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Abstract: Space-borne radar interferometry is a fundamental tool to detect and measure a variety
of ground surface deformations, either human induced or originated by natural processes. Latest
development of radar remote sensing imaging techniques and the increasing number of space
missions, specifically designed for interferometry analyses, led to the development of new and more
effective approaches, commonly referred to as Advanced DInSAR (A-DInSAR) or Time Series Radar
Interferometry (TS-InSAR). Nevertheless, even if these methods were proved to be suitable for the
study of a large majority of ground surface dynamic phenomena, their application to landslides
detection is still problematic. One of the main limiting factors is related to the rate of displacement of
the unstable slopes: landslides evolving too fast decorrelate the radar signal making the interferometric
phase useless. This is the reason why A-DInSAR techniques have been successfully applied exclusively
to measure very slow landslides (few centimetres per year). This study demonstrates how the C-band
data collected since 2014 by the Sentinel-1 (S1) mission and properly designed interferometric
approaches can pull down this restriction allowing to measure rate of displacements ten times higher
than previously done, thus providing new perspectives in landslides detection. The analysis was
carried out on a test site located in the Cortina d’Ampezzo valley (Eastern Italian Alps), which is
affected by several earth flows characterized by different size and kinematics.
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1. Introduction

The application of imaging radar remote sensing to geosciences is nowadays a fast moving field.
Since the launch of Seasat in 1978, the first Earth-orbiting satellite equipped with a Synthetic Aperture
Radar (SAR), numerous space missions have followed. The developments of radar remote sensing
led to the study of ground surface dynamic phenomena and in 1993, Massonet [1] reported the first
successful application of space-borne differential interferometic SAR (DInSAR) to map the co-seismic
deformation of the Landers earthquake. In recent times, DInSAR has experienced a continuous growth
mainly related to the increased number of missions specifically designed for interferometric analyses
and the large amount of acquisitions collected through the years that have favored the generation of a
wide number of data processing methods and analysis tools e.g., [2,3]. These techniques, commonly
referred to as Advanced DInSAR (A-DInSAR) or Time Series Radar Interferometry (TS-InSAR) are
similar implementations of two main approaches: the Persistent Scatterer Interferometry (PSI) [4],
based on the identification of natural point-like targets in stacks of interferograms, and the Small
Baseline Subsets (SBAS) [5], centered on the privileged spatial and temporal relations of the acquisitions.
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A-DInSAR offers the possibility to map and measure small ground displacements over large temporal
and spatial scales with sub-centimetre accuracy, combining the high precision of classical geodetic
surveys with the imaging property of remote sensing techniques. These approaches have been
successfully applied to monitor ground deformations of different origins, both natural and anthropic
e.g., [1,6–8]. Nevertheless, the practical applicability of A-DInSAR analysis to study landslides is still
problematic since it is inherently related to the size, the aspect and the inclination of the slope, to land
cover and to the velocity and mechanisms of displacement [9]. The Sentinel-1 (S1) mission, developed
and operated by the European Space Agency (ESA), is implemented through a constellation of two
satellites (A and B units), launched in 2014 and 2016, respectively. S1 satellites were designed to provide
the scientific community with data continuity after the operational end of ERS and ENVISAT missions
with enhanced temporal and spatial resolution, along with small orbital baselines. These characteristics
certainly favor the application of A-DInSAR analysis to landslides by loosening two major bonds such
as the small dimensions and, occasionally, the high velocity of the mass movements.

According to Cruden and Varnes [10], landslides can be grouped in seven classes depending on
their rate of displacement (Table 1).

Table 1. Landslide movement scale as proposed by Cruden and Varnes [10].

Velocity class Description Typical velocity

7 Extremely rapid 5 m/s

6 Very rapid 3 m/min

5 Rapid 1.8 m/h

4 Moderate 13 m/month

3 Slow 1.6 m/year

2 Very slow 16 mm/year

1 Extremely slow

So far, A-DInSAR analyses have proven to be effective in the detection and measurement of
landslide classified as very slow (few centimeters per year) [11–16]. This study demonstrates that
processing data collected by the S1 mission, with properly designed interferometric approaches, can
extend the field of application to the upper class of slow landslides (few metres per year), thus providing
new perspectives in landslides detection. The analysis was carried out on the test site of Cortina
d’Ampezzo, a town located in a wide valley in the hearth of the Dolomites (Italian Eastern Alps),
on whose surrounding slopes more than 30 landslides, differing in type, size, state and stile of activity
and rate of displacement have been identified and mapped [17]. The analysis focused on the landslides
affecting large portions of the western slope of the Cortina d’Ampezzo valley. Mass movements
different in size and rate of displacement by an order of magnitude have been discriminated, mapped
and measured, establishing new boundaries for the application of radar remote sensing to landslides
hazard assessment.

2. Study Area

The Dolomites are a mountainous group of the Italian Eastern Alps, numbering 18 peaks above
3000 metres a.s.l. and covering an area of 231,000 hectares. Known for their stunning beauty, featuring
spectacular landscapes with one of the best examples of the preservation of Mesozoic carbonate
platform systems, the Dolomites were listed as a UNESCO World Heritage Site in 2009. The town of
Cortina is located in the Ampezzo Valley, crossed by the Boite River and surrounded by the grandeur of
the dolomitic peaks (Figure 1). The town is certainly one of the most known and fashionable touristic
resort of the Dolomites. Cortina hosted the Winter Olympics game in 1956 and, after that a number of
international winter sports events. Recently, it has obtained the assignment of the Alpine Ski World
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Championships, scheduled in 2021 and the 2026 Winter Olympics. The impressive location of Cortina
d’Ampezzo, its glamorous legacy as a tourist destination at any time of the year and the natural
predisposition at hosting relevant sports events, led to a constant growth of the anthropic pressure and
hence the vulnerability in a valley, known to be intensely affected by geo-hydrological hazards.
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Figure 1. Three-dimensional perspective of the western slope of the Cortina d’Ampezzo valley.
The Lacedel and the Rio Roncatto landslides are highlighted in white and in red respectively. The red
square over the map in the inset denotes the location of Cortina d’Ampezzo, while the dashed blue
area represents the swath of the S1 acquisitions (background image Microsoft®Bing™Maps, roads
layer© OpenStreetMap contributors).

Since the retreat of the Würmian glaciers, some 11,000 years ago, the Ampezzo valley was
largely interested by mass movements [17]. The renewals of these extensive and ancient landslides
continuously endanger and in some cases damage houses, roads and skiing facilities. The proneness of
the Ampezzo valley to instability phenomena can be attributed to several factors [18–20]. First of all,
the structural conditions of the area have to be considered. The stratigraphical sequence consists in
an alternation of dolomitic rocks and clayey geological formations. The presence of lithotypes with
different geomechanical properties represent a predisposing factor wherever the rigid and resistant
rocks with a brittle behavior overlie the plastic rocks characterized by a ductile deformation. Another
important factor derives from the effects of tectonics. Folds and faults stressed and dismembered the
rock masses that became much weaker and prone to erosion. Finally, the glacio-pressure effect [19] has
to be considered. It is likely that the pressure of ice on the valley sides during the Würmian glaciation
determined rock deformations in correspondence with surfaces of structural discontinuity, favoring
the formation of potential sliding surfaces. The glacial debuttressing, permafrost melting and high
relief energy have then favored the occurrence of slope instability processes [21–23].
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The characteristics of the landslides generally depend on the lithological and structural conditions:
where the dolomitic rock outcrops, in the highest part of the valley, rock falls occur, while slides and
flows are frequent in the medium and lower sectors of the slopes in correspondence of the marly and
clayey formations [20,24]. On the western slope of the valley, the earth flow (or mudslide according
to the British usage), known as Lacedel landslide, was presumably triggered in the Late Glacial and
is characterized by a recurrent activity that continues to date. The mass movement extends for an
approximate length of 3.5 km, from the crown located at 1750 m a.s.l. to the toe, in correspondence to
the Boite river bed at 1150 m a.s.l. Subsurface investigations estimated the thickness of the landslide
between 40 and 60 m, most of which was accumulated in the early postglacial [20]. The landslide body
is composed by an alternation of silty clays, originated by the weathering of the claystone bedrock and
interdigitated dolomitic gravel lenses deriving from Late Glacial debris flow events [25]. A partial
reactivation of the earth flow, named Rio Roncatto, is at present the most active sector of the western
valley slope. Damaged and abandoned buildings and disrupted roads witness the power release of
this landslide (Figure 2).
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Figure 2. Buildings damaged and roads disrupted by the movement of the Rio Roncatto landslide.

Recent GNSS (Global Navigation Satellite System) surveys assessed the rate of displacement of
the Rio Roncatto landslide body to about 1 m per year, while for the Lacedel landslide the measured
deformations are much lower, ranging from in few millimetres per year to several centimetres [26].
However, these measurements are point-based and do not allow to extend their information without
incorporating some uncertainty in a bi-dimensional space, specifically a map. Therefore, the definition
of the contours of the landslide characterized by different levels of activity, at the time being, must
necessary rely also on the qualitative information represented by the geomorphological analysis.

3. Materials and Methods

S1 satellites are equipped with an active phased array antenna that supports four imaging modes
characterized by different resolution and coverage: Interferometric Wide Swath (IW), Extra Wide Swath
(EW), StripMap (SM), and Wave (WV). Both the IW and EW mode are implemented as TOPS (Terrain
Observation with Progressive Scans in azimuth) modes to provide large swath width with enhanced
image performance [27]. The main characteristics of S1 mission, instrumentation and products are
resumed in Table 2.
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Table 2. Features and technical parameters of the S1 mission.

Launch date 3 April 2014 (A), 25 April 2016 (B)
Lifetime 7 years with consumable for 12 years

Orbit type near polar, sun-synchronized
Orbit altitude 697 km

Orbit repeat cycle 12 days, 6 days (A+B)
Orbit deviation tube (RMS) +/- 50 m

SAR frequency 5.4 GHz
Incidence angle range 20◦–45◦

Acquisition mode SM IW EW WV

Swath width 80 km 250 km 400 km 20 km
Geometric resolution [rg x az] 1.7x4.3 to 3.6x4.9 m 2.7x22 to 3.5x22 m 7.9x43 to 15x43 m 2.0x4.8 to 3.1x4.8 m

Pixel spacing [rg x az] 1.5x3.6 to 3.1x4.1 m 2.3x14.1 m 5.9x19.9 m 1.7x4.1 to 2.7x4.1 m

S1 datasets are accessible under free, full and open data policy via Copernicus services (https:
//sentinel.esa.int/web/sentinel/sentinel-data-access). The interferometric analyses were carried out
processing 104 S1 images in IW mode along the ascending track n. 44, from the end of October 2014
until late November 2018. Wintertime acquisitions (from December to March) were discarded due to
the likely presence of snow that would have increased signal noise. The images were multi-looked by
a factor 10 in range and 2 in azimuth direction in order to reduce the speckle noise. This procedure
increased the pixel spacing to 23.2 m and to 27.8 m respectively. The datasets were co-registered to
a single image acquired on the 17th of July 2017. Even if the S1 orbital parameters are very reliable
and despite the fact that the deviations are maintained within a tube of +/- 50 m radius (RMS) [27],
precision state vectors, downloaded from the European Space Agency (ESA) Quality Control website
(https://qc.sentinel1.eo.esa.int/aux_poeorb/), were used to guarantee highly accurate results. IW images
are composed by 3 swaths made of bursts which are affected by large Doppler centroid variations
as a consequence of the implementation of the TOPS acquisition mode. The resulting steep azimuth
spectrum ramp within each burst requires misregistration errors smaller than 5/1000 of sample in
order to avoid residual interferometric phase jumps [28]. As a consequence, a stringent co-registration
procedure is obliged. To achieve this task, an iterative procedure was used. A lookup table that
permits to resample the data among the master and the slave geometries was derived by exploiting the
Shuttle Radar Topography Mission (SRTM) DEM sampled at 3 arc-seconds [29]. After the resampling,
the offsets among the images were determined through a matching procedure that uses iteratively
cross correlation optimization to reduce mis-registration errors to about 1/100 of sample. Afterwards,
a spectral diversity method, which considers the double difference phase in the bursts overlap regions,
was applied. The double differences interferograms were multi-looked and unwrapped. The algorithm
contemplates only overlap regions with a minimal coverage of high coherence pixels (e.g., 0.8) and the
statistics of the unwrapped phases to avoid errors. The accepted values were then combined using
a weighted averaging. The offset parameter file is updated, the slave images are resampled and the
spectral diversity method applied once again. The procedure was iterated until the mis-registration
errors result smaller than 5/1000 of sample. Afterwards, for each burst, the azimuth phase ramp of
the master acquisition was calculated, subtracted and then used to deramp the co-registered slave
images. The stack of the 104 co-registered and deramped images was then resized to a square of 600 x
600 pixels, covering area of interest for an extension of more than 230 km2. At this stage, two different
interferometric procedures were implemented in order to detect both the Lacedel and Rio Roncatto
landslides, whose displacement rates differ considerably. The investigation of the former was carried
on using an A-DInSAR approach known as Interferometric Point Target Analysis (IPTA) [30] while,
for the latter, standard differential interferometric approaches were applied.

3.1. Interferometric Point Target Analysis

IPTA technique exploits the temporal and spatial characteristics of interferometric signatures
back-scattered by natural point-like targets to assess their displacements histories [30]. Point target

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://qc.sentinel1.eo.esa.int/aux_poeorb/
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candidates were selected using two approaches. The first one is based on the spectral properties of
prevalent targets within each individual image. Spectral characteristics were averaged over the set of
images and targets that show low spectral phase diversity were selected as point target candidates
(PTC). The second one is based on the very likely assumption that dominant targets have a lower
temporal variability throughout the acquisitions stack compared to distributed scatterers. PTC were
hence selected by fixing a threshold to the ratio between the temporal average of backscattering and
its standard deviation. Every image in the stack was processed along with the master to generate
103 interferograms with an average perpendicular baseline of 23 m and a maximum temporal baseline
of 858 days (Figure 3).Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 17 
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Afterwards, the interferometric phase at each PTC position was flattened by subtraction with the
unwrapped synthetic phase derived from the SRTM DEM. The resulting differential interferometric
phases between pairs of PTC were analyzed by means of a two-dimensional regression that accounts
for the perpendicular baseline and the time elapsed between the interferometric pairs. The parameters
resulting from the regression such as the height corrections, the deformation rate, the baseline
refinement, the atmospheric phase term and the extension of the PT (Point Target) list, were iteratively
improved until the phase model resulted satisfactory.

3.2. DInSAR Analysis

To detect and isolate fringes compatible with the surface displacements of the Rio Roncatto earth
flow, a multi-baseline approach was applied. By setting a maximum temporal baseline equal or minor
to 24 days, 508 differential interferograms were generated. In several highly coherent phase images a
deformation pattern attributable to the mass movement was clearly visible even if the noise and the
atmospheric phase screen contribution made it often difficult to discriminate the signal (Figure 4).
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Figure 4. Wrapped differential interferograms with a temporal baseline of 6 days in range-Doppler
coordinates. Inside the white dotted rectangular the Rio Roncatto landslide shape is clearly visible.

In order to map the Rio Roncatto landslide and measure its rate of movement, an interferometric
approach based on two very likely assumptions was designed. Firstly, we assumed the stability of the
area surrounding the Rio Roncatto landslide and specifically the Cortina d’Ampezzo urban area and
the remaining portion of the western slope (by inspection of the IPTA results, considering a maximum
temporal baseline of 24 days, the rate of deformation of the latter can be considered negligible).
Under this assumption, we masked the Rio Roncatto landslide and applied a spatial filtering and
an interpolation of the interferometric phases over the “stable” areas. The result was interpreted as
atmospheric disturbances and subtracted from the differential interferogram. The filtered and flattened
complex valued interferograms were unwrapped using a minimum cost flow algorithm [31] and
visually inspected to assess the presence of phase errors. The second assumption was that the rate
of deformation of the earth flow can be considered constant as demonstrated by the GNSS (Global
Navigation Satellite System) surveys operated by Bossi et al. (2016) [26]. Between July 2008 and April
2012, eight fast static relative measurements were carried out. The inferred rate of displacements for
the four benchmarks installed over the Rio Roncatto landslide were assessed between 1 and 2 m per
year (Figure 5).

Due to temporal decorrelation, interferograms generated from a short time intervals image pairs
are generally more coherent. In other words, it is likely that the phase unwrapping would results
more reliable and correct for 6-day interval interferograms rather than 12, 18 or 24. Based on this
assumption, we added the unwrapped phases of the 6-day interferograms to create phase models
for 12 or more days. The complex valued interferograms generated from images with a temporal
baseline longer than 6 days were unwrapped using an algorithm forcing the phase of each pixel to
the value in the (-π, π) interval of the model. After completion of the unwrapping, a phase constant
was subtracted from all unwrapped phase values such that the deformation phase at the indicated
stable reference location (the same used in the IPTA processing) would equal 0. The linear rate
of differential phase backscattered was estimated from the Rio Roncatto landslide from a stack of
six unwrapped differential interferograms. The reference image, acquired on September 22, 2017,
was processed along with the 6 subsequent images taken 6 days apart from each other. Phase rate
estimation was obtained by weighting the individual interferogram phases for the time interval under
the assumption that atmospheric statistics were stationary for the stack of interferograms, according to
the following equations:

phrate =

∑N
j=1 ∆t jφ j∑N

j=1 ∆t2
j

(1)

var(phrate) ≈

∑N
j=1

(
φ j −

4π
λ phrate∆t j

)2

∆t2
j

(2)
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Where:

phrate is the phase linear rate,
var(phrate) is the variance of phase linear rate,
N is the number of interferograms (in this case 6),
t is the time interval,
φ is the differential interferometric phase,
λ is the signal wavelength.
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2008 to 2012 (roads layer© OpenStreetMap contributors).

4. Results

The outcomes of the IPTA processing are reported in Figure 6. Patterns of ground displacements
driven by the Lacedel landslide on the western slope of the Cortina d’Ampezzo valley are clearly visible
in correspondence of the PT located in the hamlets of Colfiere, Lacedel, Mortisa and Grignes. The town
of Cortina d’Ampezzo, at the bottom of the valley, results to be stable, as expected. The majority of the
PT are detected in correspondence of built-up areas, ski lifts pylons and a few rock blocks in the upper
part of the slope. No displacement information can be inferred over the body of the Rio Roncatto
landslide. The maximum displacement rate calculated at PT location varies from 10 (Colfiere) to 6
mm/yr (Lacedel).
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A quantitative assessment of the IPTA analysis outcomes can be inferred from the histogram in
Figure 7. PT have been grouped in displacement rate classes with a bin-width of 1 mm/yr. Negative
values of the velocity witness an increasing distance between the sensor and the ground target
throughout time. It can be noticed that the data arrange as a normal distribution slightly skewed to
the left, towards negative values. The large majority of the PT are grouped around the null value of
the rate of displacement and reflects the kinematics behavior of the radar target located in the town
of Cortina d’Ampezzo. Negative values are related to the mass movements affecting the western
slope of the valley (i.e. Lacedel landslide). On the contrary, the majority of the PT spread on the
right side of the histogram can be attributable to the eastern slope instabilities. The positive values
of the rate of deformations are recoded by targets moving toward the sensor and are hence suitable
considering the ascending geometry of acquisition of the processed dataset and the prevalent direction
of the displacements.

The assessment of the accuracy of the IPTA analysis outcomes can be inferred from the histogram
in Figure 8. PT have been grouped in estimated displacement rate uncertainty classes with a bin-width
of 0.05 mm/yr. Except very few outliers with values larger than 0.5 mm/yr, most of the targets are
grouped in the classes characterized by a displacement rate accuracy ranging from 0.25 to 0.45 mm/yr.

The results of the DInSAR analysis are shown in Figure 9. The pattern of deformation delineates
quite well the shape of the Rio Roncatto landslide body mapped from geomorphological evidences.
The rate of displacement of the earth flow, assessed along the satellite line of sight (LOS), reaches a
peak of 0.5 m/yr, more than an order of magnitude with respect to the values measured with the IPTA
technique. The most active sectors of the earth flow are located at the source area of the landslide
and to the southern sector of the toe. The sector developing north of Grignes recorded slower rate
of displacement rate. Deformation patterns are also clearly evident outside the mapped landslide,
specifically north of the source area and uphill with respect to the hamlet of Lacedel (white dotted
contours in Figure 9). These findings might suggest an updating of the landslide inventory maps.
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Figure 9. Deformation rate of the Rio Roncatto landslide assessed by six interferograms generated from
images acquired in the Autumn of 2017. The white lines contour unstable areas outside the mapped
landslide body.

5. Discussion

IPTA analysis pointed out patterns of ground displacements attributable to the mass movements
affecting the western slope of the Cortina valley and particularly manifest in the built up area of
the hamlets Colfiere, Lacedel, Mortisa and Grignes. These results have been matched with the
interferometric analysis performed by Bossi et al. (2016) [26] on 34 ENVISAT images acquired from
the beginning of April 2004 to the middle of October 2010. Figure 10 sums up the results of IPTA
processing performed with S1 and ENVISAT datasets, restricted to the unstable area as mapped by
geomorphological evidence.

The most obvious remark is that the number of PT in the S1 dataset is much larger than the one
in the ENVISAT. The PT located inside the landslide contours are 512 and 101 respectively, meaning
that the number of natural reflectors suitable for interferometric analysis are five times larger in the
S1 dataset. S1 acquisition mode and the short revisiting time favors the identification of PT leading
to an improved spatial sampling and the possibility to infer a greater amount of displacement data
in the area of interest. The cluster of PT located over the hamlet of Colfiere in the S1 dataset and
absent in the ENVISAT analysis clearly witness the upgrade of the effectiveness of the latest ESA space
mission for interferometric purposes. A second consideration can be drawn on the consistency of the
S1 dataset. Patterns of deformation are detected in the same sectors of the unstable slope as defined by
the ENVISAT data, although with rates slightly different that can be attributable to a change in the
style of activity of the landslide and marginally to the different acquisition geometries between S1 and
ENVISAT. A comparison between rate of displacement of quasi-homologous PT is shown the graphs
reported in Figure 11.
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Beside the interesting results of the IPTA processing the outcomes of the DInSAR analysis draw
particular attention. If the capability to detect and accurately map the earth flow is clearly highlighted
in Figure 8, the reliability of the estimation of the displacement rate needs to be further investigated.
In order to achieve this purpose, the cumulated displacement recorded at GNSS benchmarks locations,
between the first reading in 2008 and the last one in 2012, has been decomposed and projected along
the S1 sensor LOS according to the following formula:

dLOS = (dE cosθ− dN sinθ) sinϕ− dH cosϕ (3)
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Where

dLOS: is the cumulated displacement along the LOS,
dE = dE2012 − dE2008 is the cumulated displacement along east coordinate,
dN = dN2012 − dN2008 is the cumulated displacement along north coordinate,
dH = dH2012 − dH2008 is the cumulated displacement along the vertical direction,
ϕ is the sensor look angle,
θ is the azimuth direction.
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Grignes (B).

Broadly assuming a linear deformation (Figure 5), the rate of displacement along the LOS can
simply be calculated by the following equation:

LOSrate =
dLOS

t
365 (4)

Where

LOSrate is the rate of deformation along the LOS,
t is the time elapsed between the first and last GNSS measurement expressed in days.

Table 3 summarizes the input data used in the equation and the results calculated for the 4 GNSS
benchmarks localized in the lower sector of the Rio Roncatto landslide. Each benchmark location has
then been transformed in range-Doppler coordinates (i.e. range and azimuth). The rate of displacement
calculated through the interferometric phase of the corresponding image pixel is reported in Table 4.

The results presented in Table 3 are in good agreement with the values inferred by the DInSAR
analysis (last column in Table 4), showing that the approach, beside an excellent capability and accuracy
of mapping and detection, provides also a reliable estimation of the rate of displacement. By comparing
the LOS velocities calculated from the GNSS measurements (GNSS-LOS rate) with the values inferred
from the interferometric analysis (LOS rate), a good agreement can be noticed. The maximum difference
of 0.155 m/yr is found at ID 20 GNSS benchmark location. It has however to be noticed that, beside
the assumption of a constant rate of displacement of the Rio Roncatto earth flow, GNSS-LOS rate
were inferred from a 4-year measurement (2008-2012) while LOS rate is calculated on a monthly basis
(36 days in 2017), hence discrepancies between the values were expected.
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Table 3. GNSS benchmarks measurements and acquisition parameters used for the LOS displacement
rate conversion.

TRACK ORBIT θ [deg] ϕ [deg] t [days]

44 A -10.9014 33.7318 1368

GNSS ID. dE [m] dN [m] dH [m] dLOS [m] GNSS-LOS
rate [m/yr]

10 1.667 -0.183 -0.112 0.991 0.264
20 3.811 -0.783 -0.760 2.628 0.701
21 2.936 -0.345 -0.537 2.011 0.537
22 2.670 -2.871 -0.853 1.864 0.497

Table 4. LOS displacement calculated by the interferometric analysis at each benchmark location.

Geographic Coordinates Range-Doppler Coordinates

GNSS ID. Lon. [deg.] Lat. [deg.] H. [m] Ra [pix] Az [pix] LOS rate
[m/yr]

10 12.124824 46.535908 1355 2892 695 0.197
20 12.129589 46.534332 1286 2993 678 0.546
21 12.132136 46.534185 1259 3047 674 0.520
22 12.128531 46.533881 1297 2969 676 0.439

6. Conclusions

The impact of climate change, which results in increasing frequency of extreme meteorological
events, makes landslides a worldwide problem of great concern, especially considering the growth of
population that leads to the construction of new settlements, the enlargement of cities and the increasing
need for infrastructures [32]. Constructions in hazardous areas might lead to unsafe situations and
project uncertainties, causing large economic consequences and sometimes casualties. Aiming at an
effective risk management and mitigation, the crucial tasks to be achieved are [7]:

• Detection: where and when deformation occurred (or is occurring);
• Assessment of the deformation;
• Evolution (past and future) of the deformation.

Monitoring techniques have always been considered one of the most common tools for risk
mitigation and, among these, space-borne interferometry plays a key role. A-DInSAR techniques are
currently the only cost-effective approaches for frequent, large-scale monitoring of ground deformation,
able to provide the information needed to accomplish the aforementioned objectives. Still these
approaches might fail when the inherent characteristics of the mass movements interfere with physical
constraints of the technique. Typically, the size, the rate and direction of the mass movements
represent the limiting factors to investigate landslides by means of A-DInSAR. Recent space missions,
specifically designed for interferometric purposes, such as the ESA S1 satellites, are providing the
scientific community with new effective datasets. S1 mission has certainly increased the potential
radar interferometry techniques to detect landslides, mainly for the short repeat cycle and the small
perpendicular baselines among the acquisitions, besides the timeliness and the reliability of a free of
charge service.

Monitoring very slow landslides by means of A-DInSAR analysis is nowadays a well-consolidated
practice, but this study has demonstrated how properly designed approaches can extend the field
of application of space-borne radar interferometry to the upper class of slow landslides (few metres
per year). The landslides affecting the western slope of the Ampezzo valley have been correctly and
accurately characterized beside their wide differences and terms of spatial extension and kinematics.

Knowing that the assessment of landslide risk includes both the area affected and the velocity
and the product of these two parameters is approximately proportional to the power release of the
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landslide, the results obtained in the Rio Roncatto earth flow investigations are relevant. The capability
to accurately map landslides contours and to carry out reliable displacement measurements allow to
produce a data-driven distributed activity map, providing high quality information for geotechnical
modelling, which are fundamental to predict risks scenarios and to design mitigation works. It is worth
noticing that, prior to the launch of S1, it would have been unfeasible to characterize an earth flow
displacing at a velocity in the order of decimetres to metres per year in such a continuous and extensive
way. Ultimately, S1 mission has proved to provide a fundamental contribution in the challenging field
of landslide risk mitigation and management
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