stilt rooted species (such as R. apiculate and R. stylosa),
the stem diameter was measured above the highest stilt root. Due to the requirements of tree height in
the allometric equations of A. corniculatum and K. candel and the small number of them, we measured
the tree height of the two species by a hand-held hypsometer. The range of DBH was 1.5–85.99 cm
with a mean value of 8.68 cm. The range of tree density was 6–528 tree/100 m2, with a mean density of
102 tree/100 m2. Finally, we used species-specific biomass allometric equations (presented in Table 1)
to calculate an individual tree’s AGB and then summed the AGB values in each field plot. The average
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AGB density from the field survey was 143.41 ± 87.81 Mg ha−1. The maximum AGB density was
347.20 Mg ha−1, and the minimum AGB was 1.90 Mg ha−1.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 26 
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Figure 1. The location of the study area. (A) Map of Hainan island; the locations and acquisition dates
of the Sentinel-2 imagery used in this study are indicated. The field sampling area in (B) Dongzhai
National Nature Reserve and (C) Qinglan Provincial Nature Reserve are presented with the false
color combination of Sentinel-2 imagery using the near-infrared 1 (R), green (G) and blue (B) bands.
The colors of UAV strips are assigned according to the UAV takeoff and landing points.
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Table 1. Summary of the species-specific aboveground biomass allometric equations used in this study.
The units of AGB, DBH, and H are kg, cm, and m, respectively.

Species Allometric Equation Country Reference

A. corniculatum 31.33
(
DBH2

∗H
)0.465 China [27]

A. marina1 0.1012DBH2 + 0.5402DBH− 1.5674 China [28]
B. sexangula 0.168DBH2.42 Australia [29]

C. tagal 0.1885DBH2.3379 Australia [29]
E. agallocha 0.1389DBH2.1992 Bangladesh [30]
H. littoralis2

H. tiliaceus2 0.251ρ×DBH2.46 Thailand
Indonesia [31]

K. candel 651.63
(
DBH2

∗H
)1.0531 China [27]

L. racemosa 0.1023DBH2.50 Guiana, French [32]
R. apiculata 0.235DBH2.420 Malaysia [33]
R. stylosa 0.1050DBH2.6848 Australia [29]

S. apetala3 0.251ρ×DBH2.46 Thailand
Indonesia [31]

Sonneratia spp.4 0.258DBH2.287 Indonesia [34]
X. granatum 0.0823DBH2.5883 Australia [29]

1. For K. candel and A. corniculatum, the unit of DBH is m. 2. The ρ of Heritiera littoralis and Hibiscus tiliaceus is 0.6010
(from Jachowski et al. [11] in Thailand). 3. The ρ of S. apetala is 0.51 (from Chowdhury et al. [35] in Bangladesh).
4. Except for S. apetala.

2.2. UAV-LiDAR Data

The UAV-LiDAR point clouds were obtained by a Velodyne VLP-16 Puck sensor mounted on
a DJI M600 UAV on 25–28 March 2018. This laser sensor has 16 scanning channels and operates at
903 nm wavelength, which can produce up to 300,000 points per second. We conducted 16 flights in
the study area with a flight altitude of 52 m, a flight speed of 5 m/s, and an average swath width of
110 m. The UAV flight times were selected in low- or middle-tide period. Overall, the mean point
density of all collected LiDAR data was 94 points/m2. Figure 2 describes the workflow of UAV-LiDAR
data processing. The main processing steps for point clouds included GNSS-aided aero-triangulation,
point denoise, ground point extraction and point cloud normalization (Figure 2). The GNSS-aided
aero-triangulation was used to calculate the accurate geographical positions of point clouds based on
base station location data and POS (position and orientation system) data, which was conducted in
POSPac UAV 8.1 software (Applanix, Richmond Hill, Ontario, Canada). The point denoise was utilized
to filter noise points that are located above and below the mangrove forests, which was done by using
the Remove Outliers tool and the Noise Filter tool in LiDAR360 software (GreenValley, Being, China).
Following the point denoise, the point clouds were classified as ground and non-ground points using
an improved progressive TIN (triangulated irregular network) densification filtering algorithm [36].
The ground points were further inspected and edited in manual. The final ground point density
was 62 points/ha. Then, these ground points were used to produce a digital elevation model (DEM).
A digital surface model (DSM) was also produced based on all point clouds. Finally, to eliminate the
influence of ground terrain on point clouds, the non-ground points were normalized by the DEM in
LiDAR360 software. For detailed descriptions of the last three steps, refer to the LiDAR360 User Guide
(http://greenvalleyintl.com/software/lidar360/).

http://greenvalleyintl.com/software/lidar360/
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Figure 2. Workflow of UAV-LiDAR and Sentinel-2 data acquisition and processing and
variable extraction.

2.3. Sentinel-2 Data

We downloaded eight Sentinel-2 images from the Copernicus Open Access Hub (https://scihub.
copernicus.eu/) to cover the entirety of Hainan Island depicted in Figure 1. Because the original
imagery was Level-1C product, namely, orthorectified top of atmosphere reflectance data, it needed to
be calibrated to a Level-2A product, namely, bottom-of-atmosphere reflectance data. This atmospheric
correction was implemented using the Sen2Cor atmospheric correlation processor (version 2.5.5).
The other key processing steps included resampling and co-registering to LiDAR data. The procedure
for processing Sentinel-2 data is portrayed in Figure 2.

3. Methods

3.1. LiDAR Metrics and Sentinel-2 Indices

Few studies have used high-density LiDAR point clouds to estimate mangrove AGB, and few
studies have reported the most important LiDAR metrics for predicting mangrove AGB [13,14]. A total
of 53 LiDAR metrics were derived preliminarily (24 for height, 12 for density, and 17 for canopy
volume) [14,37], as presented in Table A1 [14,38–40]. A novel canopy thickness metric (CTHK) was
created and used to describe the thickness of mangrove canopy based on the analysis of UAV-LiDAR
point clouds [41]. In each field plot, the 53 LiDAR metrics were extracted. All of the LiDAR point
clouds were first tessellated into grids with a cell size of 10 × 10 m with the same original point as that
of the Sentinel-2 imagery. Subsequently, the 53 LiDAR metrics were computed for each cell.

A total of 32 Sentinel-2 multispectral indices, presented in Table A2, were selected on the basis of
their previous performance in studying mangroves and terrestrial forests. The indices consisted of 10
original Sentinel-2 bands, 7 conventional near-infrared indices, 12 red-edge indices, and 3 shortwave
infrared indices.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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3.2. Mangrove Extent Extraction

Prior to mapping mangrove height and AGB, the mangrove extent on Hainan Island needed
to be extracted. We applied a combination of object- and pixel-based methods for mangrove extent
classification using Sentinel-2 imagery. Firstly, an object-based decision tree classification method [42]
was implemented for the processed Sentinel-2 imagery to discriminate mangroves from water, terrestrial
vegetation and other lands (including construction land, mudflat and bare land). This process was
conducted in eCognition 9.0 (Trimble, Sunnyvale, CO, USA) and multi-resolution segmentation was
utilized with a scale of 30 in accordance with our previous study on Hainan Island [43]. Then,
these candidate mangrove patches were visually examined one by one in high spatial resolution
imagery from Google Earth; the examination was carried out by two mangrove researchers who
had approximately 10 years of mangrove research experience. During the process, false patches
were deleted or edited, and the underestimated mangroves were added manually in eCognition 9.0.
Subsequently, the mangrove pixel cells with an FDI (forest discrimination index) [44] higher than 200
were eliminated to exclude non-vegetation (such as mudflats) and grass from the set of mangrove
objects. Finally, a thematic map of the mangrove extent on whole Hainan Island was obtained.

3.3. Model Fitting Based on LiDAR Samples

In this study, LiDAR sampling involved a series of LiDAR transects acquired over an area
of interest and used as samples. Then, the established procedures from field sample-based forest
inventories are adapted and applied to the LiDAR samples [15], which means the LiDAR samples are
used in a similar manner to field samples.

Since the point cloud density in the 20 m distance off the UAV flight strip centerlines is more
uniform, only the LiDAR grid cells in this 40 m range were used as LiDAR plot samples. We finally
obtained 14,628 candidate LiDAR samples with size of 10 ×10 m.

3.3.1. Height Estimation Model

UAV-LiDAR data have high-density point clouds and can obtain mangrove heights with high
accuracy [45]. Therefore, the canopy heights of the partial-coverage UAV-LiDAR grid cells were directly
used as reference data for Sentinel-2 data to fit a height prediction model (top graph in Figure 3).
The canopy heights were derived by subtracting the DEM from the DSM. The Sentinel-2 features were
used as explanatory variables. The constructed height estimation model was named LiDAR~S2 (top
picture in Figure 3).

3.3.2. AGB Estimation Model

To estimate AGB, we first constructed a model, named G~LiDAR, to link ground plot AGB with
coinciding UAV-LiDAR point clouds (clipped by the polygon of the field plot) and then obtained
UAV-LiDAR-estimated AGB. In this process, the field estimated AGB was used as response data and
the UAV-LiDAR metrics were used as explanatory variables. Then the G~LiDAR model was applied
to the 14,628 LiDAR plot samples to obtained the AGB of these LiDAR grid cells.

Subsequently, the UAV-LiDAR-estimated AGB values of the LiDAR grid cells were used as
reference data for the wall-to-wall Sentinel-2 data to fit a retrieval model, named ˆLiDAR ∼ S2, in which
the Sentinel-2 features were used as explanatory variables. The overall model of the two stages for
mangrove AGB estimation was named G~LiDAR~S2 (bottom graph in Figure 3).

In addition, the traditional method, which directly relates field estimated AGB with the coinciding
Sentinel-2 data by a statistical model (named G~S2), was also constructed as a benchmark in this study.
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(bottom graph) estimations.

3.4. Random Forest and Feature Selection

The random forest (RF) algorithm was employed for all mangrove height and AGB estimation
models in this study due to its good performance of building prediction models [46,47]. RF regression
first builds a large number of decision trees and then averages the prediction values of all trees to obtain
the final estimates [48]. There are two important parameters when building an RF model: ntree and
mtry. The ntree parameter determines the maximum number of created decision trees, while the mtry
parameter control the number of features that are randomly selected to compute the best split at each
node of each decision tree. In this study, we set the value of ntree to 5000, which is big enough for error
to become convergent, and set the value of mtry to the default value, namely the square root of the
total number of input features.

The RF algorithm can also evaluate the importance of input variables by using out-of-bag (OOB)
samples through a random permutation method. The increase of mean square error (MSE) from
the changed OOB samples are compared with the original MSE of OOB samples, and then a metric
%IncMSE (the percentage increase in the mean square error) is obtained and used to quantitate
the importance of each predictor variable [12]. The OOB samples are mainly utilized to assess the
accuracy of the newly fitted RF model. The detailed process of how the RF algorithm measures feature
importance was described by Breiman [48], and a specific application was presented by Pham and
Brabyn [12].

Usually, a model constructed from a small number of predictor variables is more interpretable
and eliminating irrelevant and highly correlated variables may improve the predictive power [49].
Therefore, prior to building the final prediction models, an RF-based backward feature elimination
method was utilized to optimize the feature space for each model [12,50]. The method compared
the cross-validated prediction results of RF models, and 10% of variables were eliminated at a time.
When the cross-validation error of a set of features was within one standard deviation of the minimum
cross-validation error, and when the number of this feature set was at a minimum, this group of features
was considered to be the set of optimal predictor variables. In this study, the R package was used
to implement the backward feature elimination method, which was replicated 20 times, with 5-fold
cross-validation, to get the optimal variables [50].

3.5. Accuracy Assessment

The classification accuracy of mangrove extent was assessed by the overall classification accuracy
(OA), the producer’s accuracy (PA), and the user’s accuracy (UA) using a classification confusion
matrix [51]. Since we focused on mangrove extent extraction, when assessing classification accuracy,
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other land cover classes such as water, terrestrial vegetation, construction, and bare lands were all
merged as “non-mangroves”. Two-hundred points per class (mangroves and non-mangroves) were
randomly generated and used to assess mangrove identification accuracy.

For mangrove height and AGB estimation accuracy assessments, the coefficient of determination
R2, root-mean-square-error (RMSE), and RMSE expressed as a percentage of the observed mean
(RMSE%) were employed [10,12]. Specifically, 4281 randomly selected LiDAR plots (10 × 10 m) were
used to calibrate and validate the height estimation model. Of the 4281 LiDAR plots, 2/3 of them were
used for training and 1/3 were used for validation.

For the first-stage AGB estimation model (G~LiDAR), of the 97 field samples, 62 samples inside
the UAV-LiDAR coverage area were used for training, and accuracy was assessed by the 10-fold
cross-validation method. The accuracy of the second-stage model ( ˆLiDAR ∼ S2) was assessed
by independent validation samples, namely the other 35 field samples (24 samples are outside
the UAV-LiDAR coverage area and the other 11 samples were randomly selected form the QPR),
by comparing the predicted and observed values. The same independent sample validation method
with the 35 field plots was also utilized to examine the accuracy of the traditional approach (the
G~S2 model).

4. Results

4.1. Mangrove Identification Result

This study estimated that there is a total of 3697.02 ha of mangrove forests on Hainan Island.
The overall classification accuracy of mangroves and non-mangroves was 98.00% (Table 2). The user’s
accuracy of mangroves was 96.50%, while the producer’s accuracy was slightly higher, with an accuracy
of 99.48%. The mangroves were mainly distributed among six sites, namely, Dongzhai Harbor, Qinglan
Harbor, Danzhou Bay, Meilang Harbor, Xinying Harbor, and Sanya River, and dispersed in 3782
patches with a mean path area of approximately 1 ha.

Table 2. Confusion matrix and mangrove classification accuracy. OA denotes overall classification
accuracy; UA denotes user’s accuracy; PA denotes producer’s accuracy.

Mangroves Non-Mangroves UA

mangrove 193 7 96.50%
non-mangroves 1 199 99.50%

PA 99.48% 96.60%
Kappa: 0.96 OA: 98.00%

4.2. Feature Selection

The feature selection results are presented in Table 3, and the feature elimination processes are
portrayed in Figure 4. There were six features selected in the LiDAR~S2 model for mangrove height
estimation. Among these six features, four were selected from the shortwave infrared bands or their
derived indices. The other two were the blue band and the MTCI (the MERIS terrestrial chlorophyll
index) computed from red-edge bands.

For the first-stage G~LiDAR model for AGB estimation, 11 LiDAR metrics were chosen from the
initial 53 metrics. Most of them were height metrics, while two were canopy volume metrics (CC1.3 and
CTHK) and one was a density metric (D01). A total of 12 features were selected for the second-stage
model ˆLiDAR ∼ S2: half of them were from red-edge bands, and five features were from shortwave
infrared (SWIR) bands or their derived indices. For the traditional model G~S2, 14 features were
selected. In addition to the nine red-edge and SWIR bands, the red, green and blue bands and two
traditional indices were also selected.
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Table 3. The selected features from the RF-based backward feature elimination method.

Model Number Selected Features

Height LiDAR~S2 6 B2, B11, B12, MDI1, MNDWI, MTCI

AGB
G~LiDAR 11 CC1.3, CTHK, D01, H05, H10, H80, H95, H90, HIQ, HSD, HVAR

ˆLiDAR ∼ S2 12 B2, B7, B11, B12, MDI1, MDI2, MCARI, MNDWI, MTCI, NDVIre2,
NDVIre3, S2REP

G~S2 14 B2, B3, B4, B5, B11, CIre1, CIre3, EVI, MDI1, MNDWI, MTCI,
NDVIre2, NDVIre1, SR
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Figure 4. The OOB error versus the number of variables resulting from running the RF-based backward
feature elimination method 20 times. (A) The LiDAR~S2 model for mangrove height estimation; (B) the
G~LiDAR model; (C) the ˆLiDAR ∼ S2 model; and (D) the G~S2 model for mangrove AGB estimations.
The optimal number of variables is presented in the graph.

4.3. Model Assessment

The calibration and validation accuracies of the height and AGB estimation models are presented
in Table 4. To compare the mean and distribution of the mangrove height and AGB values, boxplots
of the observed and predicted values from the height estimation model (LiDAR~S2) and the AGB
estimation model ( ˆLiDAR ∼ S2) are presented in Figure 5A. The residual errors between observed and
predicted values were determined using independent validation samples and are plotted in Figure 5
for the height and AGB models, respectively.

4.3.1. The Height Estimation Model

As a mangrove height model, the LiDAR-S2 model performed well, with an R2 of 0.67 and an RMSE
of 1.90 m. Figure 5B reveals that some low height points were overestimated, while underestimation
occurred for high height points greater than 15 m. Figure 5A also reflects this phenomenon. Therefore,
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tree height obtained from the estimation by UAV-LiDAR has an overestimate bias in low tree and
an underestimate bias in high tree. Meanwhile, the mean and distribution of the observed height are
similar to those of the predicted height overall.

4.3.2. The First-Stage Model of AGB Estimation

The first-stage G~LiDAR model for mangrove AGB prediction produced relatively high
explanatory power, with an R2 of 0.78 and an RMSE of 42.29 Mg ha−1 (Table 4), which indicates that
the UAV-LiDAR data accurately predicted mangrove AGB.

4.3.3. The Second-Stage Model of AGB Estimation

In the second stage, the ˆLiDAR ∼ S2 model linking the first-stage AGB prediction with Sentinel-2
variables produced an R2 metric of 0.62 and an RMSE of 50.36 Mg ha−1, which represents greater
explanatory power compared with the traditional G~S2 model (R2 of 0.52 and RMSE of 56.63 Mg ha−1).

The analysis of the residual plots (Figure 5C,D) shows that the residual error variation range of the
G~LiDAR~S2 model was smaller than that of the G~S2 model. Both the LiDAR sampling method and
the traditional method underestimated high AGB (greater than 250 Mg ha−1), but this phenomenon
was more obvious in the G~S2 model. The boxplots of the field estimated and predicted AGB of

ˆLiDAR ∼ S2 model reveal that the upper and lower quartiles of the two data are similar, but the
maximum and minimum AGB of the predicted values are less than those of the field estimated values.
Overall, UAV-LiDAR sampling could scale up mangrove AGB estimation and appeared to improve
prediction accuracy.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 26 
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Figure 5. (A) Boxplots of the observed (I) and predicted values (II) for mangrove height (LiDAR~S2)
and AGB ( ˆLiDAR ∼ S2) models, respectively. (B) Scatterplot of the residual error versus observed
height values (LiDAR~S2) (C) Scatterplots of the residual error versus the field-estimated mangrove
AGB for the ˆLiDAR ∼ S2 model; (D) Scatterplots of the residual error versus the field-estimated
mangrove AGB for the traditional G~S2 model.
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Table 4. Calibration and validation results of the height and AGB models.

Method Model
Calibration Validation

R2 RMSE (%) R2 RMSE (%)

Height UAV-LiDAR sampling LiDAR~S2 0.66 1.99 (27.26%) 0.67 1.90 (26.24%)

AGB
UAV-LiDAR sampling G~LiDAR 0.80 40.54 (28.13%) 0.78 42.29 (29.35%)

ˆLiDAR ∼ S2 0.67 41.29 (28.65%) 0.62 50.36 (35.41%)
Traditional G~S2 0.48 64.92 (45.05%) 0.52 56.63 (39.82%)

4.4. Mangrove Height and AGB Map of Hainan Island

The resultant mangrove height and AGB maps of Hainan Island are presented in Figures 6 and 7,
respectively. The summaries of mangrove height and AGB in different districts of Hainan Island are
shown in Table 5.

The mean height of the mangrove forests on Hainan Island was 6.99 m with a standard deviation
of 2.14 m. There were three districts whose mangroves had a mean height of over 8 m—Wenchang,
Dongfang and Qionghai. The mangrove area of Wenchang was the largest, and the mangrove areas of
the other two districts were less than 100 ha. In Figure 6C, the yellow and red colors show that the
height of most of the mangroves in Qinglan Harbor (Wenchang) was higher than 8 m. The dwarf
mangroves, indicated by dark blue, were mainly distributed in the north of Dongzhai Harbor (Haikou),
which results in the lowest average tree height of mangroves in Haikou (5.93 m).
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Figure 7. Mangrove aboveground biomass map of Hainan Island at 10 m spatial resolution. (A) Whole
Hainan Island, (B) Dongzhai Harbor, (C) Qinglan Harbor, (D) Danzhou Bay, and (E) Meilang Harbor.

The total mangrove AGB on Hainan Island was 474,199.31 Mg, with a mean AGB of 128.27
± 45.87 Mg ha−1. The mangrove AGB hot spots mainly lay in Qinglan Harbor and the south of
Dongzhai Harbor. Although areas with high AGB were found in other places, such as Danzhou Bay
(Danzhou) presented in Figure 7D, their area was small with a scattered distribution. Among the nine
districts, the mangroves of Wenchang, Dongfang and Qionghai had the highest AGB density, while the
mangroves of Haikou had the lowest mean AGB of 106.47 Mg ha−1. In addition, a comparison of the
mangrove height and AGB maps reveals that they are similar: that is, the high (low) height area is also
a high (low) AGB area.

Table 5. Summaries of the mangrove AGB and height (H) in different districts of Hainan Island.

Districts Area(ha)
Total
AGB
(Mg)

Mean
AGB

(Mg ha−1)

Min AGB
(Mg ha−1)

Max
AGB

(Mg ha−1)

SD AGB
(Mg ha−1)

Mean
H (m)

Min
H (m)

Max
H (m)

SD H
(m)

1 Haikou 1508.14 160,565.38 106.47 14.00 268.20 45.22 5.93 2.03 10.75 1.91
2 Wenchang 1036.03 155,462.22 150.06 14.59 291.24 48.17 8.23 2.10 17.11 2.30
3 Danzhou 539.49 72,331.96 134.07 15.08 258.74 30.00 7.32 2.12 15.09 1.58
4 Chengmai 224.47 30,619.86 136.41 24.19 216.92 22.48 7.12 2.98 10.15 0.93
5 Lingao 151.39 19,265.79 127.26 18.08 221.96 30.84 6.70 2.31 9.21 1.05
6 Sanya 117.51 17,091.89 145.45 51.19 255.15 28.32 7.17 3.09 15.30 1.93
7 Dongfang 77.26 11,998.73 155.30 59.72 222.37 18.44 8.06 3.56 10.65 0.90
8 Lingshui 25.99 3781.29 145.49 39.16 266.72 31.22 7.56 3.21 14.45 1.74
9 Qionghai 16.74 3082.20 184.12 86.03 263.80 25.17 9.88 4.24 14.11 1.15

SUM Hainan
Island 3697.02 474,199.31 128.27 14.01 291.24 45.87 6.99 2.03 17.11 2.14
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4.5. Variable Importance

The importance of each predictor variable for the height (LiDAR~S2) and AGB estimation models
(G~LiDAR and G~S2) is illustrated in Figure 8. Since the second-stage model ˆLiDAR ∼ S2 for AGB
estimation was an indirect model and its training samples were secondhand data, the importance of
the input features in this model was not measured.

Figure 8A shows that the MERIS terrestrial chlorophyll index derived from red edge bands and
blue Band 2 were the two most important features for mangrove height estimation. The mangrove
discrimination index 1 and the modified normalized difference water index ranked third and fourth in
importance, respectively. The two indices were computed from shortwave infrared Band 11.

Figure 8B indicates that the newly created canopy thickness metric was the most important LiDAR
metric for predicting mangrove AGB. The LiDAR indices that describe the characteristics of the upper
canopy (H80, H90, H95) ranked second in importance, while the H10 and H05 metrics describing
bottom canopy characteristics ranked third for mangrove AGB estimation. The HVAR and HSD
metrics, which characterize the mangrove canopy variation, ranked last among these selected features,
along with the density metric D01 and the canopy coverage index CC1.3.

Figure 8C shows that red-edge Band 5 was the most important feature for estimating mangrove
AGB among all Sentinel-2 original bands and multispectral indices. The red, green, and blue bands also
ranked among the top five. Although there were six red-edge features selected and only three SWIR
features chosen, the MNDWI (Modified Normalized Difference Water Index) and MDI1 (Mangrove
Discrimination Index 1) calculated from SWIR ranked higher than the five red-edge-derived indices.
Overall, among the five red-edge vegetation indices, the importance of CIre1 and CIre3, which are
used for chlorophyll estimation, was greater than that of NDVIre1 and NDVIre2. The two selected
conventional near-infrared vegetation indices SR and EVI ranked lower.
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5. Discussion

This study presents the first mangrove height and AGB map of Hainan Island obtained by a novel
UAV-LiDAR sampling method with Sentinel-2 imagery as auxiliary data. This study is also the first to
use high-density UAV-LiDAR point clouds to retrieve mangrove biophysical parameters [13]. Hainan
Island has the most species diverse mangrove forests in China, and nearly 95% of Chinese mangrove
species communities have been found on Hainan Island [8]. Therefore, maps are practical and urgently
needed to estimate Hainan Island’s mangrove height and AGB and provide the first mangrove forest
structure. We anticipate that the 10 m spatially resolved mangrove height and AGB maps of Hainan
Island could motivate further studies of Chinese mangroves and provide insights into mangrove
protection and management [52]. We also anticipate that these maps will be used as baseline data
for future studies of mangroves’ response to climate warming and sea level rising in this region.
The UAV-LiDAR sampling method increases the distribution and sample size of local data to inform
on stand structure to estimate and map mangrove height and AGB [10]. The successful application of
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the G~LiDAR~S2 model at the regional scale (the entire Hainan Island) is also a major operational
advance in estimating and mapping mangrove structure over large areas.

5.1. The Mangrove Height and AGB on Hainan Island and Comparison with Mangroves in Other Areas

Mangrove height and biomass are related to geographical location, species composition
and structure, water-heat conditions, community development status, and external disturbances.
The average mangrove height on Hainan Island is 6.99 ± 2.14 m, which is significantly higher than
other Chinese mangroves, such as the mangroves in Zhangjiang estuary, Fujian province (mean height
3.1 m) [53], and Dandou Sea coast, Guanxi province (mean height < 3.5 m) [45]. The reason may be that
the latitude of mangroves on Hainan Island (18◦–19◦N) is lower than the latitude of mangroves in other
places in China (21◦–28◦N) [54,55]. Another explanation for this is that the tall mangrove species B.
sexangula and Sonneratia spp. (usually taller than 8 m) only grow on Hainan Island [7], and B. sexangula
is one of the dominant species in the south of Dongzhai Harbor and Qinglan Harbor, covering a large
number of areas. For the other seven major mangrove species on Hainan Island, the height of R. stylosa,
K. candel, R. apiculata, and E. agallocha is usually 4–8 m, while the height of C. tagal, L. racemosa, and A.
marina is usually lower than 3 m. The low height range covers a great number of mangrove species in
the study area, which may result in the underestimate bias in low trees. While, the underestimate bias
of high trees may be attributed to the radiometric saturation effect of Sentinel-2 imagery [19].

Previous studies have portrayed mangrove tree height as directly related to AGB [56,57]. Saenger
and Snedaker [58] even provided a global scale allometric equation that links tree height with AGB
for mangrove forests: AGB (Mg ha−1) = 10.8 ×H(m) + 35. Therefore, the mangrove AGB density on
Hainan Island should greater than the mangrove AGB density in other regions of China. This inference
is supported by comparisons between the predicted mangrove AGB on Hainan Island and the reported
mangrove AGB in other sites in China. For example, Wang et al. [59] reported a mangrove AGB of
79 Mg ha−1 in Jiulong River Estuary, Fujian, China and Jiang et al. [60] reported a mangrove AGB
density of 54.81 Mg ha−1 in Shenzhen Bay, Guangdong, China. They were all lower than the mean
AGB of the mangroves on Hainan Island (128.27 Mg ha−1).

The average height of Hainan Island’s mangroves (6.99 m) is higher than the mean height of
mangroves (~5.0 m) in the Everglades National Park, Florida, USA, reported by Simard et al. [56],
and greater than the mean height of mangroves (3.2 m) reported by Hickey et al. [61] in northwest
Australia. However, they are lower than the average height of mangroves (7.5 m) reported by Fatoyinbo
and Simard [62] for all of Africa and significantly lower than the mangrove mean height (~21 m) in
Papua, Indonesia, given by Asian et al. [3]. A similar trend is found by comparing the mangrove
AGB in these four places with the mangrove AGB on Hainan Island. The mangrove AGB density
on Hainan Island (128.27 Mg ha−1) is higher than the mangrove AGB density (38.77 Mg ha−1) in the
Everglades National Park, Florida, USA [56], greater than the mangrove AGB density in northwest
Australia (70 Mg ha−1) [61], and slightly higher than the mean mangrove AGB (116 Mg ha−1) on the
African continent [62]; however, it is significantly lower than the mangrove AGB density in Papua,
Indonesia (292.72 Mg ha−1) [3]. These discrepancies could be attributed to differences in geographical
location, climate, and species composition. For example, in the Everglades National Park, scrub forests
are widely distributed on internal coasts as well as inland, and this park is located at 25◦ N, which is
higher than the latitude of Hainan Island (18–20◦ N).

To date, no global mangrove height map has been published. The reported global mangrove
AGB density of 184.8 Mg ha−1 was deduced by a climate-based model and not from remote sensing
surveys [54]. However, we can infer that the mean height and mean AGB of the mangrove forests on
Hainan Island are higher than the mean height and mean AGB of the majority of other mangroves in
China and lower than the global mean height and AGB of mangrove forests. The height inference
is based on the comprehensive consideration of the global mangrove distribution [63], climate [54],
and mangrove species composition [64]. If we substitute the global mangrove AGB density value of
184.8 Mg ha−1 into the global equation of AGB (Mg ha−1) = 10.8 × H(m) + 35, we can deduce that the
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global average height of mangrove forests is about 13.87 m, which is higher than the mean mangrove
height on Hainan Island.

Consequently, the obtained height and AGB maps of mangrove forests on Hainan Island are
useful. Firstly, they could provide an opportunity to address mangrove restoration problems and
provide insights into the dynamics of mangrove recovery. For example, a mangrove reforestation
plan has been widely implemented on Hainan Island in order to restore and rehabilitate mangrove
forests (Figure 9). Secondly, the maps could serve as a baseline for future mangrove studies, such as
the mangrove response to hurricanes and sea level rise.
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Figure 9. An illustration of the reforestation plan on Hainan Island: shrimp ponds were converted to
mudflats and finally to mangrove forests. This happened in the Qinglan Harbor. The images are from
Google Earth.

5.2. Fieldwork Challenges in Mangrove Habitats and the Feasibility of LiDAR Sampling

Previous studies have always mentioned the great difficulty of fieldwork in a mangrove
habitat [3,13]. Because of the mudflat and shallow seawater environment, investigators cannot
walk in most mangrove habitats with outdoor shoes, which become struck in the mud, but have
to be barefoot or wear long rain-shoes. For example, while field sampling mangroves on Hainan
Island, we often walked barefoot (Figure 10A). Hence, it was easy to suffer arm and leg injuries due to
mangrove branches and roots or shells and oysters in the water. Furthermore, since mangroves are
distributed in tropical and subtropical regions, there are many mosquitos in mangrove forests all year
round. In the field survey of mangroves on Hainan Island, investigators were sometimes bitten by
mosquitoes more than 20 times a day. In addition, because of the high density of the forests and the
aerial and prop roots at the bottom, it is difficult for investigators to walk through mangrove forests
(Figure 10). These factors make fieldwork in mangrove habitats more challenging than fieldwork in
terrestrial forests. The great difficulty of fieldwork in mangrove forests is also one of the reasons that
key research topics in mangrove remote sensing have lagged behind key research topics in terrestrial
forests, as concluded by Wang et al. [13], who conducted a comprehensive review of the mangrove
remote sensing studies conducted over the past sixty years. This may also explain the lack of a thematic
AGB map of mangroves produced by remote sensing techniques to date.
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Island: (A) walking barefoot in mangrove habitat; (B) field sampling in an R. stylosa community
inundated by the tide; (C) measuring the diameter breast height in an R. apiculata community with
dense prop roots at the bottom.

This study proposes a UAV-LiDAR sampling method for estimating mangrove height and AGB to
overcome the challenges of fieldwork in mangrove habitats. UAV-LiDAR can characterize mangrove
morphology with a finer spatial resolution [20,45]. In addition, UAV-LiDAR is more flexible than
airborne and satellite LiDAR because it can work on any low-wind day with arbitrary time intervals.
This flexible and operational characteristic makes UAV-LiDAR very suitable for sampling elongated
patches of mangroves. The good accuracy (height: R2 = 0.67, RMSE% = 26.24%; AGB: R2 = 0.62,
RMSE% = 35.41%) obtained from the UAV-LiDAR sampling method (height: LiDAR~S2 model; AGB:
G~LiDAR~S2 model) in this study also demonstrates the feasibility of UAV-LiDAR sampling for
mangroves (Table 4).

The derived AGB estimation accuracy is similar to the accuracy (R2 = 0.62, RMSE% = 40.00%)
reported by Pham and Brabyn [12] who used spectral bands, vegetation indices and texture of 10 m
SPOT-5 imagery. Considering that their study area only has three floral association types and that
Hainan Island has more than nine main mangrove communities, our estimation accuracy is satisfying.
Compared with the AGB prediction accuracy (R2 = 0.55, RMSE% = 47.07%) reported by Asian et al. [3],
the accuracy produced by the G~LiDAR~S2 model is higher. However, the AGB accuracy in this
study is lower than the accuracy (R2 = 0.82–0.84, RMSE% = ~43%) reported by Castillo et al. [23] using
Sentinel-1/2 imagery and lower than the accuracy (R2 = 0.80–0.88, RMSE% = 23–33%) reported by
Fatoyinbo et al. [5] using wall-to-wall airborne LiDAR data. The former could be attributed to the study
area of Castillo et al. [23] being dominated by one mangrove genus, namely, Rhizophora, which means
that the forest structure is relatively simple compared with Hainan Island’s diverse mangrove forests.
The latter is likely to be related to the data difference and retrieval unit of the map. Fatoyinbo et al. [5]
used full-coverage LiDAR data with a point density of 10 points/m2, and their estimation unit was
25 m. In our study, the UAV-LiDAR data was just partial coverage, with Sentinel-2 multispectral
imagery used as wall-to-wall auxiliary data, and the calculation unit was 10 m. When directly linking
the field plots with the UAV-LiDAR data (G~LiDAR model) in our study, relatively high accuracy is
produced with R2 = 0.78–0.80 and RMSE% = 28–29%. In addition, for heterogenous mangrove forests,
large statistical units may improve prediction accuracy but reduce detail information [14]. Therefore,
these findings prove that UAV-LiDAR is feasible for mangrove sampling.

There is uncertainty in the height (LiDAR~S2) and AGB estimation models (G~LiDAR~S2)
based on LiDAR sampling. For the LiDAR~S2 model, the uncertainty is mainly from LiDAR plot
sampling and model fitting, which is similar to the uncertainty of the two-phase hybrid inference using
partial-coverage UAV data for the forest volume estimation reported by Puliti et al. [16]. Concerning to
the G~LiDAR~S2 model, its uncertainty includes the uncertainty of two stages, namely G~LiDAR
and ˆLiDAR ∼ S2. The first-stage G~LiDAR is model-based inference [15,16]. When field samples are
collected according to probabilistic principles, its uncertainty is mainly from model fitting. Pereira et
al. [14] discussed how to reduce uncertainty in mapping mangrove AGB using field plots and airborne
LiDAR data. The second-stage ˆLiDAR ∼ S2 belongs to hybrid inference [19,65]. Its uncertainty is
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not only caused by LiDAR plot sampling and model fitting but also by error propagation from the
first-stage estimated AGB values. In addition, our study employed the non-parameter RF regression to
fit models. The uncertainty of LiDAR sampling-based model is an important issue for future research.
Réjou-Méchain et al. [66] presented several caveats when using very high spatial resolution products
to bridge field plots and large-scale remote sensing data. They also analyzed the sources of error and
discussed ways to reduce these errors in the process of upscaling forest biomass from field to satellite
measurements. Regarding to model fitting error, the deep learning-based retrieval model may be
an alternative to the RF model in the future [67].

5.3. Relevance of Predictor Variables

Because there is a lack of accurate training data for mangrove height, few studies have used
passive remote sensing data to estimate mangrove height [13]. Therefore, the spectral bands that are
important for mangrove height inversion are not yet clear. This study presents the first attempt to
invert mangrove height using Sentinel-2 data. The results for the importance of the variables show that
the red-edge derived MERIS (Medium Resolution Imaging Spectrometer) terrestrial chlorophyll index
(MTCI) plays the most important role in predicting mangrove height. The MTCI is correlated strongly
with red-edge bands but, in contrast to red-edge bands, is sensitive to high values of chlorophyll
content [68]. Pastor-Guzman et al. [69] also demonstrated that the MTCI is highly correlated with
mangrove chlorophyll concentration. Meanwhile, taller mangrove forests on Hainan Island usually
have denser branches and leaves, which could indicate a higher chlorophyll concentration. It is difficult
to explain the second-ranking of the blue band, but its considerable importance was also shown in
a mangrove AGB retrieval study using WorldView-2 imagery [70] and a terrestrial forest growing
stock volume prediction study utilizing Sentinel-2 imagery [21]. The SWIR bands are low-reflectance
bands compared with near-infrared bands and are sensitive to the leaf structure and water content of
plants. Thus, mangroves show a low spectral reflectance in the SWIR bands that varies according to the
amount of water content in different mangrove species. This may explain why the SWIR features play
important roles in mangrove height estimation. In addition, the importance of these SWIR features
may be related to the fact that tall mangroves are distributed in middle- and low-tide zones and
closer to hydrological features than dwarf mangroves, such as the creek entrance in Dongzhai Harbor
(Figure 7B) and the river in Qinglan Harbor (Figure 7C).

Of the Sentinel-2 features for mangrove AGB prediction, the red-edge 1 and SWIR 1 bands,
along with their derived indices, are the highest in terms of importance when considering both the
ranking and the number of features, thus confirming the results reported by Zhu et al. [70] and Castillo
et al. [23]. Usually, a slight change in vegetation properties (such as leaf structure, chlorophyll content,
and leaf pigments) leads to an obvious shift in the red-edge spectral curve [71], which may explain
why red-edge features are incredibly important for predicting mangrove AGB. The reasons for the
significant importance of the SWIR 1 features in mangrove AGB prediction are similar to those of the
importance of SWIR features in mangrove height estimation. In addition, Wang and Sousa [72] also
proved that wavebands in the red-edge (780, 790 and 800 nm) and SWIR (1480, 1530 and 1550 nm)
bands are the most informative bands for mangrove species discrimination. Mangrove AGB is also
correlated with mangrove species [11,29]. The higher ranking of the blue, green and red bands are in
line with what was observed by Zhu et al. [70], Mura et al. [21], and Pham and Brabyn [12]. The higher
rankings may also partly be explained by their higher spatial resolution of 10 m compared with other
multispectral bands of Sentinel-2 imagery (20 or 60 m), except for the near-infrared Band 8.

Of the UAV-LiDAR metrics, the newly created canopy thickness metric is the most important
predictor variable. Given the weaker penetration ability of UAV-LiDAR (limited by the loading capacity
of the UAV platform) compared with airborne LiDAR, the pulse beam emitted by UAV-LiDAR may
not penetrate a very dense canopy and detect specific branches. Nonetheless, UAV-LiDAR could
still capture the canopy thickness of mangroves, and the taller AGB mangroves usually have thicker
canopies (CTHK = H90–H10). Figure 11 illustrates the profiles of three dominant mangrove species on
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Hainan Island on UAV-LiDAR point clouds. The canopy thickness of B. sexangula, R. stylosa and L.
racemosa is 3.06, 1.40, and 0.89 m, respectively, with the AGB density of 215.20, 110.36, and 62.83 Mg ha−1.
This also explains why the LiDAR metrics that characterize the upper canopy (H80, H90, H95) and
the bottom canopy (H05, H10) are found to be important for mangrove AGB estimation in this study,
which is consistent with the results of Fatoyinbo et al. [5], Pereira et al. [14], and Hickey et al. [61],
who demonstrated the crucial importance of the LiDAR metrics that characterize the upper canopy
for mangrove AGB prediction. The last four LiDAR metrics include two metrics describing the point
cloud variation (HVAR and HSD), one density metric (D01), and one canopy cover index (CC1.3).
The sensitivity of the HVAR and HSD in this study are in accordance with what was observed by
Owers et al. [40] in a mangrove AGB study using terrestrial LiDAR. Consequently, we can infer that
the canopy thickness is the most important LiDAR metric for mangrove AGB estimation, followed
by upper canopy height metrics, bottom canopy height metrics, and point cloud variation metrics,
in that order.Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 26 
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Figure 11. Illustrations of UAV-LiDAR point cloud profiles of B. sexangula (left), R. stylosa (center), and
L. racemosa (right).

6. Conclusions

This study presents the first mangrove height and aboveground biomass (AGB) maps of Hainan
Island using a novel UAV-LiDAR sampling method with Sentinel-2 imagery as auxiliary data.
From UAV-LiDAR sampling, we constructed the LiDAR-S2 and G~LiDAR~S2 models for mangrove
height and AGB estimations based on random forest regression, respectively. The LiDAR~S2 height
model uses LiDAR plots as training samples and links the UAV-LiDAR observed height with Sentinel-2
data. The G~LiDAR~S2 AGB model utilizes the transect-based UAV-LiDAR data as intermediate data
to transfer AGB from field plots to wall-to-wall Sentinel-2 data.

The results show that the LiDAR-S2 model performed well and the G~LiDAR~S2 model performed
better than the traditional remote sensing model (G~S2) that directly related ground plots and Sentinel-2
data. We found that the mean height of Hainan Island’s mangroves is 6.99 m with a standard deviation
of 2.14 m. A total mangrove AGB of 474,199.31 Mg with a mean AGB of 128.27 ± 45.87 Mg ha−1 was
found on the whole Hainan Island. The mangrove height map was similar to the mangrove AGB
map, and the tall mangroves and AGB hotspots were mainly distributed in the south of the Dongzhai
Harbor and Qinglan Harbor. Comparative analysis also shows that the mean mangrove height and
AGB on Hainan Island are higher than those of other Chinese mangrove forests but lower than the
global mean values of mangrove forests.

In addition, the results indicate that the canopy thickness metric, the upper canopy height metrics,
and the bottom canopy height metrics, in descending order of importance, are the most informative
variables for mangrove AGB estimation. Of the Sentinel-2 features, the red-edge and shortwave
infrared features, especially the red-edge Band 5 and shortwave infrared Band 11 features, play the
most important roles in mangrove AGB and height estimations.
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Overall, this study confirms that UAV-LiDAR sampling can increase the distribution and sample
size of local data to inform on stand structure for forest attribute estimations. The successful application
of UAV-LiDAR sampling at the entire Hainan Island is also a major operational advance in estimating
and mapping mangrove structure over large areas. The first mangrove height and AGB maps may
serve as important reference data for the management and protection of mangroves on Hainan Island
and may also be used as a baseline for future mangrove studies in this region, such as biomass change
and mangrove response to climate warning and sea level rising.
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Appendix A

Table A1. The list of metrics derived from UAV-LiDAR point clouds.

LiDAR metrics Formula/Definition

Height metrics
(24)

HMax, HMean,
HMedian

HSD, HVAR
HSKE, HKUR

HCV
HIQ

Maximum height, Mean height, Median of height
Standard deviation of heights, Variance of heights

Skewness of heights, Kurtosis of heights
Coefficient of variation of height, (Zstd/Zmean) × 100%

Interquartile distance of percentile height, H75th – H25th

H01, H05, H10, H20, H25,
H30, H40, H50, H60, H70,
H75, H80, H90, H95, H99

Height percentiles. Point clouds are sorted according to
the elevation. HX is the Xth percentile of height. There are

15 height percentiles metrics from 1% to 99% height.

Density metrics
(12)

D01, D02, D03, D04, D05,
D06, D07, D08, D09, D10,

D11, D12

Canopy return density. Point clouds are divided into slices
with the same interval from low to high elevation. DX is

the number of canopy return points in the Xth slice relative
to the total points. There are 12 density metrics in this

study (from 0 to 24 m with an interval of 2 m).

Canopy volume
metrics

(17)

CC1.3 Canopy cover above 1.3 m, n_veg1.3/n_total.
CCmean Canopy cover above mean height, n_vegmean/n_total.

CRR Canopy relief ratio, Zmean−Zmin
Zmax−Zmin

.
CTHK Canopy thickness, H90th–H10th.

LAD03, LAD05, LAD07,
LAD09, LAD11, LAD13,
LAD15, LAD17, LAD19,

LAD21, LAD23

Leaf area density. Point clouds are divided into slices with
the same interval from low to high elevation. LADX is the

valid leaf area density in the Xth slice [73]. There are 11
leaf area density metrics in this study (from 2 to 24 m with

an interval of 2 m).

α, β The scale parameter α and shape parameter β of the
Weibull density distribution fitted to the foliage profile [39].
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Table A2. The list of indices derived from Sentinel-2 data.

Sentinel-2 Feature Formula/Definition Reference

Spectral bands
(10) Individual Bands B2, B3, B4, B5, B6,B7, B8, B8a, B11, B12 NA

Conventional
near-infrared indices

(7)

CIg (B8/B3) − 1 [74]
DVI B8 − B4 [70]
EVI 2.5×(B8−B4)

B8+6×B4−7.5×B2+1
[75]

FDI B8 − (B3 + B4) [44]
NDVI (B8 − B4)/(B8 + B4) [76]

SR B8/B4 [77]
TNDVI √

[(B8− B4)/(B8 + B4) + 0.5] [23]

Red-edge indices
(12)

CIg − re1 B5/B3 − 1 [74]
CIg − re2 B6/B3 − 1 [74]
CIg − re3 B7/B3 − 1 [74]

IRECI (B7 − B4)/(B5/B6) [23]
MTCI (B6 − B5)/(B5 − B4) [68]

MCARI [(B5 − B4) − 0.2 × (B5 − B3)] × (B5/B4) [78]

MSRren
(B8a/B5)−1
√
(B8a/B5)+1

[79]

NDVIre1 (B8 − B5)/(B8 + B5) [22]
NDVIre2 (B8 − B6)/(B8 + B6) [22]
NDVIre3 (B8 − B7)/(B8 + B7) [22]

PSSRa B7/B4 [80]
S2REP 705 + 35 × [(B4 + B7)/2 − B5]/(B6 − B5) [81]

Shortwave infrared
indices (3)

MDI1 (B8 − B11)/B11 [43]
MDI2 (B8 − B12)/B12 [43]

MNDWI (B3 − B11)/(B3 + B11) [82]
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