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Abstract: Land surface phenology is a response of vegetation to local climate and to climate change,
leading to crucial impacts on plant growth rhythm and productivity. Differences in vegetation growth
activities in earlier and latter parts of the growing season are tightly correlated to phenological changes
and the temporal distribution of plant productivity. However, its spatiotemporal pattern and climatic
constraints are poorly understood. For Northeast China (NEC), long-term remotely-sensed vegetation
greenness records (NDVI) were employed to quantify seasonally asymmetrical characteristics of
vegetation growth in detail, which consists of asymmetry in growing rate (AsyR), mean vegetation
greenness (AsyV), and growing period length (AsyL) during vegetation green up and senescence stages
(simply termed as spring and autumn). Furthermore, the impact of temperature and precipitation
on these indices were examined using relative importance analysis. The results indicate these
asymmetric metrics present a pronounced interannual variability profile with a potential cycle of ten
years (significant in AsyV and AsyR) for the entire NEC. AsyV is changing synchronously with AsyL
but asynchronously with AsyR. The geographical distribution of asymmetric indices shows a similar
pattern to identified vegetation cover types, especially in distinguishing crops from natural vegetation.
Spatial-averaged asymmetric indices indicate spring production is greater than autumn production
(reflected by negative AsyV) across most vegetation types in NEC, yet autumn is longer than spring
in all vegetation types, which is identified by positive AsyL. Negative AsyR is mainly found in forests
implying there is rapid green up and slow senescence in trees. From a temporal perspective, AsyV
decreases with time in forested regions but increases in cropland and grassland, which is similar to the
pattern for AsyL. AsyR primarily exhibits a positive trend in forest and a negative trend in cropland
and grassland. A relative importance analysis indicates that asymmetries of temperature (AsyTemp)
and precipitation (AsyPrcp) play an equal role in significantly affecting vegetation asymmetries in
greenness and growth rate but are insignificant to growing season length. AsyTemp mainly presents
an obvious contribution to changes in AsyR and AsyV over cropland and grassland. AsyPrcp shows a
more widespread controlling effect on AsyR and AsyV over the NEC, except in eastern broad-leaved
forest. For the entire NEC, asymmetries of temperature and precipitation are negatively correlated
with AsyR but are positively correlated with AsyV and AsyL. This finding may imply that a warmer
(positive AsyTemp) autumn tends to improve the length and intensity of vegetation activity. Thus, the
long-term change in vegetation growth asymmetries may provide insights for the altering functions
of ecosystems and provide information to more accurately build plant growth models in the context
of global climate change. Additionally, when combined with other information, asymmetric indices
can serve as a supporting tool in classification of vegetation types.
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1. Introduction

In the northern mid-high latitudes, warming-related shifts in vegetation phenology, particularly
to an earlier spring and delayed autumn, and their influence on ecosystem productivity have been
extensively reported [1–5]. Currently, remote sensing-based phenological studies focus primarily on
changes in key endpoints of phenological events (e.g., dates for spring onset and autumn senescence),
through fitting growth curves and extracting phenological parameters [6–10]. Seasonal growth curves
will correspondingly change according to phenological shifts. However, our understanding of the
detailed variation between vegetation growth activities during green up spring (increasing productivity)
and senescence in autumn (decreasing productivity) remains limited over time and space. During this
study, we developed a suite of simple asymmetrical indices capable of representing growth distinction
between vegetation green onset and offset, as well as estimate their response to climatic change at
regional scale in a temperate zone.

Vegetation phenology, one of the most important land surface properties, is used as an essential
indicator for depicting global changes [11,12]. It is a key parameter that describe vegetation’s growth
patterns and is required for modeling land surface processes (e.g., carbon and energy cycles) [11,13].
Currently, remote sensing techniques, from satellites to webcams, provide a continuous way to monitor
vegetation phenological cycles at a large spatial scale [6,14]. A considerable number of studies using
long-term vegetation greenness indices have found that the earth is becoming more green, especially
in the Northern Hemisphere [15]. It is well documented that shifts in vegetation phenological metrics
play a key role in regulating greening trends through prolonging the growing season. This extended
growing season is directly attributed to both advanced spring onset and postponed autumn ending,
further compounding impacts resulting from warming air temperature [16]. Consequentially, these
trends affect carbon, water, and energy fluxes between the terrestrial biosphere and the atmosphere [11].
Correlations between phenological metrics and vegetation indices (e.g., greenness, productivity) may
overlook impacts from the pattern in the seasonal growth of vegetation, because vegetation greenness
phenology metrics are taken at specific points in time and are zero-dimensional data. Furthermore,
plant growth processes are affected by a variety of environmental factors that usually lead to changes in
these patterns [17]. Thus, distinctive growth patterns for vegetation may result in different allocations
of greenness or carbon across the growing season. Green up and senescence rates, peak growth value,
and accumulated production are useful information to characterize the seasonal cycle of vegetation.
Leonardo Calle et al. proposed a segmentation algorithm for characterizing asymmetries during green
up and senescence, investigating its applicability in seasonal XCO2 data [18]. Long-term trends of
global temperature also show a pronounced pattern of seasonal asymmetry [19]. The timing and
length of vegetation growth events can influence ecosystem productivity and result in further effects
on land surface processes. For instance, seasonal distributions of vegetation productivity can affect
food availability for animals, thereby, altering animal migration and breeding patterns. As a result,
it is crucial to examine asymmetrical features of vegetation phenology to comprehensively depict
vegetation changes and their feedbacks to climate changes.

With the development of methods for extracting phenological metrics based on remote sensing
time series data, information can be obtained to characterize plant growth patterns in detail. There are
a variety of methods to extract phenology dates from vegetation index time series data. Generally,
these methods can be divided into two catalogs: the threshold method and the derivative method [1].
The threshold method simply determines the SOS and EOS (start and end of growing season) using
a fixed value (e.g., NDVI) or a fixed percentage of the annual maximum value. The second method
captures not only the SOS and EOS when the derivative of the smoothed growth curve is at the local
maxima or minima, but also retrieves the time when rats are increasing (decreasing) rate (tangent
slope) during green up (senescence) stages [10,20,21]. Thus, the skewness of plant growth patterns can
be depicted using the asymmetric features of growing rates. Differences in growing season length and
cumulative greenness (or production) during vegetation green up and senescence phases may supply
more information to portray phenological asymmetry. These variables can be seen as comprehensive
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phenological parameters, and their changes can differentially alter plant functions, affecting carbon,
water, and energy fluxes between the terrestrial biosphere and the atmosphere.

With extensive studies based on field data, satellite images, and ecosystem process models, it
has become evident that the response of plant phenology to climate variability and change is both
location- and species-specific [22–25]. Thus, it would be more meaningful to focus the investigation on
vegetation growth changes at the regional scale than at the global scale. Northeast China (hereafter
NEC), a typical temperate zone in the mid-latitudes, has a variety of vegetation types, including
forests (evergreen needleleaf forest, deciduous needleleaf forest, deciduous broadleaf forest, and
mixed forests), croplands, and grasslands [26]. It has proven to be a suitable area for studying shifts
in vegetation phenology and concomitant climatic feedbacks [26–28]. Furthermore, the availability
of numerous satellite datasets, such as GIMMS NDVI3g, Modis NDVI and Spot VGT, enable us to
explore vegetation phenology changes and climatic impacts across a long time period for Northeast
China [29–31].

In this study, long-term vegetation greenness data from GIMMS NDVI3g was adopted to derive
key vegetation phenological metrics (start, end, peak, growth rate, and duration of the growing season),
to generate asymmetrical growth indices across the NEC. Next, the strength and spatial pattern of
asymmetries in regional location, plant type and temporal were investigated. Thereafter, detailed
patterns of vegetation asymmetry responses to changes in climatic forces (temperature and precipitation)
were examined using correlation analysis. Finally, the utility of these detailed asymmetrical indices
depicting vegetation growth cycles and their climatic implications were discussed.

2. Study Area, Data and Methods

2.1. Study Area

This study was carried out in Northeast China (NEC), comprised of Heilongjiang, Jilin, Liaoning
and parts of Inner Mongolia provinces (Figure 1). This region is 115 × 104 km2 in area, accounting
for 15% of the national territorial area of China. Latitude and longitude for the NEC range from
115◦E~135◦E and 38◦~56◦N, respectively. Its terrain is primarily composed of three parts: mountainous
areas, hills, and plains (Figure 1a). The mountainous areas are mainly distributed across the northern
and eastern parts. The central and northeast sections are dominated by the Songnen Plain and the
Sanjiang Plain, respectively. The elevation of the NEC ranges from 0 to 2667 m, with lower elevations
found in the northeast, south, and west, and higher elevations in the north, east, and southeast
(Figure 1a). Much of the region belongs to a temperate zone characterized by a continental monsoon
with four distinct seasons (cold in the winter and warm in the summer). Annual precipitation decreases
from east to west, varying from 400 to 800 mm; a similar trend exists for relative humidity. NEC
has a high proportion of vegetation cover, including temperate forests, grasslands and agriculture
(Figure 1b). The coniferous forest is distributed in the northern mountain area (Daxing’anling), while
broad-leaved forests are located in the eastern and southern parts. The central and eastern plains are
covered by croplands.



Remote Sens. 2019, 11, 2107 4 of 21
Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 20 
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Figure 1. Topographic map (a) and vegetation types (b) in Northeast China.

2.2. NDVI and Meteorological Dataset

Long-term satellite data of vegetation greenness using NDVI, a proxy for potential photosynthesis
closely related to plant productivity, were used to estimate the sign and magnitude of asymmetric
patterns of growth during the growing season. The NDVI dataset used in this study (NDVI3g
V1) was produced by the GIMMS group using a series of NOAA-AVHRR satellite imagery
(https://ecocast.arc.nasa.gov/data/pub/gimms/) [29,30]. It covers the period 1982–2015 with a temporal
resolution of 15 days at 8 km spatial resolution. This NDVI3g product has been used extensively since
being published and is the most consistent long-term satellite vegetation dataset currently available [30].
In this version of NDVI, effects of orbital drifts, inter-sensor calibration and aerosol impacts from
volcanic eruption have been corrected. The region of Northeastern China was extracted from each
image in the raster data stack. Grid cells with NDVI values less than 0.1 were masked out as bare land,
water, or urban areas.

It has been well documented that climate change plays a key role in affecting long-term changes
and variability in vegetation [20,32]. In this study, to quantify climatic effects on the asymmetries
in vegetation seasonal cycle, a suite of spatially gridded temperature and precipitation data were
employed. These datasets were obtained from Wang, et al. [33] (http://www.csdata.org/en/p/80/) and
cover the study area spanning the time period of 1982 to 2015. Temperature and precipitation datasets
with a grid resolution of 1 km were produced from observed surface data obtained from the National
Meteorological Information Center (NMIC) of China Meteorological Administration. Wang, et al.
then calculated eight-day average and total values for temperature and precipitation, respectively,
to match the temporal frequency of MODIS data. The ANUSPLIN software was used to interpolate
observed meteorological data to a grid with high resolution (1-km), and the results were validated
with temperature and precipitation records from AsiaFlux stations (http://asiaflux.net). In this study,
the spatial resolution of temperature and precipitation data was resampled into an 8 km grid using the
nearest neighbor method in ArcGIS 10.3. Using this data, temperature and precipitation asymmetry
were calculated in the same manner as the vegetation asymmetric indices.

2.3. Extracting Phenological Metrics

The Double Logistic Function (D-L) curve method was used to reconstruct the NDVI time series
data in Northeast China (NEC) from 1982 to 2015, and the vegetation phenological parameters were
extracted using the curvature method [20]. These parameters included the start of growing season
(SOS), the end of growing season (EOS), maximum growth activity date (PEAK position), length of
growing season (LOS), green up rate (RSP) and senescence rate (RAU) (Figure 2). RSP and RAU are
crucial phenological metrics for depicting growth rate, which have not received adequate attention
in previous studies of plant phenology. Spatiotemporal patterns of RSP and RAU, as well as their
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implications for vegetation activity during growth transition periods remain poorly understood. The
growth curve fitting and phenological parameter extraction formulas are as follows:

NDVI(t) = (mNDVI−wNDVI)(
1

1 + e−mS(t−S)
+

1

1 + e−mA(t−A)
−1) + wNDVI (1)

where NDVI(t) represents the NDVI value at the tth day of year (DOY), wNDVI and mNDVI are the
NDVI in winter and the maximum NDVI in peak position during plant growth process, respectively. S
and A stand for the inflection points on the curve rising and falling process, and mS and mA are the
rate of curve increasing or decreasing at the inflection point (RSP and RAU). The NDVI value in winter,
termed as wNDVI, was determined using the following equation:

wNDVI =
√

max(NDVI10) ×max(NDVI11) (2)

where NDVI10 and NDVI11 represent the NDVI values in October and November, respectively. Except
for wNDVI, parameters were calculated using the iterative nonlinear least squares method. The
curvature was obtained using the NDVI fitting curve, and the curvature formula was derived from
this. When the derivative is zero, the curve is the greatest. This point was defined as a phenological
transition period (SOS and EOS) during vegetation growth [20]. The R package ‘greenbrown’ was
used to obtain these phenological metrics [34].
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Figure 2. Conceptual illustration of vegetation growth asymmetries (a) symmetrical type; (b) rapid in
and slow out; (c) slow in and rapid out.

2.4. Definition of Phenological Asymmetry Indices

In the context of global warming, the seasonal cycle of vegetation growth has shown a pronounced
shift in both spatial and temporal patterns in northern terrestrial ecosystems. Here, given vegetation
growth for a single growing season in the NEC, three growth asymmetry indices were defined based
on the difference between key phenological characteristics for the green up and senescence phases. The
green up phase corresponds to the first half of the growing season spanning spring to early summer,
followed by the second phase, senescence, spanning early summer to late autumn. The two phases
were separated by the position of peak growth (Figure 2). Indices consisted of asymmetries for growing
season length (AsyL), green up rate and senescence rate (AsyR) and average NDVI (AsyV) for the two
stages of growth. Owing to the distinct sign of these parameters (positive RSP and negative RAU),
each asymmetry index was calculated as the difference of absolute values for growth parameters in
spring and autumn (Equation (3)). LSP and LAU represent growing season length in spring and
autumn, respectively. Similarly, MSP and MAU correspond to the mean value of vegetation greenness
index (NDVI) during green up (predominantly spring) and senescence (predominantly autumn). RSP
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and RAU indicate the maximum growth rates during green up and maximum declining rate during
senescence, respectively. As a result, the sign of the asymmetry index, either positive or negative, can
be an indicator of skewness in vegetation growth morphology during spring and autumn. Meanwhile,
the magnitude of the asymmetry index represents different levels of vegetation activity during the
two stages.

AsyL = |LAU| − |LSP|

AsyR = |RAU| − |RSP| (3)

AsyV = |MAU| − |MSP|

Based on the skewness of plant growth asymmetry indices and the condition of vegetation for a
single growing season across NEC, plant growth asymmetric features in one year are classified into
three common forms: (1) symmetrical pattern for green up and senescence phases (weak asymmetry,
Figure 2a); (2) ‘rapid growing and slow declining’ pattern (Figure 2b), reflecting the rapid growth in
spring and slow senescence in autumn; (3) ‘slow growing and rapid declining’ pattern (Figure 2c),
indicating slowly gradual green up and rapid senescence. The symmetrical growth pattern is reflected
in small values of asymmetric indices. In other words, a smaller value of an asymmetric index
represents a more pronounced symmetrical pattern in vegetation growth. Given a relatively fixed
growing season controlled by internal plant mechanisms for the type 2 growth cycle, the AsyL index
will show a positive value due to the earlier arrival of peak growth. In contrast, the AsyL index
has a negative value. The signs of AsyV and AsyR cannot be easily determined without additional
information. Their long-term trends and variability were investigated at pixel and vegetation cover
regional levels as described in the following section.

These growth types may not only be attributed to the genotype of plants but may also be influenced
by environmental factors such as temperature, precipitation, and soil water stress. On one hand, using
these asymmetric indices, the inherent property of vegetation growth rhythm could help to identify
different vegetation cover types. On the other hand, the variability of changing climate can alter the
distinct growth status in spring and autumn. Optimal combinations of natural factors will enhance
vegetation activity; alternately, less desirable environmental conditions disturb the regular pace of
vegetation growth. Changes in natural factors, such as extreme events in rainfall or temperature,
may occur at different times during the growing season. Vegetation growth processes adapt to
environmental changes, resulting in diversity in growth curves across years. Detailed impacts of
climatic factors on the long-term changes of asymmetric indices, and the corresponding spatiotemporal
pattern are explored and discussed in subsequent sections.

2.5. A Trend and Correlation Analysis

The Mann-Kendall (MK) trend test, as a non-parametric test, is suitable for handling non-normally
distributed data and has been extensively used to examine long-term trends for meteorological,
hydrological, and land surface vegetation parameters [35–37]. The MK test does not require normality
when processing time series data and is insensitive to outliers. With the MK trend test and a time
series with n observed data ordered by time sequence (x1, ..., xn), the null hypothesis H0 states that
the series does not show a monotonic trend, and the alternative hypothesis H1 indicates there is an
obvious monotonic trend. For all k, j ≤ n (k , j), the key statistical variable S (Equation (4)) is tested.

S =
n−1∑
k−1

n∑
j−k+1

sgn(x j − xk) (4)

S > 0 indicates that the latter observation tends to be greater than the former one, and S < 0
denotes the opposite. The variance VAR(S) is calculated (Equation (5)), where g is the number of
groups, and tp is the number of observed values in the p-th group.
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VAR(S) =
1
18

[n(n− 1)(2n + 5) −
g∑

p−1

tp(tp − 1)(2tp + 5) (5)

Finally, the Mann-Kendall statistical value (mk tau) is obtained, which is represented by Zmk
(Equation (5)). The Mann-Kendall tau coefficient ranges between −1 and +1. A positive value implies
an upward temporal trend, whereas a negative value implies a decreasing trend.

Zmk =

∣∣∣∣∣ S−1√
Var(s)

∣∣∣∣∣, S > 0

Zmk = 0, S = 0

Zmk =

∣∣∣∣∣ S+1√
Var(s)

∣∣∣∣∣, S < 0

(6)

Correlations between the time series of plant asymmetric indices and climatic data are assessed
using Spearman rank-order correlation coefficients, a nonparametric method used to evaluate the
monotonic relationship between two continuous or ordinal variables. The concrete process for
calculating Spearman correlation coefficients is further described elsewhere [38,39].

2.6. Relative Importance Analysis

In this study, temperature and precipitation were used to explore environmental impacts on
vegetation growth asymmetries. Like the definition of vegetation asymmetry, the term AsyTemp
(AsyPrcp) is defined to depict the difference in average temperature (summed precipitation) between
the first and second half of the growing season (same period as for vegetation asymmetry), which
is determined using the SOS, POP and EOS identified for phenological parameters. In Equation (7),
Tau(Pau) and Tsp(Psp) represent temperature (precipitation) in green up (spring) and senescence
(autumn) seasons, respectively.

AsyTemp = Tau − Tsp
AsyPrcp = Pau − Psp

(7)

A relative importance (RI) approach is utilized to quantify their respective contribution to long-term
changes of plant growth asymmetries in each grid cell. This method is expressed as a multiple linear
regression (Equation (8)). There, AsyVeg, representing AsyV, AsyL and AsyR (dependent variable),
is regressed against AsyTemp and AsyPrcp (independent variable). ε indicates drivers that are not
mentioned but might contribute to variations in plant growth asymmetry. Relative importance was
implemented using the ‘relaimpo’ package in R [40], which is based on variance decomposition in
multiple linear regression models.

AsyVeg = β0 + β1 × AsyTemp + β2 × AsyPrcp + ε (8)

when the coefficient of determination (R2) for the above multiple regression was obtained, it is
decomposed into non-negative contributions shared by each variable in the following formula (lmg
method in ‘relaimpo’ R package [41]. The RIs of multiple variables sum to the total R2 where xk
represents AsyTemp or AsyPrcp (k = 1, 2), and p equals 2. The seqR2 denotes the additional R2 when
adding the regressor xk to a model with the regressors in set S. Thus, LMG(xk) is the RI for AsyTemp
or AsyPrcp.

LMG(xk) =
1
p

p−1∑
j=0


∑

S ⊆ {x1, . . . , xp}\{xk}

n(S) = j

seqR2({xk}|S)( p−1
i

)


(9)
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3. Results

3.1. Spatiotemporal Pattern of Growth Asymmetric Indices

3.1.1. Interannual Variability of Vegetation Asymmetries for NEC

To ascertain the overall status of vegetation asymmetries for NEC, regional average annual
asymmetric indices are calculated. Then the corresponding interannual variation was obtained from
the time series (Figure 3). The three indices have an evident cycle in their time series, but the periodic
phases are variable. To accurately quantify the cycle period, the dominant frequency of vegetation
asymmetries is determined from a spectral analysis of the time series (using R package ‘forecast’) [42].
This procedure revealed that the dominant frequency of AsyV, AsyR is 11 and 10 years, respectively.
The periodicity of AsyV and AsyR is statistically significant and is also reflected by obvious periods
in the time series plot, such as 1982–1992 and 2003–2013. AsyL has a relatively large interannual
fluctuation and does not exhibit a remarkable period, but visually there is a shorter period that is
around eight years (not to be identified by spectral analysis). The directions of amplitude in AsyV and
AsyR show an opposite pattern, in other words, AsyV decreases with the increasing AsyR. Generally,
AsyL keeps a consistent phase with changes in AysV but with remarkable fluctuation. Prior to 2000,
trends and periodic characteristics of the three indices are relatively prominent. During the subsequent
time interval, their inter-annual variability increases, and the amplitudes tend to decrease, which may
be associated with changing climatic factors such as the global warming slowdown after 1998 [43,44].

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 

 

3. Results 

3.1. Spatiotemporal Pattern of Growth Asymmetric Indices 

3.1.1. Interannual Variability of Vegetation Asymmetries for NEC 

To ascertain the overall status of vegetation asymmetries for NEC, regional average annual 
asymmetric indices are calculated. Then the corresponding interannual variation was obtained from 
the time series (Figure 3). The three indices have an evident cycle in their time series, but the periodic 
phases are variable. To accurately quantify the cycle period, the dominant frequency of vegetation 
asymmetries is determined from a spectral analysis of the time series (using R package ‘forecast’) 
[42]. This procedure revealed that the dominant frequency of AsyV, AsyR is 11 and 10 years, 
respectively. The periodicity of AsyV and AsyR is statistically significant and is also reflected by 
obvious periods in the time series plot, such as 1982–1992 and 2003–2013. AsyL has a relatively large 
interannual fluctuation and does not exhibit a remarkable period, but visually there is a shorter 
period that is around eight years (not to be identified by spectral analysis). The directions of 
amplitude in AsyV and AsyR show an opposite pattern, in other words, AsyV decreases with the 
increasing AsyR. Generally, AsyL keeps a consistent phase with changes in AysV but with 
remarkable fluctuation. Prior to 2000, trends and periodic characteristics of the three indices are 
relatively prominent. During the subsequent time interval, their inter-annual variability increases, 
and the amplitudes tend to decrease, which may be associated with changing climatic factors such as 
the global warming slowdown after 1998 [43,44]. 

 
Figure 3. Interannual variations in vegetation growth asymmetries for the entire Northeast China 
(NEC). For better graphical presentation, raw annual time series were normalized. 

Across the entire NEC, correlations between the three asymmetric indices (AsyL, AsyV, AsyR) 
were assessed using Spearman correlation analysis. The results show that AsyR and AsyV have a 
negative correlation (Spearman r = −0.67), meaning that if in the trend in AsyR continues to increase 
(vegetation consistently shows a pattern of slow increase during green up and rapid decrease during 
senescence), the difference in vegetation activity between the two time periods (AsyV) will decrease. 
In other words, rapid senescence of vegetation in autumn would result in decreased productivity, 
thus reducing its impacts on annual productivity as compared to spring productivity. Consistency 
between AsyV and AsyL indicates that an extension of the senescence window when compared to 
green up contributes to an increase in autumn vegetation productivity. Due to inherent variability, 
AsyL is weakly correlated with AsyV (Spearman r = 0.48). AsyR and AsyL show a strongly negative 
correlation (Spearman r = −0.81), reflecting that a rapid decrease in vegetation greenness will shorten 
the duration of senescence. 
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(NEC). For better graphical presentation, raw annual time series were normalized.

Across the entire NEC, correlations between the three asymmetric indices (AsyL, AsyV, AsyR)
were assessed using Spearman correlation analysis. The results show that AsyR and AsyV have a
negative correlation (Spearman r = −0.67), meaning that if in the trend in AsyR continues to increase
(vegetation consistently shows a pattern of slow increase during green up and rapid decrease during
senescence), the difference in vegetation activity between the two time periods (AsyV) will decrease.
In other words, rapid senescence of vegetation in autumn would result in decreased productivity,
thus reducing its impacts on annual productivity as compared to spring productivity. Consistency
between AsyV and AsyL indicates that an extension of the senescence window when compared to
green up contributes to an increase in autumn vegetation productivity. Due to inherent variability,
AsyL is weakly correlated with AsyV (Spearman r = 0.48). AsyR and AsyL show a strongly negative
correlation (Spearman r = −0.81), reflecting that a rapid decrease in vegetation greenness will shorten
the duration of senescence.
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Like the temporal distribution, spatial distributions of average annual AsyV and AsyR demonstrate
a regular patch pattern that matches vegetation cover types (Figure 4b,c). The map of average AsyL
shows a relatively discrete pattern (a weak cluster status) (Figure 4a). Across the NEC, spatially
averaged AsyL and AsyR show positive signs, while AsyV has a small negative value (−0.01). In
other words, the late growing period overwhelms the early growing period in controlling total annual
growing season length, identified by the positive AsyL occurring in each vegetation type (Figure 4d).
Positive AsyL is most statistically significant in grassland and alpine vegetation. At the pixel scale,
negative AsyL values can be found in northern and southeastern natural vegetation. AsyV is positive
in conifer-leaved forests but is negative in other vegetation types, indicating again that productivity
during senescence plays a dominant role in annual productivity for many regions of the NEC (Figure 4e).
Grasslands have the most negative values for AsyV, followed by croplands and alpine vegetation.
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3.1.2. Long-Term Trends

Long-term trends in the three asymmetry indices were analyzed using the Mann Kendall trend
test (expressed as MK tau values, Figure 5). The spatial heterogeneity of AsyL trends is still pronounced
in that most northern coniferous forests show a positive trend, while some broad-leaved forests in
the east, grasslands in the west, and croplands in the south display negative trends. Similar to the
average annual metrics (Figure 4), spatial patterns of trends in AsyV and AsyR are also significant. A
majority of cropland AsyV values have positive trends, indicating that cultivated vegetation activity
during green up in the spring tends to have an advantage over senescence in the fall in the long
run. Meanwhile the dominant negative trends of AsyV in coniferous forest in northern NEC indicate
that vegetation activity during green up would continue to have a greater impact than senescence in
autumn. AsyR has a negative trend for most of the cropland, meaning that, in the future, senescence in
autumn will become slower than green up in spring. AsyR in natural vegetation has a positive trend,
reflecting that the rate during autumn senescence will continue to be stronger than the green up rate
in spring.
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Trends in the asymmetric metrics for each vegetation cover type demonstrate substantial variability
(Figure 6). It is noteworthy that there are more vegetation cover types with negative trends than
with positive trends (18 vs. 9). Prevailing negative trends in these asymmetric indices may imply
that vegetation growth cover types in NEC will be stable into the future, but trends for the three
asymmetric indices do not show a consistent pattern for each vegetation cover type. Positive trends are
primarily seen with AsyR and AsyV. Only AsyV shows a positive trend in the grassland, steppe and
cultivated (cropland) vegetation areas. AsyR shows a positive trend in meadows, alpine vegetation,
broad-leaved forests, coniferous-broad leaved mixed forests, and coniferous forests. AsyL only shows
a positive trend in coniferous forests. In terms of the magnitude of change, AsyV and AsyR show the
largest positive and negative trends in the grassland biome. The trend for each index in shrublands is
relatively small, probably due to its small, discrete coverage that is insufficiently sensitive to the coarse
spatial resolution of satellite data. In addition, AsyL and AysR show negative trends in grassland,
steppe and cropland areas, whereas AsyV has a positive trend, indicating that vegetation growth
during green up tends to be longer than growth during the senescence period in autumn. Overall
vegetation production, however, is still controlled by the senescence period. The multi-year trend of
AsyR in meadow, broad-leaved forest and coniferous broad-leaved forest is negative, while AsyL and
AsyV in these cover types show an increasing trend.
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3.2. Correlation between Three Asymmetry Indices

The three asymmetric indices are designed to reveal the detailed diversity of vegetation growth
during the increasing and decreasing productivity stages based on phenological signals and direct
vegetation greenness status. To examine whether these indices are consistent with each other and
can jointly explain the asymmetric features in vegetation growth throughout the growing season, the
Spearman correlation analysis is conducted at pixel scale (Figure 7). The spatial pattern of correlation
coefficients shows that the three indices are not significantly related to each other in the central
portion of NEC that is mainly covered by cropland. This phenomenon may be a consequence of
the variable growth process of crops influenced by human management activities. For instance,
irrigation offsets water deficits during the arid spring thus enhancing vegetation growth. Additionally,
fertilization added to the soil at various times may provide sufficient nutrients to improve growth
of cultivated vegetation. Many more pixels show a negative relationship between AsyL and AsyR,
which is particularly pronounced in the southeastern broad-leaved forest (Figure 7a). In other regions
with natural vegetation, AsyL and AsyR have low correlations (around −0.4~0.2). AsyL is negatively
correlated with AsyV in most areas of natural vegetation, with the exclusion of the eastern broad-leaved
forest. Strong, negative relationships between AsyL and AsyV were found in the northern coniferous
forest and steppe in the western part (Figure 7b). Compared to AsyL, AsyV has a more evident
correlation with AsyR reflecting from the spatial distribution. For AsyR and AsyV, a dominant number
of the significant pixels show a strong negative relationship, especially in the northern coniferous forest
and western broad-leaved forest (Figure 7c).
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3.3. Climatic Impacts on Vegetation Asymmetry Indices

3.3.1. Interannual Variability of Asymmetries in Temperature and Precipitation

Understanding the climatic constraints that underly seasonal change in plant growth is crucial for
explaining climate change effects on global vegetation productivity. Across the entire NEC, results
show that AsyTemp and AsyPrcp exhibit remarkable interannual variability (Figure 8). The temporal
dynamics of AsyTemp and AsyPrcp do not appear to have a significant cyclicity, but fluctuations
in these variables are both positive and negative. These changes in AsyTemp and AsyPrcp imply
that seasonal distribution of temperature and precipitation do not consistently play a major role in
controlling the interannual variability in vegetation growth. The fluctuating profile of the AsyTemp
time series is consistent with that of the AsyPrcp time series, which is also reflected by their high
correlation coefficient of 0.8 (Figure 9). More specifically, the obvious peaks around 1992 and 2003 for
the two time series generally match each other. The negative amplitude in AsyTemp, on the other
hand, is relatively larger than that in AsyPrcp.
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To compare asymmetries in temperature and precipitation with those in vegetation growth, their
relationships were quantified using Spearman correlation analysis, at the scale of the NEC (Figure 9).
The results suggest that AsyTemp does not have a significant relationship with AsyV (r = 0.42), but
it does have a significant positive correlation with AsyL (−0.81) and a large, significant negative
correlation with AsyR (−0.95). AsyPrcp is related to all the vegetation asymmetric indices, with its
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most substantial positive relationship being that with AsyL (0.69) and its largest negative relationship
(−0.83) being that with AsyR. AsyPrcp exhibits a weaker correlation with NDVI asymmetry (0.59).

At the pixel level, averaged asymmetries for temperature and precipitation across the NEC
exhibited a slightly similar spatial pattern, with apparent clusters (Figure 10) where positive AsyTemp
and AsyPrcp are distributed widely within natural vegetation in the northern and eastern areas. There
is a positive AsyTemp for approximately 55% of the vegetated area. Negative AsyTemp accounts for
45% of the area, which is primarily found in the central agricultural lands. Negative values are shown
for 19% of AsyPrcp and are mainly clustered in the southwestern NEC. Using the multi-year mean,
precipitation has a greater impact later in the season, after the peak rather than before it.
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3.3.2. Climatic Effects on Vegetation Asymmetries

To estimate climatic controls on seasonal difference in plant growth, the relative importance (RI) of
the temperature and precipitation asymmetries on vegetation growth asymmetries was calculated using
a linear regression model (Equation (8)). For the entire region, this analysis confirms that AsyTemp
and AsyPrcp account for 37.1% and 37.5% of the change in AsyV, respectively. The corresponding
proportion of variance explained by the model is 74.6%. The equivalent relative contribution of
AsyTemp and AsyPrcp to AsyR (AsyL) are 37.5% (12%) and 41.8% (23%), respectively. These RI results
suggest that asymmetry of precipitation provides a slightly larger contribution to the asymmetry
of vegetation growth. Conversely, the difference in growing season length between green up and
senescence is not strongly influenced by AsyTemp and AsyPrcp, which together only explain 35% of
the variations in AsyL.

Similarly, a relative importance (RI) analysis was performed at the pixel level to detect any
geographic pattern of climatic impacts on vegetation asymmetries (Figure 11). Geographically, the
RI of AsyTemp to AsyR and AsyV tend to show an inverse pattern, as shown by the contrasting
yellow and green colors in central and northern NEC. Across the entire area, the magnitude of the
RI for AsyTemp on AsyR and AsyV is nearly identical (25% vs. 24%). AsyPrcp has more influence
on differences in the growth rate (AsyR) than in greenness (AsyV) during senescence (31% vs. 24%).
Spatially, asymmetries in temperature and precipitation do not supply a significant contribution to
changes in vegetation asymmetries across the eastern broad-leaved forest. Growing season length
(AsyL) is weakly affected by AsyTemp and AsyPrcp, as indicated by the corresponding small RI values
widespread across the NEC (total mean value of 3.8% for AsyTemp and 8.7% for AsyPrcp). Their
complex spatial heterogeneities (Figure 11e,f) are consistent with the average annual AsyL (Figure 4)
and long-term trends in AsyL (Figure 5).
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4. Discussion

4.1. Interpretation of Asymmetries for Depicting Vegetation Cycle

Since vegetation asymmetric indices are not typical variables for characterizing seasonal difference
in plant growth, it is necessary to discuss their potential and implications of their use in describing
vegetation seasonal cycles. These asymmetric metrics are designed to measure the degree of skewness
of the vegetation growth process that typically represents a single growing season. Here, the asymmetry
of the vegetation growth curve is expressed by the difference in growth rate (AsyR), growing season
length (AsyL), and vegetation activity (i.e., greenness; AsyV) before and after the peak of growing
season. The rising segment of the growth curve corresponds to the vegetative green up process. Thus,
the green up rate captures information about plant activity, such as leaf development or increasing
photosynthesis. In contrast, the declining rate in autumn reflects vegetation browning or senescence.
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Differences between the length of active growing season during these two periods are denoted by the
asymmetric index AsyL, which is tightly correlated to the start of season (SOS), peak of growing season,
and end of season (EOS). Thus, AsyL reflects the dynamics of phenological events, or differences in
timing of carbon uptake [45]. Furthermore, given the relatively fixed lifespans of leaves in northern
ecosystems [46], the position of peak vegetation activity plays a key role in controlling the asymmetry
of vegetation seasonality, which determines the allocation of plant production to green up period and
senescence period. Furthermore, the inherent characteristic (e.g., vegetation gene type) of terrestrial
biosphere may be a more dominant driver of growing season asymmetry [18]. For AsyV, it is the
difference between averaged greenness in the first- and second-half of growing season, so AsyV could
reflect the capacity of vegetation photosynthesis or production.

By constructing these asymmetric indices, information about annual cycles of vegetation
development is retrieved. In general, the indices serve as a set of advanced phenological traits
for north ecosystem. Gu et al. suggested that plant photosynthetic seasonal cycles could be seen as an
extension of plant phenology. Potential uses of these asymmetric indices include examining regulation
of phenophase in land surface productivity models and monitoring vegetation response to interannual
climatic variability. In the long run, changes in the seasonal cycle of plants and the asymmetrical
characteristics of the growing season have many consequences for ecological processes, agriculture,
and forestry. For example, thriving plants in spring are able to provide adequate food for birds and
insects thus will enhance ecosystem biodiversity, but sparse plants in spring will affect the livelihood
of various animals. Furthermore, vegetation status can affect land surface albedo, thus AsyV may
influence the temporal distribution of energy between spring and autumn. In this study, long-term
AsyV and AsyR show a pronounced cycle that reflects variability in vegetation photosynthesis, which
further reveals that there is not a constant trend in which the green up or senescent phase consistently
dominates plant production. The fluctuation of vegetation asymmetries also represents the adaptability
of plants to environmental changes.

4.2. Implication for Land Vover Classification

Vegetation phenology also represents a potentially significant source of land cover information [47].
To some degree, asymmetric indices are able to distinguish between natural and cultivated vegetation,
especially as shown in the geographic distribution of AsyR and AsyV (Figure 4b,c and Figure 5b,c).
That may be attributed to the inherently phenological features of specific species, as well as human
activities (e.g., irrigation, fertilization, harvesting etc.), but it is merely an approximate matching of
AsyR and AsyV to the different vegetation types. Asymmetric indices may be capable of classifying
vegetation types through developing more growth curve shape parameters and using datasets with
high spatiotemporal resolution (e.g., daily carbon flux, web camera images). Previous studies also
confirmed this point using eddy flux records to explore seasonal patterns of net carbon exchange in
various forest types [27]. Similarly, other analyses based on multitemporal remote sensing data with
high spatial resolution (e.g., Landsat, MODIS) have obtained credible results in vegetation classification
that primarily use various plant phenological indicators [48–51]. These studies confirm the potential
use of asymmetric indices in land cover classification, but advances are needed, requiring new data
sources and more refined methods. Overall, asymmetric indices are able to provide new insights into
the interannual variation in vegetation changing signals and play a key role in accurately modeling
vegetation phenology or the seasonality of ecosystem processes.

4.3. Climatic Influences on Vegetation Asymmetries

Vegetation asymmetries are not traditional phenological parameters, but, nevertheless, they are
characteristic of these parameters, and, in some regions, their interannual variability is undoubtedly
influenced by climatic changes. Different asymmetric patterns may reflect adaptations of vegetation
communities to specific climate conditions. In this study, a relative importance (RI) analysis suggests
that precipitation plays a role equivalent to that of temperature on productivity. This finding differs
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slightly from other reports that state that northern temperate ecosystems are primarily influenced by
temperature and solar radiation [52–55]. In this case, the joint controlling effect of temperature and
precipitation on variations in plant asymmetries may be attributed to their synchronous changes over
time and space (see Figure 11). That joint control could be reflected in the similar spatial pattern of
relative importance of AsyTemp and AsyPrcp to AsyV and AsyR (Figure 10). However, due to their
low contributions, it is apparent that temperature and precipitation are not adequate constraints for
asymmetry in growing season length (AsyL). For example, the inherent gene types of vegetation may
limit the changing ranges of phenological events (e.g., SOS, EOS) and further affect changes in AsyL.

Based on the inter-comparison of averaged annual indices, a negative AsyTemp indicates a warmer
spring. The growth rate asymmetry (AsyR) is generally positive (red and purple patches in Figure 12c),
while AsyV tends to be negative (brown and light blue patches in Figure 12b). The reverse is true
when AsyTemp is positive. This phenomenon reflects warming springs that can rapidly stimulate
plant growth, resulting in a shorter growing season during green up and further reducing average
greenness. When AsyPrcp is negative, AsyR tends to be positive and AsyV tends to be negative, which
accounts for a large proportion of pixels. In this situation, sufficient water is available to improve the
rate of plant activity (i.e., photosynthesis) across the NEC. As with the effect of AsyTemp on AsyV, this
rapid plant growth leads to a smaller mean greenness during green up than during senescence. The
effects of AysTemp and AsyPrcp on AsyL show a relatively complex pattern, especially in the southern
and eastern forest, where AsyTemp and AsyPrcp with positive values likely correspond to a positive
AsyL, but with a considerable number of negative values (green grid cells).
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and AsyPrcp. An interaction noted as ‘− + −’ successively represents negative AsyL (V, R), positive
AsyTemp and negative AsyPrcp from the average annual mean.

The influence of warmer springs may affect subsequent seasons through the development of
larger leaves or increased foliar nitrogen [53], which will result in enhanced carbon assimilation
in the following summer and autumn. The temporal fluctuation of the magnitude and sign of
vegetation asymmetries may affect the allocation of production during different seasons and even
change ecological traits, such as mobility or reproduction, that are tightly linked to ecosystem stability
and food security [22,56].

Shifts in vegetation growth asymmetry are driven predominantly by climate change and variability,
yet these shifts will also have an impact on future climate change through feedbacks to the atmospheric
system. It is noteworthy that crop growth cycles may be uniquely independent of a direct link the
influence of natural forces. A variety of human-induced activities, such as planting time, irrigation
and harvest time, can lead to different growth pattern for specific crops. Variability and changes in
vegetation growth asymmetries for these crops could change land surface properties, such as LAI and
albedo, resulting in local climatic changes [57]. The changing vegetation growth asymmetries may also
affect carbon uptake process and further enhance seasonal CO2 exchange in northern ecosystems [58]
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4.4. Potential Limitation and the Way Forward

It should be noted that there will be diverse growth shapes for annual vegetation [21] that is not
enumerated for all the possible types in this study. This paper simply focuses on the asymmetric
status of plant seasonal growth for a temperate terrestrial ecosystem. The conceptual growth curves
shown in Figure 2 aim to demonstrate a general growth process in NEC, but the asymmetric indices
can quantitatively describe the vegetation development process from three dimensions. Additionally,
there are a number of shape parameters that can depict time series curves [9,59,60]. Therefore, one
asymmetric index may not necessarily correspond uniquely to a single specific seasonal growth curve.
The combination of several key phenological events may be conducive to identifying a specific plant
growth type. Moreover, although widely used, timing and growth rate asymmetries may be influenced
by the curve fitting method and input data sources. High spatiotemporal resolution data, such as
Sentinel2 and Phenocam camera data, will advance the accuracy of these vegetation asymmetries. Yet
the applicability of asymmetric indices in other broader and various ecoregions remains unclear and
required further validation.

For GIMMS NDVI3g dataset, the summer saturation effect of NDVI over dense forests (e.g.,
broad-leaved forests in eastern NEC and coniferous forests in Daxing’anling Mountains) may cause
uncertainties in growth curve fitting and phenological parameters extraction. These uncertainties
would primarily affect the absolute value of growing season length, green up rate, senescence rate and
average NDVI in spring and autumn. But the asymmetric indices are defined as the difference between
these variables that may offset some uncertainties. In the future work, the non-saturated vegetation
index (e.g., EVI) will be employed to optimize these asymmetric indices. Regarding the climatic
impacts on vegetation asymmetries, the time-lag effect of temperature and rainfall on vegetation
growth is very critical but not estimated in this study. The future work will consider this effect.

5. Summary and Conclusions

This study focused on the diversity between green up and senescent segments of vegetation
greenness seasonal cycles, which correspond to periods when terrestrial ecosystems generally release
and uptake carbon dioxide, respectively. Therefore, a set of vegetation asymmetries in growth length
(AsyL), vegetation greenness (AsyV) and growth rate (AsyR) were defined to characterize detailed
differences in vegetation growth shapes during the two halves of the growing season. Long-term
trends and the spatial distribution of these asymmetric indices were analyzed. Conclusion are drawn
as follows.

(1) For the long term, the asymmetric indices of vegetation growth in Northeast China have significant
interannual variability with an approximate periodicity of ten years, especially for AsyR and
AsyV. The total time series of AsyV and AsyL exhibit a synchronous profile that is opposite
to that of AsyR. Spatially, the average annual values and long-term trends of AsyR and AsyV
are arranged with clear cluster patches that are approximately consistent with the geographic
distribution of primary vegetation cover types. The AsyL, nevertheless, shows a relatively
complex spatiotemporal pattern. AsyR reveals that the senescence rate in cropland and grassland
was faster than the green up rate, while the opposite was true for the forest types. Trends in
AsyL indicate that all plant types show a longer growing season in the senescent phase than the
green up phase. However, spring mean greenness is much greater than autumn greenness in all
vegetation types, except conifer forest.
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(2) The combined effects of climatic constraints on vegetation asymmetries are pronounced when
viewed both spatially and temporally. Asymmetries in temperature (AsyTemp) and rainfall
(AsyPrcp) show similar temporal profiles as the vegetation asymmetries, and they jointly control
changes in the three asymmetrical indices, with a roughly equivalent contribution identified by
the relative importance (RI) analysis. AsyTemp and AsyPrcp contribute more to changes in AsyR
and AsyV than in AsyL, while climatic asymmetries are negatively linked to AsyR, but positively
correlated to AsyV and AsyL. Overall, these asymmetric indices provide for the potential to
effectively depict detailed seasonal states of vegetation growth. Shifts of magnitude and sign
in vegetation asymmetries over Northeast China follow a certain pattern in location and time,
which helps us to understand the seasonal cycle of these terrestrial ecosystems. In future research,
it will be necessary to derive more shape parameters of plant growth cycles to combine with
other observed vegetation bio-physiological (such as GPP, LAI, FPAR and flux) and model data
to reveal the influence of asymmetry on vegetation seasonal processes.
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