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Abstract: Spatial information is increasingly becoming a vital factor in the field of hyperspectral
endmember extraction, since it takes into consideration the spatial correlation of pixels,
which generally involves jointing spectral information for preprocessing and/or endmember
extraction in hyperspectral imagery (HSI). Generally, simplex-based endmember extraction
algorithms (EEAs) identify endmembers without considering spatial attributes, and the spatial
preprocessing strategy is an independently executed module that can provide spatial information
for the endmember search process. Despite this interest, to the best of our knowledge, no one has
studied the integration framework of the spatial information-embedded simplex for hyperspectral
endmember extraction. In this paper, we propose a spatially weighted simplex strategy, called SWSS,
for hyperspectral endmember extraction that investigates a novel integration framework of the spatial
information-embedded simplex for identifying endmember. Specifically, the SWSS generates the
spatial weight scalar of each pixel by determining its corresponding spatial neighborhood correlations
for weighting itself within the simplex framework to regularize the selection of the endmembers.
The SWSS could be implemented in the traditional simplex-based EEAs, such as vertex component
analysis (VCA), to introduce spatial information into the data simplex framework without the
computational complexity excessively increasing or endmember extraction accuracy loss. Based on
spectral angle distance (SAD) and root-mean-square-error (RMSE) evaluation criteria, experimental
results on both synthetic and Cuprite real hyperspectral datasets indicate that the simplex-based EEA
re-implemented by the SWSS has a significant improvement on endmember extraction performance
over the techniques on their own and without re-implementing.
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1. Introduction

Hyperspectral remote sensing is related to the extraction of information from objects or scenes
lying on the Earth’s surface, based on their radiance acquired by airborne or spaceborne sensors [1,2].
Hyperspectral sensing, or spectral imaging, has been motivated in extracting increasingly detailed
information about the material properties of pixels in a scene for agricultural, biomedical, industrial,
civilian, and military applications, since the sensor can acquire a spectral vector with hundreds or
thousands of elements from every pixel to provide valuable information towards such materials in
this scene [3–7]. However, since the spatial resolution of a sensor is coarser than the scale of spatial
heterogeneity of the ground surface, the pixels that mix with many different disparate substances are
inevitably contained in HSI [8,9]. Moreover, when a mixing model assumes to be of linear type such that
the incident light interacts with one material, the process that decomposes the measured spectrum of a
mixed pixel into a collection of constituent spectra, or endmembers, and a set of corresponding fractions,
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or abundances, can be defined as spectral unmixing (SU) [3,9]. As such, for the above-mentioned
applications in the field of hyperspectral remote sensing, endmembers normally correspond to familiar
macroscopic material in the scene, such as water, soil, metal, vegetation, etc. [5], and the SU can be
seen as an ability to discriminate the distribution of endmembers in a realistic situation.

Generally, endmember extraction has attracted more attention in SU because the endmember is a
pre-condition for estimating abundance. Current algorithms for endmember extraction can be divided
into four primary categories, namely pure pixel assumption-based algorithms [10–16], non-pure
pixel assumption-based algorithms [17–21], statistical algorithms [22,23], and sparse regression-based
algorithms [24,25]. However, pure pixel assumption-based algorithms have probably been the most
often used in SU owing to their light computational burden and clear conceptual meaning [9].
They generally assume that there is at least one pure pixel per endmember on the vertex to define
a data simplex. Therefore, they generally focus on one of the following geometric properties:
(1) the endmember corresponds to an extreme projection on a subspace; or (2) the endmember
corresponds to the spectral signatures that can define a maximum simplex volume. In this regard,
the endmember extraction can be seen as an identification of pure pixels extracted from the HSI.
Representative pure pixel assumption-based algorithms could be mainly divided into two parts,
given as follows.

(1) Extreme projection-based approaches: The extreme projection-based approaches explore the
property that the vertices of the simplex, i.e., endmembers, could capture the extreme values
when they are projected onto a determined direction vector or a subspace. Preliminary work in
this field focused primarily on the pixel purity index (PPI) [10]. PPI projects all the spectral
vectors onto randomly generated skewers (i.e., random direction spectral vectors), and the
desired endmembers are determined by counting the number of times spectral vectors are
found to have the extreme values. Unlike the PPI, the orthogonal subspace projection (OSP)
approach [11] and vertex component analysis (VCA) [14] iteratively select the endmember by
projecting entire spectral vectors onto a direction orthogonal to the subspace spanned by the
already determined endmembers. It is worth mentioning that projection-based methods also
play a crucial role in other fields, such as image corner detection [26] or image registration [27].

(2) Maximum simplex volume-based approaches: the maximum simplex volume-based approaches
are based on the fact that the volume formed by the vertices of the simplex is larger than
any other volume defined by the interior pixels within the simplex. N-FINDR [12] is classic
maximum simplex volume-based algorithm that identifies the endmembers by searching a set of
spectral vectors within the HSI that can specify a maximum volume. Simplex growing algorithm
(SGA) [15] comprise another well-known method that begins with two vertices and begins to
grow a simplex by increasing its vertices one at a time until reaching the terminated number
of vertices. Inspired by N-FINDR, alternating volume maximization (AVMAX) [19] is presented
for endmember extraction, where the volume of the simplex is defined by the endmembers with
respect to only one endmember at one time.

For most of aforementioned EEAs, their quantitative and comparative analysis can be found in
ref. [28]. Here, we will refer to the extreme projection- and maximum simplex volume-based
approaches as simplex-based approaches since both criteria use the convexity of the hyperspectral
data structure.

However, most of the above-mentioned algorithms are spectrally oriented, resulting in the
intrinsic spatial attribute of the endmember being ignored and thus the data simplex becoming
sensitive to anomalies. Specifically, according to the Tobler’s first law of geography that "Everything is
related to everything else, but near things are more related than distant things" [29], the endmembers
extracted within the HSI should be spectrally similar to their neighborhoods. However, anomalies are
special patterns in data without a well-defined notion of normal behavior [30], and their signatures
are spectrally distinct from their surroundings or background representation [31]. Such anomalies
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are potentially generated during detector failure, data transfer, and improper data correction [32].
When anomalies occur in the HSI, they are more likely to be selected as endmembers since such
anomalies may force a vertex of the simplex to reside at a point beyond the nominal position of the
endmember in order to enclose every point [5].

Hyperspectral imagery is conceptually a two-dimensional pictorial representation of the ground
surface, with both spatial and spectral attributes [8]. As such, despite the truth of the spectral features
of anomalies being distinct from their surroundings, the anomalies tend to be characterized spatially
when their spatial neighbors’ correlation is taken into account. On the basis of taking spatial and
spectral features into consideration simultaneously, several spatial information-assisted algorithms
are presented from the point of view of spatial–spectral-based EEAs and spatial preprocessing
strategy, respectively. The spatial–spectral-based EEAs combine spatial and spectral information for
identifying endmembers directly without considering the properties of the data simplex. The original
spatial–spectral-based EEA appears in automated morphological endmember extraction (AMEE) [33],
which governs two classic mathematical morphology operators, erosion, and dilation. An erosion
operation selects the most highly mixed pixel, while a dilation operation determines the purest
pixel. Under this circumstance, a morphological eccentricity index (MEI) is defined to generate
endmembers by an iterative process. The spatial preprocessing strategies generally involve the process
of using both spatial and spectral features with the specific intent of offering a few high-quality
pixels for fast endmember extraction. The first systematic study on spatial preprocessing strategy
was carried out in 2009 by Plaza [34], i.e., spatial preprocessing algorithm (SPP). In this study,
a spatial scalar factor is used to weigh the importance of the spectral information associated with
each pixel in terms of its spatial context. Later, in ref. [35], Martín and Plaza present another
outstanding work, i.e., spatial-spectral preprocessing algorithm (SSPP), which fuses spatial and spectral
information by selecting a subset of spatially homogeneous and spectrally pure pixels from each
cluster for endmember extraction. It is worth mentioning that the spatial preprocessing strategies
are an efficient measure with which to provide spatial information for the spectral-based algorithms
such as simplex-based algorithms, because those spatial preprocessing strategies heavily depend
upon an assumption that the endmembers are more likely to be found in spatially homogeneous
areas, where the pixels derived from the same homogeneous area are spatially close and spectrally
similar [34]. Unfortunately, such spatial preprocessing strategies are an independent module prior to
the spectral-based EEAs.

To summarize, several conclusions follow.

(1) For the simplex-based algorithms, the spatial attributes of the endmembers are not in the spotlight
and thus the simplex-based algorithms fall into the trap of the anomaly.

(2) In the field of spatial preprocessing strategies, they are an independently executed module separate
from the spectral-based EEA.

(3) The spatial attributes of the endmembers may lie in the fact that the endmembers are more likely
to be found in homogeneous areas, implying that the endmember extracted within the HSI should
be spatially close and spectrally similar to its neighborhoods.

To the best of our knowledge, no one has studied the integration framework of the spatial
information-embedded simplex for hyperspectral endmember extraction. This paper proposes
a novel strategy, termed SWSS, that discusses how to incorporate spatial information into a
simplex, such as extreme projection and the maximum simplex volume criterion-based simplex.
First, the SWSS generates a spatial weight scalar for each pixel by calculating their spatial
neighborhood correlations. Then, the determined spatial weight scalar is used to weight the pixel
itself within the simplex framework for regularizing the selection of the endmembers. Unlike the
traditional simplex-based algorithms or the spatial preprocessing strategies, the SWSS provide a
spatial information-embedded simplex framework for identifying endmembers from both spatial and
spectral viewpoints. Therefore, the SWSS shows its novelty in three ways.
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(1) Spatial information is captured to regularize the selection of endmembers within the simplex in
the spectral domain.

(2) The effectiveness of the simplex can be highly retained without computation complexity
excessively increasing or endmember extraction accuracy loss.

(3) The robustness of the simplex-based algorithms to anomalies could be boosted.

To display the SWSS in detail, a flowchart is given in Figure 1. As we can see, the traditional data
simplex is sensitive to anomalies (marked as red spheres), but the data simplex can be regularized
after each pixel within the data simplex is weighted by its spatial weight scalar.

Section 2 gives a brief overview of the research background with respect to LMM and
geometric properties. Then, the SWSS is outlined in Section 3. Several experiments conducted
on different hyperspectral dataset are presented in Section 4. Our conclusions are drawn in the
final section.

Figure 1. Illustration of the SWSS. As we can see from this image, HSI is displayed in (a); According to
the HSI, the SWSS defines the spatial weight scalar (c) for each pixel within the HSI using a value of 0
or 1. Then, the spatial weight is used to weight the pixel within the simplex, where the light blue, dark
blue, and red spheres denote the mixed pixel, endmember, and anomalies, respectively (b); Based on
the spatially weighed simplex, the vertices of the simplex, i.e., endmembers, are updated and the
anomalies avoided (d); Finally, the extracted endmembers are displayed in (e).

2. Background

This section gives a brief review of the background that the SWSS relies on. First, the linear
mixing model (LMM) is introduced in Section 2.1, which is the basis model of the SU associated with
endmembers and abundances. Then, the geometric properties that the traditional simplex-based
algorithms basically lie in are presented in Section 2.2.

2.1. LMM

Despite many studies taking into consideration a nonlinear mixing model (NLMM) that is based
on the assumption of physical interactions between the light scattered by multiple materials, the past
decades have also witnessed a huge growth in the LMM, which assumes that the mixing scale is
macroscopic and the incident light interacts with just one material [9]. Owing to the chief reason that
the LMM has an acceptable approximation for the light scattering type, the LMM has been widely
used to address SU problems, i.e., the process of estimating the endmembers and the abundances.
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Let Y = [y1, y2, ..., yn] ∈ RB×n be a measured hyperspectral image, the LMM can be given by

Y = MA + ω, (1)

where M = [m1, m2, ..., mp] ∈ RB×p stands for the endmember matrix, A = [α1, α2, ..., αn]T ∈ Rp×n

stands for the abundance fraction matrix, ω ∈ RB×n accounts for the additive noise matrix.
Moreover, B and n denote the spectral bands and total number of image pixels, respectively. p denotes
the number of endmembers, which can be estimated by classic techniques, e.g., virtual dimensionality
(VD) [36]. Two different constraints, the abundance non-negativity constraint (ANC), i.e., αi � 0,
and the abundance sum-to-one constraint (ASC), i.e., 1T αi = 1 (1 is a vector of ones), for i = 1, . . . , n,
are imposed on the abundance fraction matrix.

2.2. Geometric Properties

With the previously mentioned [3,9] in mind, a great deal of EEAs have focused on geometric
properties of the hyperspectral data, which involves an extreme projection criterion, maximum simplex
volume criterion, and minimum simplex volume criterion [17]. Unlike the minimum simplex
volume criterion, the first two criteria determine endmembers from within image spectra and their
corresponding models are formulated below.

2.2.1. Extreme Projection Criterion

Based on the LMM, Equation (1) can be re-implemented as follows:

Y = epαp + Up−1ζp−1 + ω, (2)

where ep = mp is a desired endmember, Up−1 = [m1, m2, . . . , mp−1] is the endmember matrix with
remaining p− 1 undesired endmember signatures, and the potential corresponding abundance of
Up−1 is ζp−1. According to ref. [11], the OSP classifier projector is given as follows:

POSP = P⊥Up−1
ep, (3)

where P⊥Up−1
= I − Up−1

(
UT

p−1Up−1

)−1
UT

p−1 denotes the orthogonal subspace projector, and I
denotes an identity matrix.

2.2.2. Maximum Simplex Volume Criterion

Based on the pure pixel assumption, the endmembers correspond to the spectral signatures
that can define a maximum simplex volume with the vertices specified by other pixels.
Let V

(
yk1 , yk2 , · · · , ykp

)
be the simplex volume with respect to yk1 , yk2 , · · · , ykp , and the simplex

volume can be defined by

V
(

yk1 , yk2 , · · · , ykp

)
= abs

(∣∣∣∣∣ 1 1 · · · 1
yk1 yk2 · · · ykp

∣∣∣∣∣
)

/ (p− 1)!, (4)

where yk1 , yk2 , · · · , ykp are the pixels that are selected from Y. More detailed analysis can be seen in
the literature [12].

A 3-dimensional illustration of the simplex is given in Figure 2.
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(a) (b)

Figure 2. Visual illustration of the endmember extraction process of the simplex. For the extreme
projection-based simplex, an endmember is identified by its extreme projection into a subspace (a);
For the maximum simplex volume-based simplex, endmembers are related to the pixels that can define
a maximum simplex volume (b). In these two figures, light spheres and the dark spheres denote the
mixed pixels and the determined endmembers, respectively.

3. Materials and Methods

Keeping the preceding expression in mind, this section concentrates on the SWSS. First, the SWSS
generates a spatial weight scalar for each pixel by calculating their spatial neighborhood correlations.
Then, the determined spatial weight scalar is used to weight the pixel itself within the simplex
framework for regularizing the selection of the endmembers. Figure 1 illustrates the SWSS in detail.
As we can see from this image, the traditional simplex does not take spatial attributes of the vertices
(i.e., endmembers) into consideration, resulting in one of the vertexes being seized by the anomaly.
However, due to the reason that the spatial weight scalar is introduced, it can be used to weight the
pixels within the traditional simplex for endmember extraction.

3.1. Spatial Information Exploitation

This section describes the process of the spatial information exploitation, which refers to two parts.
First, we use the well-known singular value decomposition (SVD) technique to denoise the HSI. Then,
we use local window method to capture the neighborhood correlations of target pixels and yield their
corresponding spatial weight scalar under the denoised hyperspectral data.

3.1.1. SVD for Denoising

Normally, when the HSI suffers from the poor noise interference, the spatial information of
the HSI may be difficultly characterized. Therefore, the SVD method is first used to alleviate the
noise interference. According to Equation (1), the SVD of the data matrix of Y is a decomposition of
the following form:

Y = ΘΣΛT =
n

∑
i=1

σiθiλ
T
i , (5)

where Θ = [θ1, θ2, . . . , θn] ∈ RB×n and Λ = [λ1, λ2, . . . , λn] ∈ Rn×n are the matrices with orthonormal
columns, i.e., ΘTΘ = ΛTΛ = I, and where Σ = diag (σ1, σ2, . . . , σn) ∈ Rn×n is the diagonal matrix
and the diagonal elements are singular values of Σ such that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (6)
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Theoretically, the SVD can divide the data space into true signal and noise subspaces pertaining
to separate sets of singular values [37]. Let q be the rank of noise-free hyperspectral data, i.e., MA,
and the denoised data matrix can be given by

Ŷ =
q

∑
i=1

σ̂iθiλ
T
i , (7)

where Ŷ = [ŷ1, ŷ2, ..., ŷn] ∈ RB×n denotes the denoised hyperspectra data, and σ̂i denotes the singular
value matrix such that σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0 and σq+1 = σq+2 = · · · = σn = 0.

3.1.2. Local Window for Characterizing Spatial Neighborhood Correlation

For the denoised hyperspectral imagery Ŷ, the local window is then used to calculate spatial
neighborhood correlation using the SAD. For the ŷi, its spatial neighborhood correlations of ŷi can be
defined as follows:

si = l/ ∑
ŷneighbor

i ∈N

arccos
(

ŷT
i ŷneighbor

i

/
‖ŷi‖

∥∥∥ŷneighbor
i

∥∥∥), (8)

where si denotes the spatial neighborhood correlations of ŷi, l denotes the number of neighbor pixels
in a neighbor system,N denotes the neighbor system centered in ŷi, and ŷneighbor

i is the neighboring
pixel of ŷi encapsulated inN , i = 1, 2, . . . , l.

Based on the determined spatial neighborhood correlations of each pixel, we define
S = [s1, s2, . . . , sn]n×1 as a spatial correlation matrix for characterizing the inherent spatial information
of each pixel in the hyperspectral data. It is worth noting that when the spatial correlation between
a given pixel and its neighbor pixels is high, the values of si will be relatively large. Furthermore,
when there are anomalies, their spatial neighbor correlations are weak, which indicates that their
corresponding spatial correlations are low as well. In this regard, for further characterizing the
neighborhood correlations of each pixel, a threshold δ is used to segment the neighborhood correlations
of pixels. This can be defined as follows:

wi =

{
1 si ≥ δ

0 si < δ.
(9)

The threshold δ could segment the spatial correlation matrix S into a spatial weight matrix
W = [w1, w2, . . . , wn]n×1 with 0 or 1 values, where 1 denotes the right spatial neighborhood correlations
that the pixel is and 0 denotes the quite contrary meaning. In other words, only the spatial weight of
pixels with high spatial correlation, such as homogeneous pixels, will be set to 1, yet the anomalies or
heterogeneous pixels will be set to 0.

3.2. Spatially Weighted Simplex

With the previous brief overview of the geometric properties and the defined spatial weight in
mind, this section investigates the different joint types between the spatial information of pixels and
the data simplex.

3.2.1. Spatially Weighted Extreme Projection Criterion

For the extreme projection-based simplex, the endmembers are sequentially extracted by
finding the extreme projections of the pixels lie on the orthogonal subspace spanned by the already
determined endmembers. Therefore, for the projections of all pixels, their spatial weight partners with
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their corresponding projections for determining endmembers. The first endmember can be determined
by the following formulation:

e1 = arg min
yi

(
wiyT

i yi

)
, (10)

where e1 is the first endmember, and wi denotes the spatial weight of the pixel yi. Likewise, the other
endmembers can be iteratively determined as follows:

ep = arg min
yi

(
wiP⊥Up−1

yi

)
, (11)

where ep denotes the p-th extracted endmember, Up−1 = [e1, e2, . . . , ep−1], P⊥Up−1
= I −

Up−1

(
UT

p−1Up−1

)−1
UT

p−1, and I denotes the identity matrix. According to Equations (10) and (11),
the role played by the wi within the extreme projection-based simplex is that only the projections of
the pixels with low spatial neighborhood correlations are ignored, but retaining the projections of the
pixels with high spatial neighborhood correlations without itself being changed.

3.2.2. Spatially Weighted Maximum Simplex Volume Criterion

For the maximum volume-based simplex, the endmembers are extracted simultaneously.
Hence, when pixels are used to define a simplex volume, their corresponding spatial weights should be
taken into consideration simultaneously. In this regard, the spatially weighted maximum volume-based
simplex is implemented as follows:

V
(

yk1 , yk2 , · · · , yki , · · · , ykp

)
=

p

∏
i=1

wki
abs

(∣∣∣∣∣ 1 1 · · · 1 · · · 1
yk1 yk2 · · · yki · · · ykp

∣∣∣∣∣
)

/ (p− 1)!, (12)

where yk1 , yk2 , · · · , yki , · · · , ykp are pixels derived from Y, and their corresponding spatial weight
are wk1 , wk2 , . . . , wki

, . . . , wkp , respectively. Obviously, when the pixels are used to calculate a simplex
volume, their corresponding spatial weight are cumulatively multiplied for weighting the volume.
Once there exists at least one pixel with a spatial weight of 0 value, the simplex volume will be set to 0
as well.

In conclusion, this section presents the process of how the SWSS works. Specifically, based on the
determined spatial weight from the noise removal and the spatial neighborhood correlation viewpoint,
the pixels are regularized to specify the endmembers within the simplex. Therefore, in the SWSS,
the pixels with low spatial neighborhood correlations such as anomalies, are masked, but the pixels
with high spatial neighborhood correlations are more likely to be selected as endmembers.

4. Results

This section describes the experimental results conducted on synthetic and real
hyperspectral datasets. To evaluate the effectiveness of the SWSS on the different simplex-based
algorithms, the SWSS was implemented in four state-of-the-art algorithms original version,
i.e., OSP, N-FINDR, VCA, and AVMAX, which all involve extreme projection and the maximum
volume criterion.

Their improved versions were named SWSS-OSP, SWSS-N-FINDR, SWSS-VCA, and SWSS-AVMAX,
respectively, and their performances in different experimental scenarios were compared to those of
their original versions. Furthermore, as the well-known spatial preprocessing strategy, the SPP was
used to combine with the four original simplex-based algorithms to validate the performance of the
improved versions.

For the SWSS, we carefully tuned the parameters regarding neighbor system size and
segmentation thresholds. Neighbor system size was used to enclose a set of neighboring pixels
to calculate the spatial correlation between the central pixel and its corresponding neighboring pixels.
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In the subsequent experiments, the neighbor system N was set to a square neighbor block with
different sliding windows varying in size from 3 to 9. In our experiment, ws denotes the window size,
and ws could fixed to 3, 5, 7, and 9. Furthermore, the classic OTSU [38] algorithm was adapted to
automatically determine the segmentation threshold δ for segmenting spatial information into spatial
weight with values of 0 or 1. Owing to the dataset having multiple scenarios, such as different noise
situations, anomaly situations, and the selection of window size ws, the threshold results are too many
and thus are given in Tables 1–3. In addition, the first p singular values were retained to denoise the
HSI; p denotes the number of estimated endmembers. For the SPP, its window size is fixed to 3 and 5
in the synthetic dataset and real dataset, respectively, since it can provide good results in the image
considered [34].

Table 1. The segmentation δ specified by the OTSU algorithm; it was used to segment the spatial
information of each pixel of the synthetic image (without anomalies) under different SNRs and window
sizes ws.

Window Size ws = 3 ws = 5 ws = 7 ws = 9

10 dB 0.3647 0.4314 0.4549 0.4706
20 dB 0.3686 0.4431 0.4353 0.4078
30 dB 0.2863 0.3490 0.3804 0.3961
40 dB 0.2510 0.3255 0.3647 0.3686
50 dB 0.2196 0.3118 0.3314 0.3059
60 dB 0.2588 0.3176 0.3255 0.3333

Table 2. The segmentation threshold δ specified by the OTSU algorithm; it was used to segment the
spatial information of each pixel of the synthetic image (with anomalies) under different SNRs and
window sizes ws.

Window Size ws = 3 ws = 5 ws = 7 ws = 9

10 dB 0.4667 0.5294 0.5373 0.5294
20 dB 0.4000 0.4549 0.4784 0.4588
30 dB 0.2980 0.3804 0.3961 0.4157
40 dB 0.2627 0.3333 0.3647 0.3725
50 dB 0.2431 0.2784 0.3275 0.3353
60 dB 0.2118 0.3137 0.3294 0.3431

Table 3. The segmentation δ specified by the OTSU algorithm; it was used to segment the spatial
information of each pixel on the Cuprite dataset under different window sizes ws.

Window Size ws = 3 ws = 5 ws = 7 ws = 9

δ 0.1882 0.1882 0.1804 0.1686

4.1. Evaluation Metrics

Two benchmarking evaluation metrics, i.e., SAD [28] and root-mean-square error (RMSE) [5],
were used to evaluate the experimental performance of all considered algorithms. The SAD is widely
used to compare the spectral similarity between extracted endmembers and their corresponding
library spectra:

SAD
(
yi, yj

)
= arccos

(
yT

i yj/ ‖yi‖
∥∥yj
∥∥) , (13)
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where yi and yj denote two different spectra. The greater the spectral similarity between yi and yj,
the smaller the SAD. RMSE is another metric used to calculate the reconstruction error between the
original and the reconstructed hyperspectral image. It can be given by

RMSE
(
Y, Ỹ

)
=

(
1

B× n

n

∑
i=1

(yi − ỹi)
2

) 1
2

, (14)

where B and n denote the spectral bands and total number of image pixels, respectively, and the
yi and ỹi are derived from the original HSI Y and the reconstructed HSI Ỹ (specified by the
extracted endmembers and estimated abundances), respectively. The lower the RMSE, the better the
reconstruction performance. Similarly, the lower the RMSE, the better the reconstruction performance.

4.2. Experiments on Synthetic Datasets

In this experiment, five endmembers were randomly selected from the United States
Geological Survey (USGS) spectral library (http://speclab.cr.usgs.gov/spectral.lib06) with 224 bands,
namely Alunite SUSTDA-20, Calcite HS48.3B, Kaolin/Smect KLF506 95%K, Montmorillonite STx-1,
and Muscovite GDS111 Guatemal. Furthermore, the LMM along with the ANC and ASC were used
to generate a 100 × 100-pixel synthetic image. Zero mean white Gaussian noise was added to the
synthetic images with signal-to-noise ratios (SNRs) varying from 10 dB to 60 dB. Here, based on
the above-mentioned synthetic dataset design, two different synthetic datasets were provided to
evaluate the performance of the algorithms. The first synthetic dataset did not take an anomaly into
account, and this synthetic dataset with its corresponding five signatures and abundances can be seen
from Figure 3. It is worth mentioning that the synthetic image was comprised of multiple blocks filled
by mixed pixels with different spectral purities: i.e., 1 (pure pixels ), 0.8 (mixed with 2 materials),
0.6 (mixed with 3 materials), and 0.4 (mixed with 4 materials) (Figure 4). Additionally, the background
of the image was made up of mixed pixels averaged on all endmembers (the purity of each
material was 0.2).

Figure 3. Synthetic data set without anomalies. In this synthetic hyperspectral image,
it contains 224 bands, and the image is displayed in the top-left position. Five endmembers,
namely Alunite SUSTDA-20, Calcite HS48.3B, Kaolin/Smect KLF506 95%K, Montmorillonite STx-1,
and Muscovite GDS111 Guatemal, are shown in the top-right position, and their corresponding
abundance maps are displayed in the bottom position.

http://speclab.cr.usgs.gov/spectral.lib06
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Figure 4. Synthetic hyperspectral image without anomalies (left) and with anomalies (right).
Both synthetic images are comprised of multiple blocks filled by mixed pixels with different spectral
purities: i.e., 1 (pure pixels ), 0.8 (mixed with 2 materials), 0.6 (mixed with 3 materials), and 0.4
(mixed with 4 materials). The background of the image was made up of mixed pixels averaged on all
endmembers (the purity of each material was 0.2). In addition, for the synthetic image with anomalies
(right), it contains different anomaly areas. Five panels of different sizes are added to the image, and the
sizes are 1 × 1, 2 × 2, 2 × 3, 3 × 3, and 3 × 5.

To validate the performance of the algorithms in a more realistic scenario, the second synthetic
dataset was designed based on the first synthetic dataset. In the second synthetic dataset,
several anomalies were added to the image (Figure 4). According to Equation (2), we formulate
an anomaly spectrum a as follows [9]:

a = mpγ + Up−1ζ p−1 + ω, (15)

where γ denotes the abundance fraction of a desired target spectrum mp, and is randomly determined
in the interval [1, 1.2]. γ + 1T ζ p−1 = 1, where 1 is a p× 1 vector of ones. In order to generate different
simulated anomaly areas, five panels of different sizes were added to the image. The sizes were 1 × 1,
2 × 2, 2 × 3, 3 × 3, and 3 × 5.

4.2.1. Experiment 1: Comparison between Original and Improved Versions Under Different
Noise Scenarios

The purpose of Experiment 1 is to provide a comparison between the original and improved
algorithms under different noise scenarios. Tables 4 and 5 present the SAD results on two
synthetic dataset situations under different noise scenarios varying from 10 to 60 dB, respectively.
As Table 4 shows, the SAD results of the improved and original versions were very close.
Further analysis showed that the improved algorithm did not decrease the endmember
extraction accuracy. As shown in Table 5, the most remarkable result is that the original versions fell
into the trap of anomalies, whereas the improved versions maintained endmember extraction accuracy.

Additionally, for the 40-dB case with ws fixed to 7, both Figures 5 and 6 visually compare the
spectra library and the extracted endmembers derived from the original and improved algorithms.
Figure 5 is based on the synthetic image without anomalies, and Figure 6 is based on the image
with embedded anomalies. As can be seen from Figure 5, the endmembers extracted by the original
and improved version closely matched the spectra library. However, for the synthetic image that
took into consideration anomalies, Figure 6 shows that the endmembers identified by the improved
version remained highly similar to spectra library whereas the endmembers determined by the original
version were different from the spectra library. This result further strengthened our confidence in the
SWSS since it can enhance the robustness of the simplex-based algorithm and avoid the interference
of anomalies.
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Figure 5. (a–t) Visual comparison between the spectra library (blue solid line) and the extracted
endmembers (the red and yellow solid lines denote the original and improved versions, respectively)
when the experiments were conducted on the synthetic image with 40 dB and the ws was fixed
to 7 (without the interference of anomalies): for (a–d) Alunite SUSTDA-20; (e–h) Calcite HS48.3B;
(i–l) Kaolin/Smect KLF506 95%K; (m–p) Montmorillonite STx-1; and (q–t) Muscovite GDS111 Guatemal;
(a–q) OSP and SWSS-OSP; (b–r) N-FINDR and SWSS-N-FINDR; (c–s) VCA and SWSS-VCA;
(d–t) AVMAX and SWSS-AVMAX.
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Figure 6. (a–t) Visual comparison between the spectra library (blue solid line) and the extracted
endmembers (the red and yellow solid lines denote the original and improved versions, respectively)
when the experiments were conducted on the synthetic image with 40 dB and the ws was fixed to 7 (with
the interference of anomalies): for (a–d) Alunite SUSTDA-20; (e–h) Calcite HS48.3B; (i–l) Kaolin/Smect
KLF506 95%K; (m–p) Montmorillonite STx-1; and (q–t) Muscovite GDS111 Guatemal; (a–q) OSP
and SWSS-OSP; (b–r) N-FINDR and SWSS-N-FINDR; (c–s) VCA and SWSS-VCA; (d–t) AVMAX
and SWSS-AVMAX.
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Table 4. SAD results of the original and improved versions, with the experiment conducted on a
synthetic image (without anomalies) under different SNRs.

Algorithms OSP SWSS-OSP N-FINDR SWSS-N-FINDR VCA SWSS-VCA AVMAX SWSS-AVMAX

10 dB 0.4327 0.4212 0.4170 0.4030 0.1166 0.0826 0.4199 0.3991
20 dB 0.1475 0.1587 0.1417 0.1411 0.0316 0.0223 0.1399 0.1396
30 dB 0.0457 0.0450 0.0453 0.0449 0.0092 0.0078 0.0448 0.0447
40 db 0.0143 0.0143 0.0156 0.0150 0.0029 0.0026 0.0143 0.0141
50 dB 0.0045 0.0044 0.0047 0.0045 0.009 0.0008 0.0045 0.0045
60 dB 0.0014 0.0014 0.0018 0.0018 0.0003 0.0003 0.0014 0.0017

Average 0.1077 0.1081 0.1044 0.1011 0.0269 0.0201 0.1041 0.1006

Table 5. SAD results of the original and improved versions for experiments conducted on a synthetic
image (with anomalies) under different SNRs.

Algorithms OSP SWSS-OSP N-FINDR SWSS-N-FINDR VCA SWSS-VCA AVMAX SWSS-AVMAX

10 dB 0.4214 0.4212 0.4270 0.4030 0.1245 0.0826 0.4263 0.4044
20 dB 0.1798 0.1543 0.1568 0.1386 0.0581 0.0213 0.1555 0.1385
30 dB 0.0776 0.0456 0.0791 0.0444 0.0603 0.0074 0.0725 0.0442
40 db 0.0625 0.0141 0.0537 0.0152 0.0558 0.0025 0.0557 0.0141
50 dB 0.0553 0.0044 0.0465 0.0046 0.0555 0.0009 0.0546 0.0044
60 dB 0.0549 0.0014 0.0527 0.0014 0.0548 0.0003 0.0509 0.0014

Average 0.1419 0.1068 0.1360 0.1011 0.0665 0.0192 0.1359 0.1012

4.2.2. Experiment 2: Comparison of and Improved Versions Under Different Window Size Scenarios

To assess the impact of window size, Table 6 also tabulates the SAD results and execution
times under different window sizes for the four improved algorithms conducted on two different
synthetic datasets. In this table, when ws = 7, the four improved algorithms have the lowest average
SAD results on the synthetic dataset without anomalies added; meanwhile, their average exaction
times were highest when ws = 9. For the synthetic dataset with anomalies added, when ws was fixed
to 3, the four improved versions could generate relatively better average SAD results compared to
other window sizes. Looking at Figure 7, it is apparent that the execution time is highly associated
with the window size. The larger the window size, the greater the execution time of the improved
versions will be. This may be because the large window size involves many dot-product operations.

(a) (b)

Figure 7. (a) Execution times of original versions, improved versions (with ws displayed in parentheses),
and SPP coupled simplex-based algorithms for experiments conducted on synthetic
dataset without anomalies; (b) execution times of original versions, improved versions
(with ws displayed in parentheses), and SPP coupled simplex-based algorithms for experiments
conducted on synthetic dataset with anomalies.
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Table 6. SAD results and execution time (tabulated in parentheses) obtained from the improved
versions under different window sizes ws and in two synthetic dataset scenarios.

Window Size ws = 3 ws = 5 ws = 7 ws = 9

SWSS-OSP 0.1069 (6.7327) 0.1081 (10.1887) 0.1085 (14.1675) 0.1087 (20.8113)
SWSS-N-FINDR 0.1010 (4.3943) 0.1003 (7.8081) 0.1010 (12.3514) 0.1021 (18.3483)

SWSS-VCA 0.0204 (3.9102) 0.0215 (7.3713) 0.0178 (11.9351) 0.0207 (17.9347)
SWSS-AVMAX 0.1005 (3.6717) 0.1006 (7.0336) 0.1003 (11.6494) 0.1011 (17.5922)

Average 0.0822 (4.6772) 0.0826 (8.1004) 0.0819 (12.6751) 0.0831 (18.6714)
SWSS-OSP § 0.1052 (7.0531) 0.1078 (10.3613) 0.1070 (14.7728) 0.1074 (20.6785)

SWSS-N-FINDR § 0.1013 (4.7310) 0.996 (7.8970) 0.1023 (12.3459) 0.1016 (18.3418)
SWSS-VCA § 0.0195 (4.2739) 0.0195 (7.4921) 0.0184 (11.9772) 0.0193 (17.9635)

SWSS-AVMAX § 0.1006 (3.9692) 0.1005 (7.1675) 0.1020 (11.6026) 0.1016 (17.6000)
Average § 0.0817 (5.0068) 0.0818 (8.2292) 0.0824 (12.6746) 0.0825 (18.6460)

§ denotes results obtained from synthetic dataset with anomalies added.

4.2.3. Experiment 3: Joint Consideration of Different Window Size and Noise Scenarios between
Original and Improved Versions

To provide a tendency of the SAD results under different combination of the window size
and noise scenarios, Experiment 3 is performed by the original and improved versions on the both
synthetic datasets. As shown in Figure 8, when no anomalies exist in the synthetic dataset, the original
(ws equals to 0) and improved versions (ws varies from 3 to 9) show a visually same tendency of the
SAD results. However, when the anomalies are added to the synthetic dataset, the improved versions
show a better tendency of the SAD results, while the original versions do not.
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Figure 8. Joint consideration of different window size and noise scenarios. X axis denotes
window size varying from 0 to 9, where ws equals 0 denotes original version. Y axis denotes
noise scenarios varying from 10 to 60 dB. Z axis denotes SAD results yielded by algorithms under
different combinations of window size and noise scenarios. (a–d) denote SAD results generated by
SWSS-OSP, SWSS-N-FINDR, SWSS-VCA, and SWSS-AVMAX, respectively, on synthetic dataset without
anomalies added; (e–h) denote SAD results generated by SWSS-OSP, SWSS-N-FINDR, SWSS-VCA,
and SWSS-AVMAX, respectively, on synthetic dataset with anomalies added.

4.2.4. Experiment 4: Comparison between SPP Coupled Simplex-Based Algorithms and Improved
Versions Under Different Noise and Synthetic Scenarios

The aim of Experiment 4 is to evaluate the performance of the spatial preprocessing strategy,
i.e., SPP coupled simplex-based algorithms, and of the improved versions. Table 7 compares the
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SAD results captured from the SPP coupled simplex-based algorithms and improved versions under
different noise and synthetic scenarios. This table is quite revealing in several ways. First, the improved
versions could provide better SAD results in both synthetic datasets, regardless of whether the
synthetic dataset contains an anomaly. Second, the SPP coupled simplex-based algorithms display
the better SAD results in both synthetic datasets under low-SNR situations, such as 10 and 20 dB,
because the SPP can smooth the HSI and alleviate the bad noise or interference from an anomaly
prior to endmember extraction. However, the data simplex structure may be influenced when the
data is spatially smoothed, resulting in the higher SAD results in high-SNR scenarios compared to the
improved versions. Figure 7 visually presents the execution-time results, indicating that the execution
times of the improved versions suffer from the window size and the SPP has less computational cost
when the window size equals 3.

Table 7. SAD results captured from SPP coupled algorithms and improved versions under different
noise and synthetic dataset scenarios.

SNRs 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

SPP+OSP 0.1859 0.1091 0.0503 0.0297 0.0178 0.0104
SWSS-OSP 0.4216 0.1527 0.0467 0.0144 0.0045 0.0014

SPP+N-FINDR 0.1618 0.0922 0.0525 0.0326 0.0184 0.0106
SWSS-N-FINDR 0.4004 0.1389 0.0447 0.0157 0.0045 0.0015

SPP+VCA 0.0858 0.0593 0.0426 0.0285 0.0173 0.0103
SWSS-VCA 0.0899 0.0205 0.0085 0.0025 0.0009 0.0003

SPP+AVMAX 0.1662 0.0891 0.0509 0.0299 0.0180 0.0105
SWSS-AVMAX 0.3999 0.1372 0.0447 0.0142 0.0045 0.0024

SPP+OSP § 0.1837 0.1176 0.0531 0.0301 0.0177 0.0103
SWSS-OSP § 0.4129 0.1518 0.0463 0.0142 0.0045 0.0014

SPP+N-FINDR § 0.1669 0.0891 0.0554 0.0329 0.0189 0.0104
SWSS-N-FINDR § 0.4038 0.1378 0.0445 0.0159 0.0045 0.0014

SPP+VCA § 0.0884 0.0565 0.0424 0.0283 0.0173 0.0102
SWSS-VCA § 0.0860 0.0193 0.0081 0.0026 0.0010 0.0003

SPP+AVMAX § 0.1659 0.0919 0.0500 0.0307 0.0177 0.0103
SWSS-AVMAX § 0.4023 0.1379 0.0440 0.0138 0.0044 0.0014

§ denotes the results obtained from synthetic dataset with anomalies added.

4.3. Experiment on the Real Dataset

Cuprite is a well-known benchmarking hyperspectral dataset, with data captured by the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS). It is used for verifying the performance of
hyperspectral unmixing (Figure 9). A 250× 190 pixel subset with 188 bands was used in this experiment
(the noise and water absorption bands were removed from 224 bands, and the excluded bands were
1–2, 104–113, 148–167, and 221–224) http://aviris.jpl.nasa.gov/html/aviris.freedata.html. Based on the
analysis in the literature [39], 12 minerals are considered in the experiment, namely Alunite, Andradite,
Buddingtonite, Dumortierite, Kaolinite#1, Kaolinite#2, Muscovite, Montmorillonite, Nontronite,
Pyrope, Sphene, and Chalcedony. More importantly, we empirically observed that ws fixed to 3
generally provided good results; further analysis is presented later. Subsequent experiments were
thus conducted on this window size. The different window sizes and their corresponding threshold
δ values are displayed in Table 3.

In Table 8, the overall results are displayed in detail, including SAD results, RMSE results,
and execution time. Several interesting results are found. First, for several minerals, e.g., Alunite,
Muscovite, and Pyrope, most of the improved versions could present better endmember extraction
accuracy. Most of the original versions can provide best endmember estimation for Kaolinite #1,
Nontronite, and Chalcedony. Dumortierite and Montmorillonite can be perfectly estimated by the most
of the SPP coupled simplex-based algorithms. Second, according to the RMSE results, the improved
versions could yield lower image reconstruction errors (i.e., RMSE results), especially for SWSS-OSP,

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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SWSS-VCA, and SWSS-AVMAX. Furthermore, in order to analyze the impact of different window size,
the best RMSE results generated by the original and improved versions for window sizes of 3, 5, 7,
and 9 are displayed in Figure 10. From this figure, when the window size increases, the RMSE values
increase as well, indicating that the SWSS may be not valid in such large window-size situations when
the method is conducted on the Cuprite dataset. The execution times of these algorithms are tabulated
in Table 8, from which it is apparent that the improved versions require approximately 10 s more
execution time than the original versions. More importantly, the location of the extracted endmembers
derived from the original and improved versions are marked in Figure 11.

Figure 9. The USGS map with different minerals in a cuprite mining district in Nevada. The map is
available online at http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.

Figure 10. RMSE results of the original version and the improved version with different window sizes
for experiments conducted on the Cuprite dataset.

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Table 8. Overall results of the algorithms for experiments conducted on the Cuprite dataset.

Algorithms OSP SPP + OSP SWSS-OSP N-FINDR SPP + N-FINDR SWSS-N-FINDR VCA SPP + VCA SWSS-VCA AVMAX SPP + AVMAX SWSS-AVMAX

Alunite 0.0859 0.1053 0.0955 0.0969 0.1086 0.0955 0.0957 0.1062 0.0944 0.1060 0.1053 0.0955
Andradite † 0.0843 0.0990 0.0802 0.0813 0.0707 0.0691 0.0742 0.0694 0.0730 0.0713 0.0675
Buddingtonite 0.1159 0.1152 0.0865 0.0775 0.0921 0.0930 0.0734 0.1157 0.1216 0.0862 0.1152 0.1206
Dumortierite 0.0802 0.0681 0.0760 0.0760 0.0680 0.0760 0.0759 0.0674 0.0765 0.0780 0.0675 0.0760
Kaolinite #1 0.0848 0.1047 0.1159 0.0848 † 0.1159 0.0841 0.0903 † 0.0848 0.0908 0.1159
Kaolinite #2 0.0852 0.0653 0.0727 0.0695 0.0671 0.0596 † 0.0701 0.0887 0.0602 0.0699 0.0773
Muscovite 0.0892 0.0962 0.0892 0.0923 0.0962 0.0892 0.0914 0.0954 0.0879 0.0821 0.0912 0.0892
Montmorillonite 0.0618 0.0611 0.0618 0.0612 0.0600 0.0612 0.0647 0.0642 0.0628 0.0618 0.0600 0.0618
Nontronite 0.0736 0.0810 0.0767 0.0736 0.0810 0.0767 0.0774 † 0.0781 0.1068 0.0847 0.0767
Pyrope † † 0.0735 † † 0.1051 † † 0.0659 † † 0.0671
Sphene 0.0655 † † † † † 0.0654 0.0914 † † † †
Chalcedony 0.0870 0.1228 0.1328 0.1003 0.1360 0.1326 0.1144 0.1376 † 0.0933 0.1399 0.0812

Average SAD 0.0829 0.0904 0.0890 0.0812 0.0878 0.0887 0.0812 0.9124 0.0828 0.0832 0.0896 0.0901

RMSE 0.0335 0.0410 0.0218 0.0113 0.0347 0.0127 0.0175 0.0269 0.0108 0.0138 0.0354 0.0126

Execution time 39.2514 61.2759 51.9905 12.8841 61.0445 25.7246 1.1903 53.6188 11.3288 0.5569 52.8609 10.8062

† denotes that the mineral is missed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. The location of the extracted endmembers. (a–d) Endmembers extracted from the original
versions, i.e., OSP, N-FINDR, VCA, and AVMAX; and (e–h) endmembers extracted from the improved
versions, i.e., SWSS-OSP, SWSS-N-FINDR, SWSS-VCA, and SWSS-AVMAX.

5. Discussion

One of the main goals of this experiment was to attempt to assess the usefulness and
persistence of the integration framework of the spatial information-embedded simplex under
different scenarios. Our result has further strengthened our conviction that the SWSS is a useful
spatial information-embedded simplex, which can boost the ability of traditional simplex-based
algorithms for endmember extraction by introducing spatial information without an excessive increase
in computational cost.

The traditional simplex-based algorithms are advantageous in endmember extraction efficiency,
but they suffer from the mistakenly extracted endmembers if a dataset contains an anomaly. However,
the preprocessing strategy, e.g., SPP, can alleviate the noise and anomaly interference by spatially
smoothing the HSI prior to endmember extraction, yet it still requires more computational time,
especially in a real dataset. The SWSS in our paper attempts to capture the superiority of the traditional
simplex and the materiality of spatial information, forming a spatial information-embedded simplex.
The results offer invaluable evidence that the SWSS could balance the trade-off between endmember
extraction efficiency and spatial attributes of endmembers.

One downside regarding our methodology is that the SWSS may be difficult to implement in
the minimum volume-based simplex model for covering non-pure pixel assumption-based datasets.
Because the non-pure pixel assumption-based simplex models involve the optimization problem of
estimating endmembers, two factors may slightly influence experimental performance. The first is
spatial segmentation threshold; this threshold may fail to assign an appropriate spatial weight for
pixels when the dataset scenarios are complicated, such as the case in which the dataset’s spatial
information of background and foreground are similar. The second is window size. A large window
size may play a key role in characterizing spatial information, but it eliminates small ground-truth.
In this regard, the determination of the window size may rely on the spatial resolution of the dataset,
e.g., the spatial resolution of the Cuprite dataset is 20 m pixels and hence a small window size
will be suitable. The experimental performance on the Cuprite dataset was slightly disappointing.
A possible explanation for this experimental performance may be that many pixels are falsely assigned
spatial weight due to the aforesaid factors.

This paper has investigated a new strategy, i.e., SWSS, in which the spatial information is
incorporated into the traditional simplex-based EEA. Our strategy shows a clear advantage over the
traditional simplex-based EEA, as well as over the spatial preprocessing strategy coupled traditional
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simplex-based EEA. Further studies taking the spatial information-embedded minimum volume-based
simplex model into account will need to be undertaken.

6. Conclusions

This paper outlines a new strategy, i.e., SWSS, for hyperspectral endmember extraction.
Specifically, the SWSS generates a spatial weight for each pixel by considering their spatial correlations
to weighting itself within the extreme projection or maximum simplex volume criterion-based simplex
framework for endmember extraction. Compared to the traditional simplex framework or spatial
preprocessing strategy, the SWSS capture the advantages of the endmember extraction efficiency of
the simplex framework and spatial information perspective of the endmembers, forming a spatial
information-embedded simplex framework.

The SWSS was implemented in four state-of-the-art algorithms, i.e., OSP, N-FINDR, VCA,
and AVMAX, to assess the effectiveness of the SWSS. The experiment results support the idea that the
SWSS could enhance robustness to anomalies by introducing spatial information into the simplex-based
algorithms without excessively increasing computational complexity or decreasing endmember
extraction accuracy. The most important limitation of the present study lies in the fact that the SWSS
may be difficult to implement in the minimum simplex volume criterion-based simplex framework
since it involves a non-pure pixel assumption and the optimization problem of estimating endmembers.
Thus, how to overcome this drawback is also a potential future research direction.
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