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Abstract: Landslides are one of the major geohazards in the Qinghai-Tibet Plateau, and have recently
increased in both frequency and size. SAR interferometry (InSAR) has been widely applied in
landslide research, but studies on monitoring small-scale landslides are rare. In this study, we
investigated the performance of Small Baseline Subsets method (SBAS) in monitoring small-scale
landslide and further developed a new deformation model to obtain the absolute deformation time
series. The results showed that SBAS could well capture the small-scale landslide characteristics
including spatiotemporal abnormal displacement and progressive failure processes. The newly
developed absolute deformation model further detected the process of landslide details, such as
instances of noticeable creeps induced by rainfall and snowmelt. Finally, a conceptual model of the
kinematics-based failure mechanism for small-scale landslide was proposed. This study extended
the monitoring capability of InSAR and improved our knowledge on the deformation in the frozen
ground regions.

Keywords: landslide; SAR interferometry (InSAR); Small Baseline Subsets (SBAS); absolute
deformation; Qinghai-Tibet Plateau

1. Introduction

Due to the area’s intense tectonic activity, complex geomorphology, and climate change, the
Qinghai-Tibet Plateau (QTP) is vulnerable to geohazards [1]. One of the most common geohazards
is landslide. Recent studies have found that a warmer climate and more frequent extreme climate
events in the QTP may cause landslides to occur more frequently [2,3]. In frozen ground regions, it got
much worse. The climate change weakened the inherent stability of frozen ground [4]. The freeze
thaw cycle made shallow deposits creep continuously and the loss of ice changes the fundamental
behavior of the slope [5,6]. The events of landslide have significantly accelerated the alpine ecosystem
degradation [7], desertification [8], and destabilization of human infrastructure [9,10]. Fatal landslide
events are recorded in the Emergency Events Database [11] and the China Statistical Yearbook [12],
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but smaller landslides (<105 m3) [13] are rarely documented because of the lack of data available for
monitoring, research and prediction [14]. While the events of small-scale slope instability can be seen
everywhere in Qinghai-Tibet Plateau, even at a slope of 4–9◦ [15]. Even a minimal change, such as
a small-scale landslides in the land surface can influence the surface environment through various
processes such as radiation and water and heat exchange [16]. Therefore, it is vital to monitor the short-
and long-term effects of landslides [17].

Multiple techniques have been employed in small-scale landslides investigations and
analysis [18,19], such as (1) generating landslide inventories using Airborne Lidar Data [20], (2)
evaluating susceptibility mapping with digital elevation models (DEMs) [21], (3) analyzing the
temporal evolution with aerial photogrammetry [22], and (4) surveying the critical threshold for
reactivating the landslide with geophysics [23]. In recent years, the high-resolution Synthetic Aperture
Radar interferometry technique (InSAR) has proven to be an excellent tool to monitor the landslide
on both the site-specific and the regional scale, including landslide hazard investigation, landslide
monitor and landslide prediction [24–27]. Although the rapid movement of landslide and terrain
effect lead to the decorrelation of SAR data, InSAR still represents one possibility for mapping surface
deformation at fine spatial resolution over large areas in order to characterize aspects of terrain motion
and potentially hazardous processes [28], in alpine mountainous regions such as the Apennines [24],
Alps [29] and the Andes [28]. However, the InSAR using in the Qinghai-Tibet Plateau aiming for
small-scale landslide events are rare.

Challenges persist regarding the practical applicability of InSAR to landslide investigations [30,31].
Coherence loss and atmospheric effects are the most important factors that limit the utility of many
currently available radar satellite datasets [32]. Therefore, a lot of advanced techniques have been
proposed for landslide analysis, including Permanent Scatters (PS) [33] and Small Baseline Subsets
(SBAS) [34]. PS can detect the dominant radar targets, but loses the ability to monitor wide areas. SBAS
allows for the construction of large-scale deformation maps and the analysis of landslide formation
and development [34,35]. An additional limit of InSAR is that the deformation amount inferred from
the number of fringes are relative changes, not absolute changes relative to zero deformation [36].

In our study, we employed the SBAS method and the absolute deformation model to monitor
surface displacement in landslide area using Sentinel-1 data (2016–2017) [37], and further developed
a kinematic model to explain the formation of small-scale landslide, and then discussed the
results. The objective of our study is investigating to the performance of InSAR (SBAS) method
in monitoring small-scale landslide, and discussing the quality of absolute deformation model in signal
separation process.

2. Study Area

The study area is a 12 km by 12 km (Figure 1b) section of the eastern QTP, south of the Bayan
Har Mountains. With an average elevation of 4570 m above sea level, this area is characterized by
snow-covered peaks, developed snow and river erosion, and a Triassic sand-slate lithology. In this
area, earthquake-prone is related to the Ganzi-Yushu NW-SE faults [38]. The valley is “V” shaped
gradually shrinking towards the north-east. The watershed of Yangtze River and Yellow River is
located. Recent field investigations (Figure 1c,d) indicate that near-surface deposits are dominated by
weathered bedrock and residual slope sediments, prone to collapse and landslide. The soil contains
a large amount of organic matter and sand. Data records from the nearest meteorological station
(Figure 1a) show that this plateau continental climate experienced a mean annual air temperature of
−4.8 ◦C and an annual precipitation of 503 mm from June to September from 1971 to 2007. The snow
cover in Yushu with 5–10 cm depth is from November to April and still exists in ridges or valleys
after June [39]. Both show increasing trends. The alpine meadow is the main vegetation type, and
its coverage is close to 40%. The seasonally frozen areas have a strong freeze thaw cycle, and the
permafrost are widely distributed (over ~4600 m) as islands in the mountains and strips in the valley
area [40]. The depth of seasonal freezing is about 2.5 m [41].
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control points prepared for InSAR processing. Coherent points (P1 and P2) detected by InSAR. Zero-
reference point (PrP) and zero-reference area (PrA) around the landslide. 
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ASTER GDEM (ASTGTM2-N33E96, ASTGTM2-N33E97, ASTGTM2-N34E96 and ASTGTM2-
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(UAV; PHANTOM 4 PRO) [46] was used to acquire DEM data. The UAV images had an average 
ground resolution of 30 cm, an overlap rate of 70–80% on the heading and lateral sides, and an 
altitude of 100 m from the ground level. We created DEM images using Smart3D, a close-range 
photogrammetry software. The error threshold was 0–0.4 m in horizontal direction and 0-0.5 m in 
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Figure 1. Location, topography(b) and soil texture (d) of the landslide site (c) in study area in the
Qinghai-Tibet Plateau (a). The permafrost distribution modified from [40] GCPs are the ground control
points prepared for InSAR processing. Coherent points (P1 and P2) detected by InSAR. Zero-reference
point (PrP) and zero-reference area (PrA) around the landslide.

On 7 September 2017, a small landslide (34◦07’06" N, 96◦37’15" E, 4433 m above sea level) broke
out on lower and gentle slopes (5–10◦) in Chenduo County (Figure 1). Investigating by the unmanned
aerial vehicle and metal ruler, the landslide with a volume of about 2.4 × 104 m3 covered about
1.6 × 104 m2 where a deep pit formed a diameter of about 70 m, the head wall of landslide was more
than 8.5 m thick, the sliding length was about 397 m, the average width was about 32 m and the deposit.
Due to the continuous rainfall, the ground suddenly split, pushed a column of humus about 3 m thick
along the riverbed, and formed the landslide and debris flow. We did not discover the under-ground
ice in the landslide area. The sliding process was uploaded to the internet and received much attention
from government and people [42,43].

Strictly speaking, the landslide typology is an earthflow per The Landslide Handbook [44] and
usually associated with triggered by rainfall events. From the Google Earth images in Figure S1, there
were two collapses in the central part of the landslide area before 2010 and expanded into a fracture
network in 2016. The length of the crack increased from 43 m in 2010 to 50 m in 2016.

3. Datasets and Processing

3.1. Digital Elevation Models (DEM) Producing

ASTER GDEM (ASTGTM2-N33E96, ASTGTM2-N33E97, ASTGTM2-N34E96 and
ASTGTM2-N34E97) with a resolution of 30 m, was released by the United States Geological
Survey (USGS) [45]. As a digital expression of earth surface, DEM was used to estimate and remove
the topographic phase in InSAR processing.

On 10 September 2017, after the landslide had occurred, a quad-rotor unmanned aerial vehicle
(UAV; PHANTOM 4 PRO) [46] was used to acquire DEM data. The UAV images had an average ground
resolution of 30 cm, an overlap rate of 70–80% on the heading and lateral sides, and an altitude of
100 m from the ground level. We created DEM images using Smart3D, a close-range photogrammetry
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software. The error threshold was 0–0.4 m in horizontal direction and 0–0.5 m in height direction based
on photo-control-point. The UAV data was used to investigate the landslide site.

3.2. Short Baseline Interferometry

A total of 27 scenes of ascending Sentinel-1A SLC frames were acquired from 16 January 2016
to 19 September 2017. The frames were acquired with the same look angle and path. The detailed
parameters for our SAR data are listed in Table 1.

Table 1. The acquisition parameters of Synthetic Aperture Radar (SAR) data.

SAR Sensor Sentinel-1A IW SLC

Orbit direction Ascending
Microwave band (polarization) C-band (VV)

Number of frames 27
Resolution 5 m × 20 m

Repeat cycle 12 days
Look angle 42◦

Temporal coverage January 2016–September 2017

Note: Data were downloaded from European Space Agency [37].

By measuring the phase difference between two SAR frames taken at different times, we used
InSAR to construct a series of interferograms, which showed the ground surface displacement in the
line-of-sight (LOS) direction.

Because of the complex topography, we used critical time baselines of 100 days, respectively,
to generate each graph. In the final graph (Figure 2), the spatial baselines were 6−145 m and the time
baselines were 12–84 days. These baselines make the topographic phase suppression easier, and reduce
the effects of spatial decorrelation [26]. In the end, we produced 89 interference pairs.
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We then built interferograms as a way to illustrate the cumulative deformation of the region [34].
In computing a generic i-interferogram, with a pixel of azimuth and range coordinates (x, r), from
the SAR acquisitions at times t1 and t2, the topographic phase component removal is given by the
following equations:

δϕi = ϕ(t2, x, r) −ϕ(t1, x, r)
≈

4π
λ [d(t2, x, r) − d(t1, x, r)] + ∆ϕatm

i (t1, t2, x, r) + ∆ϕtopo
i (x, r)

(1)

where λ is the signal central wavelength of Sentinel-1A, d(t1, x, r) and d (t2, x, r) are the line-of-sight
(LOS) cumulative deformation at times t1 and t2, ∆ϕatm

i is the atmospheric phase caused by atmospheric
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disturbance, and ∆ϕtopo
i is the topographic phase. Assuming that d(t0, x, r) = 0 and that the SBAS

deformation is relative:

∆ϕtopo
i (x, r) = −

4π
λ

B⊥i∆z(x, r)
rsinθ

(2)

This term accounts for possible phase artifacts caused by an error in the knowledge of the scene
topography; note that the impact of these artifacts depends on the orbit separation component B⊥i
(usually referred to as perpendicular baseline), ∆z(x, r), the target of elevation on the land surface
(DEM), and on the incidence angle θ of the SAR.

Before the critical step of phase unwrapping, we applied three important corrections to improve the
data signal-to-noise ratio. (1) We remove the phase delay based on an Atmospheric Phase Screen (APS)
using the global atmospheric reanalysis model [47]. At an elevation of 4500 m in a dry environment,
turbulent APS is moderate at lower elevations [48]. (2) We selected 69 ground control points (GCPs)
with coherence greater than 0.8 on the bedrock of the mountaintop and precise satellite orbits [49] to
remove the residual orbital errors and the effects of clock drift [50]. (3) We also corrected the effect
of digital elevation model (DEM) errors [51]. However, the normal baseline value is less than 150 m,
strongly limiting the impact of DEM errors [52]. When the baselines can be quite large, e.g., ALOS
PALSAR, an accurate DEM must be used to remove the topographic phase [53].

In order to unwrap the phase, we implement a minimum workflow algorithm [54] to reduce
the noise on the wrapped phase for further processing. The application of the singular value
decomposition method allows us to separate the large baselines to improve the temporal sampling
rate [34]. Then, we removed 25 interferometric pairs with low coherence, poor phase unwrapping, and
large atmospheric disturbances from the dataset and used 64 high-quality pairs (Figure 2) for further
inversion. Considering the complex terrain conditions and the climate characteristics related to the
landslide, the coherence threshold for each pixel was set to 0.2 [26].

Finally, the unwrapped phase (ϕdisp) was then translated into the LOS displacement (d) and the
vertical displacement (dv) using the following equations [53,55]:

ϕdisp =
4π
λ

d (3)

dv =
ϕdisp

cosθ
(4)

and subsequently the displacement geocoded into a map projection as pixels and points. A pixel or
point represented a spatial area of about 20 m × 20 m. We clipped a 12 km × 12 km subset of that area
(Figure 1b) for our landslide research.

3.3. Calculation of Absolute Surface Displacements

InSAR is limited to only measuring the relative surface deformation due to the 2π ambiguity
problem, the satellite orbit errors, and the GCPs. We also wanted to quantify the absolute displacement
differences (ADD) between the landslide and the surrounding areas. While in case of calculation of
absolute surface displacement an observer needed to take into interferogram zero-reference surface or
known velocity [38]. We assumed that adjacent areas with similar local conditions (LCs) (i.e., similar
altitude, geology, soil, climate, and freeze thaw cycles) would experience similar surface deformation
processes during the study period. In order to analyze the difference, we separated the SAR signal by
considering the freeze thaw cycles and local conditions. Then, we selected a reference point (PrP) and
reference area (PrA) as a zero-reference (Figure 1c), both of which were adjacent to the landslide, to
define the surface movement of landslide. The P1 and P2 as representative points were the indicators
of landslide movements.

The PrP with the small annual rates represented the freeze thaw cycles. In frozen ground regions,
the seasonal ground displacement of active layer caused by the freezing and thawing process [56].
The displacement contained a secular part and a seasonal part, assuming that the seasonal displacement
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was proportional to the accumulated degree days of thaw or freezing [45,51]. A sinusoidal function
with a first-order and linear was used here to map variations of the amplitude of the seasonal signal
and the time of the thaw-subsidence and freezing-rise [48,57,58]. The function was as follows:

D1(t) = C1 + Kt + Asin (
2π
T

t−ϕ) (5)

where D is the displacement (mm) monitoring by InSAR, A is the amplitude (mm), T is the period
of freezing or melting, ϕ is the initial phase (rad) and t was the number of days since January 2016.
Kt was the secular displacement and C1 is constant. Considering the PrP with the short period (less
than 2 years) and small annual rates (less than 5 mm/yr), we set C1 and K equal to 0. Then the solution
of the equation can be written as follows:

D1(t) = Asin (
2π
T

t−ϕ) (6)

The PrA area represented the surface deformation process affected by LCs. This area was about
100 m from the landslide, had the same elevation as the landslide, and a lateral extent of 100 m × 100 m.
Considering the number of outliers present, we defined the average deformation curve D2(t) using a
threshold of one standard deviation from the most extreme value.

Finally, the absolute displacement differences (ADD) can be calculated.

ADD1i(t) = P1(t) −Di(t) i = 1, 2 (7)

ADD2i(t) = P2(t) −Di(t) i = 1, 2 (8)

where P1(t) is the displacement of P1 in day t, ADD1i(t) is the deformation of PrP-P1 (i = 1) or PrA-P1
(i = 2). P2(t) is the displacement of P1 in day t, ADD2i(t) is the deformation of PrP-P2 (i = 1) or PrA-P2
(i = 2).

3.4. Remote Sensing Images

The Google Earth images were acquired by the SPOT satellite with a spatial resolution generally
less than 5 m [59]. The Gaofen-2 image is a provided by Gansu Data and Application Center for
High-resolution Earth Observation System [60]. Considering cloud-free, snow cover and obtainable
high-resolution images, we selected Google Earth images in December 2010 and October 2013, and a
Gaofen-2 in December 2016. These available images facilitated our visual identification of the study
area and the landslide.

3.5. Local Precipitation and Soil Sampling

Our daily precipitation datasets were pulled from Version 3.0 of “Daily Surface Climate Variables
of China” [61], which were used to analyze the inducing factors of landslide.

Meanwhile, we used 100 mL ring samplers to collect soil samples for the volume content and dry
density measurements (Table S2). The sampling sites were located on the top, right, and bottom sides
of landslide, and the pits had a maximum depth of 1.2 m. Soil data were used to describe soil moisture
and texture during landslide occurrence.

4. Results

4.1. InSAR Landslides Analysis

The InSAR measurements (Figure 3a) showed that our study area mainly shows settlement in
2016–2017. Surface velocities ranged from −112 to 63 mm/yr in the vertical direction (VD), with a mean
of −11.8 mm/yr and a standard deviation of 12.0 mm/yr. The subsidence signals accounted for 95.0%
of the recorded movement. About 50% of the study area remained stable, with less than 1 cm/yr of
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motion, while 1.1% of our study area experienced rapid surface velocities of more than 50 mm/yr.
The white pixels represent a lack of data due to temporal decorrelation.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 17 
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Figure 3. The vertical deformation velocity (VDV, mm/year) of the region based on the (a) pixels and
the (b) point. The arrows indicate the direction of landslide flow in the DEM (30 cm × 30 cm) detected
by the UAV. 1O, 2O and 3O are the fast creep (>50 mm/yr) regions in Google Earth.

Creep is an important characteristic in the early stage of a landslide; we selected the unstable
regions with fast creep (>50 mm/yr) for further analysis (Figure 3a, red-dotted line). Based on the
Google Earth images, we found that the subsidence mainly occurred in the middle of the mountain, and
that uplift occurred at the gentle mountaintop. In Figure 3b, large creep (20–50 mm/yr) deformation
occurred in the upper part of the landslide area along the slope direction, smaller amounts of creep
(10–30 mm/yr) occurred on the sides, and positive stable deformation occurred in the middle and lower
parts of the sliding body.

4.2. Landslide Characteristics

From our analysis, we can see that the slope displacement is abnormal. In Figure 4a, we selected a
section of the landscape along the slope, from the valley to the mountaintop for additional study. As the
elevation decreased, the ground became increasingly unstable, and the landslide flow rate increased
dramatically to 30 mm/yr at elevations of 4550–4570 m. The deformation and the slope change are
strongly correlated above an elevation of 4550 m (Figure 4b); more than 50 mm/yr displacement
occurred at 4530–4550 m, where the landslide initiated. It is possible that snowmelt water and high
levels of precipitation and infiltration played a key role in the downward migration of the soil mass.
Then the surface gradually stabilized in the valley.
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Figure 4. Deformation (a) acquired from InSAR in (b) space and (c) time. The purple rectangle
represents the section area (about 1300 m long, 40 m wide) from the valley to the mountaintop; the red
line represents the landslide. Point 2 and 3 were the same as P1 and P2 in Figure 1c, respectively.

In Figure 4c, five representative points were selected to show the cumulative displacements at
different times. In the landslide area, curves 2 and 3 suddenly shifted in opposite directions between
May and July 2016, and then followed similar trajectories afterwards. Curve 4 decreased steadily in a
linear pattern. Curve 5, which tracked the bedrock, stayed relatively stable throughout the landslide,
while the displacement of curve 1 increased and then decreased, due to soil accumulation and rock
weathering, respectively.

4.3. Quantification of Absolute Surface Displacements

Figure 5 showed the relative displacement time series of the freeze thaw cycles and local conditions
in the landslide area. The PrP curve (blue line) represents the sinusoidal fits to the surface movement
during an freeze thaw cycle for a frozen period (y = 11*SIN(π*(x − 1)/5)) and a thaw period (y =

10*SIN(π*x/6)) with high confidence in the correlation coefficient (R = 0.897) and absolute error index
(0.6 mm). The PrA curve represents the surface deformation process affected by LCs. This area, which
contains 16 points, is about 100 m from the landslide, has the same elevation as the landslide, and a
lateral extent of 100 m × 100 m. Using a threshold of one standard deviation (2.2 mm/year) from the
most extreme value, we chose 12 points to define the average deformation curve (grey line).
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Figure 5. Displacement time series of the reference point (PrP, blue line) and the reference area (PrA,
grey line) near the landslide (Figure 1c). The superimposed dotted curve (orange) and lines (red and
green) represent predictions of the sinusoidal and linear models that best match the displacement
values, respectively. Each point denotes a 20 m × 20 m pixel.

Based on these data, we mapped the surface absolute displacement differences (Figure 6).
In Section 4.2, we discussed the opposing patterns at the top and the toe of the landslide; we selected
two representative points (P1 and P2, Figure 1c) to study the evolution of the landslide since 2016.
P1 and P2 also show an inverse pattern. After accounting for PrP, the PrP-P1 and PrP-P2 curves
are relatively gentle, but beyond this, the trends and displacement lines follow similar trajectories.
After removing PrA, the PrA-P1 and PrA-P2 curves became smooth lines with ~5 mm of ground
movement until May of 2017. These data indicate that (1) other than three instances of noticeable
creeps—May 2016, July 2016, and May 2017—the area maintained a relatively steady state and (2)
Pra-P1 and Pra-P2 show that LCs other than the freeze-thaw cycle may be responsible for as much as
13 mm of displacement.
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Figure 6. The absolute displacement differences between the landslide and the surrounding area with
respect to the reference locations (PrP and PrA). The representative points P1 and P2 at different times
for PrP or PrA are plotted as curves: PrP-P1 or PrA-P1 and PrP-P2 or PrA-P2, respectively.

4.4. Interpreted Kinematics-based Failure Mechanism through the Satellite InSAR Data

Based on the SAR displacements and the stages of failure, a concept of kinematics-based failure
mechanism for our small-scale landslide was mapped. We classified the landslide process into three
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dynamic stages: primary creep, secondary creep, and tertiary creep, where creep represents the change
in displacement over time.

The first stage consisted of primary creep along an unstable surface. The ground exhibited a
motion state along the slope by gravity. In this study area, the unstable surface was defined by the
fast creep areas (>50 mm/year); we discovered evidence of additional creep and older landslides
near the fast creep areas along the road and the river (Figure 3a 1O, 3O). The fact that the toe has been
excavated, collapsed, and scoured may contribute to the slope instability. These areas represent
geohazards because these surfaces may also be critically unstable. Usually, rapid primary creep creates
radial cracks or transient faulting (Figure 1d, Figure S1) in the unstable areas characterized by rapidly
decreasing strain rates. Using our InSAR data (Figure 4b,c), we also observed noticeable deformation
in the landslide area before the landslide occurred. With these types of these observations, it should be
possible to implement early warning systems prior to slope failure.

The period of secondary creep was characterized by steady-state motion with a constant strain rate
and limited equilibrium. The deformation of the surface was heterogeneous when the extrusion force
or the friction coefficient becomes larger gradually. From May to July of 2016, the surface displacements
showed that the top of the slope was sinking while the foot of the slope was rising (see Sections 4.3
and 4.4). As shown by the P1 and P2 SAR displacements, the ground was in a steady state (PrA-P1,
PrA-P2), excluding the effect of local conditions and the freeze thaw cycle, to which we attribute 10–11
mm of ground motion. This stage was a progressive failure process with stress relaxation.

After a period of relative stability, the tertiary creep involved an increasing creep rate that
eventually led to rupturing. Once triggering events e.g., the amount of water within the landslide,
possibly due to rainfall conditions, reached the threshold, the landslide either accelerates until collapse
occurs 1O in Figure 7, or accelerates, and then reaches a new equilibrium 2O in Figure 7.
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5. Discussion

5.1. Landslide Causal Factors and Deformation Mechanism

The initiation of landslides is the result of multiple factors, including intrinsic factors that determine
soil structure and slope stability (like topography, geology and soil regolith) and extrinsic factors that
can change soil shear strength and lead to slope failure ultimately like rainfall [44,62]. The rainfall
variables (intensity-duration, cumulated event rainfall and rainfall duration) were common to study
the relationship between rainfall and landslide occurrences. In the study area, the cumulative rainfall
exceeded 120 mm during 1 August 2017 and the time of the landslide event, about 33 mm more
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than the same period in 2016 (Figure S2). This value was greater than the average rainfall (105 mm,
2012–2017) in the same period in the area. Before the landslide event, our study area also experienced
prolonged rainfall for 5 days with a maximum daily rainfall about 19 mm and a mean cumulative
rainfall of 38 mm (Figure S2). In this condition, it could alter the pore-water pressures and decrease
soil strength [63]. Additionally, the u-shaped valley with large gradient (about 22◦) (Figure 1) was
favorable for the confluence of rainfall and snowmelt to flow into a landslide. The landslide material
consisted of fine-grained soil and weathered rock, which promoted the permeation of water into the
surface and the groundwater [64]. Meanwhile, the fractures (Figure S1) offered additional pathways
for water to enter the soil. In short, the increased cumulative rainfall and persistent rainfall event
exceeded the warning thresholds, then the soil with the high-water content over 0.46 (Table S2) was lost
all shear strength and suddenly liquefied, destroying large areas and flowing for several kilometers.

Slow-moving landslides responded typically to precipitation by increasing pore-water pressure
that leads to the long term uplift [63,65]. The total deformation and the rainfall over 24 days can
be found a remarkable consistency between June and October in Figure 8. Many other studies also
reached the same conclusion [66,67], but there was something different that it was large displacement
in time of poor rainfall. Maybe it was affected by strong freeze thaw cycle in frozen ground regions,
which proved by the relationship between the deformation and temperature.
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Figure 8. The total temperature, rainfall and deformation of landslide (P1, Figure 1c) over 24 days.
The total temperature and rainfall are the average data of the Yushu and Qingshuihe meteorological
stations during the same periods.

5.2. Quantifying Landslide Activity and InSAR Signal Separation

InSAR showed the operational potential to detect small-scale landslides in some dynamic process
of landslide in time and space. In Figures 3 and 4, it was evident that representative moving points in
landslides had more than one break in time series, which may relate to temperature, snowmelt and
rainfall. Our study area was in the Qinghai-Tibetan Plateau with intense and frequent freeze–thaw
actions leading to the creep or frost shifting. During April to May, the thaw subsidence and freezing
uplift changed one cycle every day [68], maybe making the entire slope unstable [69,70]. Numerous
studies in Arctic and mountain area suggested that freeze thaw cycle and snow melt induced landslide
occurrence in the following spring–summer [71–74]. After June, the rapid increase of precipitation and
thaw depth led to the occurrence of landslides, becoming the main controlling factor of deformation
(Figure 8). The events were widespread in subarctic and Arctic areas [75,76], Siberia [77] and
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Qinghai-Tibet [78] and attributable to anomalously high air temperature and high precipitation during
the thawing season in these years.

SAR interference techniques, which depended on a phase change to demonstrate relative
deformation information, were widely used to monitor landslide. However, the slope stability
depended on the intrinsic factors and the slope unstable depended on the extrinsic factors, like
weathering, tectonic events, or human impact on the slope. While the slope finally failed determination
by triggering factors such as rainfall, snowmelt or earthquakes [44,62]. Therefore, the relative
deformation cannot veritably reflect the movement process in different environments. We proposed a
new method to quantify absolute deformation to describe the actual movement process of landslide.
This method relied on actual physical processes and laws, e.g., freeze thaw cycle and others. Different
factors were separated from SAR signals to reveal their influence on landslide. Based on the new
model, when freeze thaw cycle and local conditions were separated, more details of landslide changes
were successfully detected, such as three instances of noticeable creeps—May 2016, July 2016, and
May 2017. However, compared with the permafrost regions summarized by Zhang [79], the seasonal
amplitude of freeze thaw cycle in our study area was relatively small. Therefore, further measurements
or observations were required to verify the results. The spatial variability in Figure 6 and Table S1 also
suggest that the dynamics of the landslide were not controlled by any single factor, but by a combination
of many factors, possibly including the soil structure and/or the soil moisture concentration. While
InSAR cannot provide any soil depth information, which had to be supplemented by geophysical data
or numerical models [80]. In fact, a combination of landslide susceptibility maps was advisable [81].

Three instances of noticeable creeps (e.g., May 2016, July 2016, and May 2017 in Figures 4c and 6)
maybe related to particular meteorological trends, but it was obviously the actual movements of
landslide in Figure 6. Because when we quantified the absolute deformation, the relative atmospheric
effects can also be removed, but the creeps were remaining. While the deformation trend in June 2017
maybe the atmospheric effects, which was removed.

5.3. InSAR Technique Using in Frozen Ground

Based on InSAR monitoring data, we applied a sinusoidal model to fit the freeze thaw seasonal
displacements and then quantified the absolute deformation of the landslide area. Some landslide
details had been successfully detected by separated the signals. We can call it the process of the absolute
deformation signal separation. This method framework for studying the landslide process was easy
to follow and with strong application, give more practical guidance for research on permafrost or
seasonally frozen ground.

In frozen ground regions, the surface displacements were the result of multiple factors.
As Strozzi [82] stated in research of low-land permafrost: we had to bear in mind that the maps and
graphs measured by SAR not only represent surface displacement but also changes in ionospheric,
soil moisture, snow-cover and vegetation conditions. Some researches, as shown in Table 2, tried to
separate the factors to explain the relationship between the factors and deformation to further reveal
the mechanism and process in permafrost region. Some laws and processes can be summarized in
Figure 9 to improve the general applicability of our method. Thus, we tried to improve the deformation
model (Equation (5)) in frozen ground regions as:

D(t) = Dseason(t) + K(t) + C (9)
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Table 2. Parameters of previous studies in global frozen ground region using SAR satellite.

Location Dataset Environment
Condition

Reference &
Validation Time Period Amplitude of

Deformation
Factors

Discussion Authors

Arctic and
Antarctic Sentinel-1 Low-land

permafrost
In-situ,

TerraSAR-X 201711-201812 3–10 cm Deformation
validation

Strozzi et al.
2018 [82]

Eastern
Canada RadarSat-2 Continuous

permafrost Bedrock 201105-201109 0–6.5 cm Soil moisture Short et al.
2013 [84]

Southwestern
Alaska ALOS Discontinuous

permafrost

Absolute
phase

calculated by
ALT

200712-201002 0–4 cm Wildfire Michaelides et al.
2019 [83]

Northwestern
Qinghai Tibet Envisat Discontinuous

permafrost Bedrock 2003–2011 0–1.2 cm Soil moisture Daout et al.
2017 [48]

Central
Qinghai-Tibet

Plateau
Sentinel-1 Permafrost

region ALT 201711-201812 0.2–3 cm Active layer,
land covers

Zhang et al.
2019 [79]

Eastern
Qinghai-Tibet

Plateau
Sentinel-1

Permafrost,
seasonally

frozen ground

Bedrock,
high-coherence 201601-201709 0–11 cm Freeze thaw

cycle, rainfall this study area

Qinghai-Tibet
highway(G214) TerraSAR-X

Permafrost,
seasonally

frozen ground
Unkown 201508-201508 0–10 cm Freeze thaw

cycle
Dai et al. 2018

[85]
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Figure 9. Deformation decomposed into seasonal (e.g., freeze thaw period) and secular trend (e.g.,
climate change) in permafrost regions. Modified from Michaelides et al. 2019 [83]. The period was
controlled by the temperature, while the amplitude was determined by the soil moisture.

In order to understand this formula, we mapped a conceptual diagram (Figure 9) of the deformation
process in frozen ground regions. The surface displacement D(t) decomposed into seasonal and
secular trend. Dseason(t) are the deformation during the freeze thaw period, which can be described
by sinusoidal function [48,79], Stefan [83] or others. The period is the accumulated degree days of
thawing/freezing related to the temperature. While A and B are deformation associated with the
seasonal thawing/freezing of the active layer (ALT), mainly affected by the soil moisture [48,84,85].
K(t) was the secular trend, showing a linear [48,83] or non-linear relationship [83]. This trend is related
to climate warming [48], landcover [79], ice losing, wildfire [83], etc.

In the process of measurement, error description was essential. Only a thorough validation with
in-situ data would permit full quantitative assessment of the displacement maps [82]. Bedrock was a
commonly used reference, followed by LiDAR, GPS point, artificial reflectors and intercompare results
from different sensors. However, no spatial correspondence often be observed between InSAR and the
reference measurements due to soil moisture [86] and others, time consistency between measurement
and satellite transit and ground resolution. While quantification of absolute surface displacements was
a good method for data rationality verification [79,83].
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6. Conclusions

InSAR (SBAS) method and the absolute deformation model are suitable for monitoring the
small-scale landslides in the frozen ground area. We proposed the methodical steps for the calculation
of absolute displacement of the landslide and employed the implementation of data into a diagram
explaining “Kinematics-based failure mechanisms for small-scale landslide are in the creeping and
sliding stages, which eventually lead to the failure stage”. Finally, we highlight an advanced absolute
deformation model suitable for frozen ground regions to describe the seasonal and secular trend
in frozen ground regions. This method framework of the InSAR signal separation is easy to follow
and with strong application, give more practical guidance for research on permafrost or seasonally
frozen ground. Although the absolute deformation model has been used to explain some factors, e.g.
Freeze-thaw cycle, it must be supplemented by depth information from geophysical data or numerical
models in site to further verification.

Previous work has shown that multi-source remote sensing methods can detect fast-moving
landslide [18,19], capture clear morphological evidence [87] and insight the kinematics and their
potential controls from hourly to decadal timescales [31]. All of these techniques have their
advantages and can be combined with Geography information system (GIS) technology to determine
the susceptibility of an area to landslide hazards. Further efforts should be made to model landslides
using a combination of physical models, detailed field measurements, and remote techniques.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/18/2126/s1,
Figure S1: Images of landslide area. Images of the landslide area are shown from (a) December 2010 (Google
Earth), (b) October 2013 (Google Earth), (c) December 2016 (GF-2), and (d) September 2017 (UAV). Red curves
represent the boundary of landslide. Table S1: Soil properties based on field investigation in the slide area on Sept.
10, 2017.
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