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Abstract: Physiological maturity date is a critical parameter for the selection of breeding lines in
soybean breeding programs. The conventional method to estimate the maturity dates of breeding
lines uses visual ratings based on pod senescence by experts, which is subjective by human estimation,
labor-intensive and time-consuming. Unmanned aerial vehicle (UAV)-based phenotyping systems
provide a high-throughput and powerful tool of capturing crop traits using remote sensing, image
processing and machine learning technologies. The goal of this study was to investigate the potential of
predicting maturity dates of soybean breeding lines using UAV-based multispectral imagery. Maturity
dates of 326 soybean breeding lines were taken using visual ratings from the beginning maturity stage
(R7) to full maturity stage (R8), and the aerial multispectral images were taken during this period on
27 August, 14 September and 27 September, 2018. One hundred and thirty features were extracted
from the five-band multispectral images. The maturity dates of the soybean lines were predicted and
evaluated using partial least square regression (PLSR) models with 10-fold cross-validation. Twenty
image features with importance to the estimation were selected and their changing rates between
each two of the data collection days were calculated. The best prediction (R2 = 0.81, RMSE = 1.4 days)
was made by the PLSR model using image features taken on 14 September and their changing rates
between 14 September and 27 September with five components, leading to the conclusion that the
UAV-based multispectral imagery is promising and practical in estimating maturity dates of soybean
breeding lines.

Keywords: machine learning; maturity date; multispectral image; soybean breeding; UAV-based
phenotyping

1. Introduction

By 2050, the global population is expected to reach 9.8 billion [1] and the current arable land is
decreasing due to climate change, urbanization, soil degradation, water shortages and pollution [2].
Food demand is expected to be 60% higher than it is today resulting in global food supplies at a great
stress. Crop breeding is a promising solution for the food crisis by developing new crop varieties
with improved traits, including high yield potential and resilience to biotic and abiotic stresses due to
adverse environments [3].

The rational of breeding programs is to select crop cultivars with superior genotypes among
a large number of variants that have better production and quality, tolerance to biotic and abiotic
stresses and high efficiency in cultivation, harvest and processing [4]. Selection criteria could be yield,
lodging, flowering and maturity date, stress symptoms, severity, etc. depending on the purpose of
breeding programs. Specifically in soybean breeding programs, physiological maturity date is a critical
parameter for the selection of soybean lines. Soybeans with extended maturity time may take full
advantage of the growing season to improve their yield [5]. However, soybeans in delayed harvest
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days may suffer frost damages or high harvest losses. Therefore, soybean cultivars are divided into
maturity groups (MGs, e.g., MG III or MG IV) from 0 to 10 according to their time length from planting
to physiological maturity, and also maturity group zones were developed to define where a soybean
cultivar is the best [6].

Breeders determine the MG of a new variety by referring to the relative maturity (RM, by dividing
a MG to 10 subgroups, e.g., RM3.0 to RM3.9 are 10 RMs in MG III) of the new variety to commercially
released soybean cultivars (referred as checks) with a known MG. The relative maturity is determined
by the differences in the maturity dates (the first day of the year when soybeans reach maturity status)
between the new variety and the checks. Conventionally, soybean breeders take measurements of the
physiological maturity date (R8) [7] of desired breeding lines using visual ratings by observing the
pubescence color. However, visual rating is labor-intensive, time-consuming, and more importantly it
is subjective [8]. In conventional breeding programs a breeder may need to scout tens of thousands of
breeding lines in a progeny trail in a season [9], which makes it challenging to select the most desired
lines. Therefore, there is a pressing need to develop an efficient and effective tool to take measurements
of the maturity date of soybean progeny breeding lines in fields using novel approaches.

Maturity generally occurs when soybean pods have reached their physiological matured stages,
showing gray, tan or brown color in pods [10]. After entering the beginning maturity stage (R7),
the soybean plant, including leaves and pods, will lose moisture quickly from around 60% to less than
30%, depending on air temperature, humidity and soil conditions [11]. In addition, with the plant
approaching senescence, the chlorophyll content of leaves reduces and color turns to yellow/gray [10],
which might result in substantial changes in spectral reflectance. Therefore, it is possible to quantify
the plant maturity level using the combinations of spectral reflectance in given wavebands that are
very sensitive to crop canopy characteristics, such as chlorophyll content [12], nitrogen content and
water stress [13].

Yu Li [9] developed a random forest model to classify mature and immature soybean lines
using images in the blue and near-infrared band from an unmanned aerial vehicle (UAV)-based
high-throughput phenotyping (HTP) platform, and achieved over 93% classification accuracy.
Christenson Schapaugh [14] predicted relative maturity of soybean lines using a partial least square
regression (PLSR) model with three vegetation indices (VIs) derived from narrow spectral bands that
were acquired by a UAV imaging system. The correlation between predicted relative maturity and
observed maturity was 0.5 with a root mean square error (RMSE) of 5.19 days. However, the difference
between two relative maturity designations (e.g., RM 3.7 and RM 3.8) of soybeans is usually only
one to two days (personal communication with a soybean breeder—Dr. Andrew Scaboo). It is not
sufficient for soybean breeding purposes by classifying breeding lines into only two classes of mature
and immature lines or the prediction with 5 days error. To the best of our knowledge, there is no
studies showing such ability to determine accurate maturity date that breeders can use.

Therefore, the goal of this study was to investigate a method to estimate the maturity dates of
soybean breeding lines using a UAV-based imaging system. There were three supportive objectives to
achieve this goal: (1) To investigate the best time (growth stage) to collect images, (2) to select image
features important to estimate relative maturity date and (3) to evaluate the estimation accuracy.

2. Materials and Methods

2.1. Field Experiment

The field experiment was conducted at an experimental field in the Greenley Research Center
of the University of Missouri, Novelty, Missouri, United States (40◦01′N, 92◦11′W) in 2018. Eleven
thousand, four hundred and seventy-three soybean lines were inbred from soybean varieties in MG III
and IV, and planted on 29 May, 2018, in a 3.64 ha field. The soybean lines were planted in single-row
plots, each being a progeny row derived from a single F4 plant, without replicates with 2.59 m in length



Remote Sens. 2019, 11, 2075 3 of 17

and 0.76 m spacing in between rows. The breeding lines started maturing from September 19 and
completed on 2 October, 2018.

Three hundred and twenty-six soybean lines were randomly selected before R8 stages as ground
references for the estimation of maturity dates. The maturity dates of these soybean lines were
determined by an experienced breeder using visual assessments. The measurements of maturity date
were recorded every seven days starting from 31 August to 5 October. Mature plots were not observed
until 19 September. In each measuring day, a soybean line that has approximately 95% of its pods
achieved mature pod color was determined being mature and the date was recorded as its maturity
date, and for those that have slightly less or more than 95% pods achieved mature color, the maturity
dates were estimated as 1 to 3 days after or before the measuring day.

2.2. UAV Data Collection

Multispectral images were acquired using a multispectral camera RedEdge-M (MicaSense, Seattle,
WA, USA) that has a resolution (number of total pixels) of 1260 pixels × 960 pixels. The details of
wavelength are shown in Table 1. An iPad mini 3 (Apple Inc., Cupertino, CA, USA) was used to
configure the camera taking time-lapse images at 1 frame per second (fps) by connecting the camera
using its Wi-Fi hotspot. A GPS unit was attached to the camera and pre-programed to provide
geo-referencing information for each frame of images. All images with the EXIF (Exchangeable Image
File Format) metadata were saved to an onboard SD card of the camera. Before each flight, a calibration
reflectance panel (CRP) was imaged by holding the camera at about 1 m above the CRP and looking
vertically in an open area (to avoid shadow). The CRP has a factory calibrated reflectance in each of the
five spectral bands that is used to convert the raw pixel values of multispectral images into reflectance
during post processing [15]. The reflectance in each band of the CRP used in this study is shown in
Table 1.

Table 1. Wavelength information of the camera and the reflectance in each band of the calibration
reflectance panel (CRP).

Band Name Center Wavelength (nm) Bandwidth * (nm) Reflectance (%)

Blue (b) 475 20 49.2
Green (g) 560 20 49.3

Red (r) 668 10 49.1
Red edge (re) 717 10 48.7

Near-infrared (nir) 840 40 49.0

* Bandwidth is defined as the full width at half maximum (FWHM).

The multispectral camera was mounted on a UAV DJI Matrice 600 Pro (DJI, Shenzhen, China)
with the camera facing to the ground vertically (nadir view). The UAV platform was controlled using
a flight control App Autopilot (Hangar Technology, Austin, TX, U.S.A.) that allows setting up flight
path, flying speed and elevation prior to the flights. Images were taken at 30 m above ground level
(AGL) with a ground sample distance (GSD) of 20.8 mm·pixel−1, and desired flight speed and number
of paths were carefully determined to obtain sufficient overlaps (forward overlap of 87.5% and side
overlap of 84.5% in this case) to cover the whole field. The images were acquired from 13:15:00 CDT to
15:00:00 CDT on 27 August, 14 September and 27 September, 2018.

2.3. Image Processing

The geo-referenced multispectral images were downloaded from the SD card and uploaded
to a UAV image processing software Pix4D Mapper (Pix4D, Lausanne, Switzerland) to generate
orthomosaic images of the field. After all the images were imported, the camera GPS information was
read automatically from the EXIF metadata. The images of the CRP were selected and the reflectance
was inputted manually following an instruction [16]. The “Ag Multispectral processing” template was
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chosen for this processing. When the processing was completed, the orthomosaic of each band was
generated and exported as a .tif image, which was processed using the Image Processing Toolbox and
Computer Vision System Toolbox of MATLAB (ver. 2016b, The MathWorks, Natick, MA, USA).

The background (soil and other non-crop) information was first removed from orthomosaic
images using color thresholds. Figure 1a,c are the colorful images with the red (r), green (g) and blue
(b) channels of images acquired on 27 August and 27 September and they show different color contrasts
between soil and soybeans at different growth stages. A blue normalized difference vegetation index
(BNDVI) [17] that could signify the crop pixels and suppress non-crop pixels was used to remove
background of images on 27 August and 14 September as it had the highest contrast between soil and
soybeans (Figure 1b). The blue-wide dynamic range vegetation index (BWDRVI) [18] was used for
images on 27 September as it was found having higher contrast than BNDVI when soybean leaves
started turning yellow and similar to soil color (Figure 1d). From the histograms in Figure 1e,f,
pixels with BNDVI values higher than 0 or with BWDRVI values higher than 0.7 were considered as
soybean lines.

BNDVI =
nir− blue
nir + blue

. (1)

BWDRVI =
0.1× nir− red
0.1× nir + red

. (2)
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Figure 1. Orthomosaic images of part of the soybean field. (a,c) are the colorful images with the red (r),
green (g) and blue (b) channels of images acquired on 27 August and 27 September. (b) The grayscale
image of blue normalized difference vegetation index (BNDVI) derived from images taken on 27 August
and (d) the grayscale image of blue-wide dynamic range vegetation index (BWDRVI) derived from
images taken on 27 September. (e,f) are histograms of image pixel values in the two red rectangles.
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After background removal, individual soybean lines were segmented from one of the five-band
images (the blue band images were used in this case) by manually drawing vertical and horizontal
lines in alleys between plots. The segmented individual lines were saved as binary masks and then
applied to the rest bands to get images of individual lines in each band. Each segmented line has
a unique plot number associated according to its physical position in the field and the number was
saved with images of the lines. The 326 soybean samples were recognized by matching plot numbers
in ground reference data with those in segmented images.

Fifty-four vegetation indices (VIs) were extracted from the five-band images using the formula
summarized by Agapiou Hadjimitsis [19] and Henrich Götze [20]. The formula and brief description
of the selected VIs are included in the Appendix A. The mean and standard deviation (std) values of
these Vis and the pixels of the five-band images of each single row were calculated as image features.
In addition, we also calculated the mean and the std values of the hue, saturation (S) and value (V) in
HSV color space and the L*, a* and b* in CIELAB color space, which were converted from r, g, and b
channels using MATLAB function ‘rgb2hsv’ and ‘rgb2lab’. In total, 130 image features were extracted
for further processing.

2.4. Maturity Date and Adjusted Maturity Date

The status of maturity was determined when approximately 95% of the pods in a line had achieved
mature pod color by visual assessment [10], ignoring delayed leaf drop and green stems, which
introduces variances in canopy images of soybean lines with the same maturity date. Additionally,
maturity dates of soybean lines are usually determined visually by breeders in an interval of seven days
and the dates of the breeding lines matured within the intervals were estimated based on experiences,
therefore, the maturity dates may allow a one-or two-day error [9]. Figure 2 shows images of three
soybean lines taken on 27 September. Although they were recorded with the maturity date of 25
September, they had different amount of green leaves remaining on the canopy. Line 7344 (left) had
rarely leaves remaining so that it could be derived from the images that its pods have turned to mature
color. However, certain amount of green leaves on the canopy of line 6913 (right) covered most of its
stems. The real scenarios could be that either its pods had reached the mature color but with delayed
dropping leaves or its maturity date was estimated too early in the interval of seven days.
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Figure 2. Illustration of variations in canopy images of the soybean lines matured on 25 September.
Images were generated using r, g and b bands from the multispectral camera. Breeding line no. from
left to right is: 7344, 7335 and 6913.

In order to tolerate the variances in canopy leaves, we used a new parameter adjusted maturity
date (adMD), calculated as Equation (3). The adMD calculates the variances in canopy images of the
soybeans matured on the same day and applied the variances to the manually measured maturity
date. The original maturity dates would be extended to a more precise format (22.2, 23.7 and 25.6 for
soybean lines in Figure 2 from left to right) considering human error and canopy variances.

adMDi =
1
n
(

n∑
1

xin −min
stdin

) + MDi, (3)

where adMDi is the adjusted maturity date of the ith soybean line. € represents the ith soybean line, €
= 1, 2, . . . , 326 and n represents the nth image feature used in an estimation model, n = 1, 2, . . . , 130.
MDi is the maturity date of the ith soybean line that is determined by breeders. xin is the value of the
ith soybean line in the nth image feature. min is the mean of all soybean lines matured on the same day
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with the ith soybean line in the nth image features. stdin is the standard deviation of all soybean lines
matured on the same day with the ith soybean line in the nth image features.

2.5. Data Analysis

All statistical analyses were conducted using the statistical toolboxes in MATLAB. To evaluate the
potential of UAV-based imagery in estimating maturity dates, PLSR models were built using image
features as predictors and maturity dates as responses for the data collected on three days. PLSR models
create linear combinations (known as components) of the original predictor variables (image features) to
explain the observed variability in the responses (measured maturity dates). Additionally, PLSR largely
is able to reduce the variability and instability of estimated responses caused by multicollinearity among
predictors [21]. The PLSR was conducted using ‘plsregress’ function with a 10-fold cross-validation.
The estimation accuracy was evaluated using the RMSE of the estimated responses.

To develop a parsimonious and interpretable PLSR model for each data set, variable importance
in projection (VIP) scores were used to select predictors by estimating the importance of each predictor
in a PLSR model. A predictor with a VIP score close to or greater than 1 can be considered important in
a given model [22]. The VIP scores of each predictor were calculated using MATLAB codes suggested
by the MathWorks Support Team [23].

The variance inflation factor (VIF) was also calculated to remove image features with high
collinearity [24]. The VIF is calculated as a dependent variable of the coefficient of determination (R2)
of an individual feature against all other features. R2 was obtained by calling the parameter of ‘lm.
Rsquare. Ordinary’ in the ‘fitlm’ function. This step was performed in a loop that the variable with the
highest VIF was removed each time and the loop would not stop until the highest VIF is less or equal
to 5 [25]. The higher the VIF value an image features have, the higher the collinearity is between this
feature with others.

To better interpret the PLSR models, the correlation between each selected predictor and maturity
dates were calculated using ‘corr’ function with the ‘Pearson’ option. As the multispectral images were
collected on the three days at different growth stages of soybean lines, the changes in image features
between each two days may indicate the transitions from the immature to mature status of soybean
lines. The changing rate between each two data collection days was calculated using Equation (4).

Changing rate(i) =
P(i + 1) − P(i)

P(i)
. (4)

where P is each selected predictor of single soybean lines on the € = 1st, 2nd and 3rd time of
data collection.

3. Results

3.1. Estimation of Soybean Maturity Dates Using PLSR

The maturity dates estimated using the PLSR models with a 10-fold cross-validation on the three
days are shown in Figure 3. Figure 3a illustrates the percent variance explained in maturity dates with
the number of PLSR components. Variance in maturity dates can be explained up to 59%, 77% and 83%
using image features on 27 August, 14 September and 27 September, respectively. Figure 3b shows the
changes of RMSE with the number of PLSR components and the optimal number of components for
each day was determined when the RMSE reaches the minimum on that day. The estimation using
image features on 27 September had the lowest RMSE of 1.7 with five components followed by the
one on 14 September (RMSE = 1.8) with 24 components and 27 August (RMSE = 2.7) with seven
components. Thus, the optimal numbers of components for the PLSR model on the three days are 7, 24
and 5, respectively.
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Figure 3. Estimation of maturity dates using partial least square regression (PLSR). (a) Percent of
variance explained in the maturity dates as a function of the number of components in the PLSR
model. (b) Mean square error in the maturity dates as a function of the number of components. (c)–€
The correlations between manual maturity dates and predicted maturity dates using images features
taken on 27 August, 14 September and 27 September, respectively. ncomp: The optimal number
of components.

Figure 3c–e show the correlations between manual maturity dates and predicted maturity dates
from PLSR models with the optimal numbers of components. When using image features of soybean
lines in the middle of their maturity stage (R8, 27 September), there was the best agreement (R2 = 0.82)
of predicted maturity dates and manual measurements.

3.2. Model Parsimony

Figure 4 shows the VIP scores of 130 predictors of the PLSR models on the three days. There were
42, 56 and 73 predictors with VIP scores equal or greater than 1 in models on August 27, September 14
and September 27, respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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VIFs of these predictors were then calculated and those with VIFs less than 5 are shown in Table 2.
Table 2 also shows the Pearson correlations between the maturity dates and the selected predictors
(image features) from PLSR models on the three days. It can also be seen that there were few image
features overlapping in the PLSR models for all the three days. The possible reason is that there
were strong collinearities existing among all the 130 image features so that those with high Pearson
correlations were not selected due to their high VIFs (>5).

Table 2. Pearson correlations between the predictors with VIP scores ≥ 1 and variance inflation factors
(VIFs) < 5 and maturity dates on the three days.

Image Features August 27 September 14 September 27

re_mean –0.596 * – –
S_mean –0.501 –0.697 ** –

CCCI_std –0.487 –0.930 *** –
Cirededge_mean 0.504 – 0.368

CVI_std –0.389 – –
CI_std 0.184 –0.662 ** –

GDVI_std 0.177 0.861 *** –
H_mean † 0.102 – –

NormG_std 0.413 –0.831 *** –
IF_std –0.170 – –

RRI2_std –0.239 –0.227 –
CI_mean – –0.935 *** –

H_std – –0.915 *** –
GRVI_mean – 0.922 *** –
MTVI2_std – 0.795 *** –
hue_std ‡ – – 0.959 ***

GEMI_mean – – 0.977 ***
GRNDVI_std – – 0.959 ***
BNDVI_mean – – 0.934 ***

IF_mean – – –0.991 ***

*, ** and *** indicate the significance at p = 0.05, 0.01 and 0.001 levels, respectively. † and ‡ represent the feature hue
in HSV color space but was calculated using different methods. † uses the equation in Appendix A. ‡ is converted
from the RGB image using the ‘rgb2hsv’ function in MATLAB.

In order to understand the different growth trends of soybean lines matured sequentially, the
Pearson correlations between maturity dates and the selected image features in Table 2 were calculated
and shown in Table 3. It can be seen that only three image features re_mean, CI_mean and IF_mean
had significant linear relationships with the maturity dates on August 27, while the majority of image
features on September 14 and September 27 are of significance.

Figure 5 shows the predicted maturity dates using three PLSR models with 20 selected images
features and their changing rates. The estimations were performed using the same method mentioned
in Section 2.5. The optimal numbers of components for the three PLSR models were 13, 5 and 4,
respectively. Compared with Figure 3d,e, the PLSR models with changing rates in the selected image
features taken between September 14 and September 27 improved the estimation accuracy (Figure 5b,c).
The results indicate that there are certain patterns when images features of soybean lines with different
maturity dates changed over time and these patterns could help to recognize the maturity dates.
From Figure 5a,b, the model with the changing rates between September 14 and September 27 had
higher estimation accuracy than the one with the changing rates between August 27 and September 14,
showing the challenges in estimating maturity dates at early stages.
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Table 3. Pearson correlations between maturity dates and the means of image features at each maturity
dates on the three days.

Image Features August 27 September 14 September 27

re_mean –0.596* –0.414 0.890***
S_mean –0.501 –0.697** –0.830***

CCCI_std –0.487 –0.930*** 0.605*
Cirededge_mean 0.504 0.928*** 0.368

CVI_std –0.389 –0.718** –0.552*
CI_std 0.184 –0.662** 0.931***

GDVI_std 0.177 0.861*** 0.845***
H_mean 0.102 –0.830*** –0.409

NormG_std 0.413 –0.831*** 0.916***
IF_std –0.170 –0.921*** –0.585*

RRI2_std –0.239 –0.227 0.981***
CI_mean –0.595* –0.935*** –0.886***

H_std –0.490 –0.915*** 0.268
GRVI_mean 0.497 0.922*** 0.499
MTVI2_std –0.035 0.795*** 0.989***

hue_std –0.413 –0.931*** 0.959***
GEMI_mean –0.004 0.857*** 0.977***
GRNDVI_std 0.242 –0.889*** 0.959***
BNDVI_mean 0.356 0.879*** 0.934***

IF_mean –0.544* –0.879*** –0.991***

*, ** and *** indicate the significance at p = 0.05, 0.01 and 0.001 levels, respectively.
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Figure 5. Estimation of maturity dates using PLSR models with selected images features and the
changing rates. (a) The correlations between manual maturity dates and predicted maturity dates using
the selected images features taken on 14 September and their changing rates between 27 August and 14
September. (b) The correlations using the selected images features taken on 14 September and their
changing rates between 14 September and 27 September. (c) The correlations using the selected images
features taken on 27 September and their changing rates between 14 September and 27 September.

3.3. Adjusted Maturity Dates Based on the Variances in Image Features

Even though we can observe the monotonically increasing and decreasing trends in the selected
image features against the maturity dates (Table 2), the variances in some days overlapped with other
days (Figure 6a,b), especially when those soybean lines were close to their maturity, for example,
the large variances in NDVIrededge_mean taken on 14 September were observed in those lines matured
on 19 September and 20, and the large variances in CCCI_mean taken on 27 September were observed
from 21 September to 27 September.
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Figure 6. Vegetation indices CCCI and NDVIrededge. (a)–(b) The relationships between maturity dates
and NDVIrededge_mean and CCCI_mean collected on 14 September and 27 September. (c) Canopy
images of the soybean lines matured on 25 September in RGB, CCCI and NDVIrededge.

Figure 6c shows canopy images in these two vegetation indices of soybean lines (as shown in
Figure 1) that were determined by visual ratings maturing at the same day (25 September). It can be
seen that the dry stems had the highest CCCI values, while the green leaves had the lowest. When
soybean lines had reached their R7 stages, the water content of the seeds are less than 50% and when
they at R8 stages, the water content are less than 30% [10]. As an indicator of water stress suggested by
Barnes Clarke [13], CCCI could represent various water content in soybean lines.

The NDVIrededge was first proposed by Gitelson and Merzlyak [26] and found that it was highly
proportional to crop leaf chlorophyll content. It was calculated using the Red (668 nm) band with
the Red Edge (717 nm) band and has shown a strong linear proxy (R2 = 0.94) of the green portion of
the fraction of absorbed photosynthetically active radiation (fAPAR) that is sensitive to chlorophyll
content in maize and soybean canopy [27]. It is consistent with our observation that the soybean line
with more remaining leaves (No. 6913) had higher NDVIrededge values while the dry line (No. 7344)
had very low values.

The maturity dates of soybean lines were adjusted based on the variances of NDVIrededge_mean
and CCCI_mean taken on 14 September and 27 September. The relationships between maturity dates
and the adjusted maturity dates were shown in Figure 7. The PLSR models were used to predict the
maturity dates using the same method mentioned in Section 2.5 and the estimations are shown in
Figure 7b–c.
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Figure 7. Adjusted maturity dates. (a) The relationship between maturity dates and the adjusted
maturity dates based on the variances of NDVIrededge_mean and CCCI_mean taken on 14 September
and 27 September. (b) The correlations between adjusted maturity dates and predicted maturity
dates using the selected image features taken on 14 September and their changing rates between 27
August and 14 September. (c) The correlations using the selected image features taken on 14 September
and their changing rates between 14 September and 27 September. (d) The correlations using the
selected image features taken on 27 September and their changing rates between 14 September and
27 September.

4. Discussion and Future Work

4.1. Estimation of Soybean Maturity Dates at Different Growth Stages

The estimation of soybean maturity dates using PLSR with image features collected on different
days in Figure 2 shows that the best agreement of predicted maturity dates and manual measurements
was made by image features in the middle of their maturity stage, while the worst is by those collected
when none of the soybean lines started maturing.

From Table 2, there was only one image feature (re_mean) had a significant linear relationship
with the maturity dates on 27 August, while there were nine and five image features highly correlated
(p-value < 0.05) with the maturity dates for 14 September and 27 September, respectively, indicating the
challenge in estimating maturity date at early stage. We can also see that there were six common image
features selected for PLSR models on 27 August and 14 September, and five of them had significant
linear relationships on 14 September. These image features had the potential to be used as predictors,
but they have not shown the trends at the early stage when mostly soybean lines remained green
(Figure 1a).
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Again, it can be seen from Table 3 that only three image features re_mean, CI_mean and IF_mean
had significant linear relationships with the maturity dates on 27 August, while the majority of image
features on 14 September and 27 September were of significance. It may indicate a higher accuracy in
estimation of maturity date using data from later stages than early stages, as implied by the estimations
from the PLSR models (Figure 3).

4.2. Selected Features for Parsimonious Models

For all the three days, five image features (CIrededge_mean, GDVI_std, GRVI_mean and
BNDVI_mean) had positive linear relationships with the maturity dates, and four image features
(S_mean, CVI_std, IF_std, CI_mean and IF_mean) were negatively related to the maturity dates,
suggesting that these image features of all soybean lines kept increasing or decreasing from the
beginning to the full maturity stage so that they can maintain consistent trends no matter which stage
the image features were collected at. As shown in Figure 8a, for all the soybean lines, the changing
rates in CI_mean were above 0 due to the increased CI_mean in all soybean lines from 14 September to
27 September. It was also observed that the changing rates in soybean lines matured later were greater
than those in lines matured early, leading to a positive linear relationship between the changing rates
in CI_mean and the maturity dates.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 
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Figure 8. The changing rates in CI_mean and hue_std from 14 September and 27 September. (a) The
changing rates in CI_mean and hue_std. (b,d) are RGB images of a line matured on 19 September,
and they were taken on 14 September and 27 September, respectively. (c,e) are RGB images of a line
matured on 1 October, and they were taken on 14 September and 27 September, respectively.

It should be noticed that the Pearson correlation coefficients of the other 11 image features in
Table 3 had opposite signs for the three days, especially for the latter two days, such as re_mean,
CCCI_std, CI_std, NormG_std, hue_std and GRNDVI_std. The reason may be that for the soybean
lines matured at different days, there were different changing rates in such features. From Figure 8a,
the changing rates in hue_std were significantly less than 0 for lines matured before 24 September,
indicating the hue_std of these lines decreased from 14 September to 27 September. For lines matured
during 24 September to 27 September, the changing rates in hue_std were very close to 0, suggesting
that the hue_std in these lines barely changed between two data collection days. For lines matured
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after 27 September, the changing rates were significantly greater than 0, showing that there were
increased hue_std in these lines. It might be due to the gradually occurrence of yellow leaves when the
soybean lines were closed to their maturity (Figure 8b), leading to high variances in hue, while those
lines matured late still had more green leaves (Figure 8c). When hue was calculated on 27 September,
matured soybean lines had more dry leaves than fresh leaves (Figure 8d), leading to low variances,
while the late-matured lines were stepping into their R8 stages (Figure 8e), resulting in high variances.
Similar situations could happen in other image features with opposite linear relationships for the latter
two days.

4.3. Adjusted Maturity Dates

In Figure 7a, the adjusted maturity dates for both image collection days were extended around
their observed maturity dates, which might help to tolerate the variances of canopy green leaves as
well as errors from subjective judgments and estimations of breeders. By using the adjusted maturity
dates as ground reference, the RMSE dropped from 1.7 to 1.4 and the R2 increased to 0.81 using the
selected images features taken on 14 September and their changing rates between 14 September and 27
September, while nearly no changes occurred on the other two models. It might be because these two
image features captured more variances on 14 September than those on 27 September.

By personal communication with breeders, RMSE within 1.5 days can be considered as a tolerable
error in soybean breeding programs. Compared to previous studies, our study shows improvements on
predicting the exact maturity dates instead of the classification between mature and immature lines [9],
as well as making a more practical prediction (with an acceptable accuracy) for breeding programs [14].
Therefore, it can be concluded that it is a promising method to predict soybean maturity dates using
UAV-based multispectral image features by screening the soybean lines once at the beginning of
maturity stage to quantify the variances in canopies, and another one at the middle of the full maturity
stage to track the canopy changes.

As the adjusted maturity dates are first proposed in this study to tolerate the variances of canopy
green leaves for the purpose of predicting soybean maturity dates using canopy image features,
the maturity dates were adjusted based on the variances in two image features with known matured
dates in a single environment. In soybean breeding programs, RMs of a variety from around 40–50
environments are required to assign a MG to the variety. Therefore, the variances need to be quantified
in future studies by repeating the experiments in multiple environments and documenting the
image features.

Errors could be introduced by many factors regarding image features. Due to the limited field
of view of the multispectral camera, the 3.64 ha field was fully screened by three flight missions
during the time period of more than 2 h, including taking off and landing the UAV, changing batteries
and calibration. Light changes during image collection were conjunctions of many factors, such as
the changing relative position between sun and drone, various light diffusions caused by the thin
cloud in the sky and the random exiting thick clouds, which resulted in cloud shadows in the images
(not observed in this study) [28]. Another inevitable source of variation is some blurred portions of
orthomosaic caused by image stitching. At the later stage of soybean growth, soybean lines with big
canopies can touch and overlap with their neighbors and leaves on immature lines are yellow or in the
transition to yellow, which were hard to be distinguished with soil. Under this scenario, blurs and
even undetectable misalignments of breeding lines might occur in the orthomosaic.

4.4. Future Work

In future studies, the variances in image features to adjust the maturity dates need to be quantified
and derived by repeating the experiments in multiple environments and documenting image features.
There was also two major issues expected to be addressed to reduce errors introduced during the
image collection and processing pipeline. First, as an image pixel value is the reflectance of incoming
solar irradiance, the variation in light conditions could introduce variations to image-derived features.
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The relationship between light changes during UAV flight missions and camera responses (reflectance)
should be further explored and flight dynamics (drone pose, sun’s position, light diffusion, clouds, etc.)
need to be better integrated to describe the light changes. Second, variations are inevitably introduced
when images are stitched based on features recognition. Instead of localizing individual breeding
lines from an orthomosaic, efforts have to be made to investigate the potential of direct georeferencing
that geometric position of a breeding line is the conjunction of the relative position of the line in an
image and the UAV position where the image was taken. With direct georeferencing, flight attitude
and speed can be liberated from high image overlaps (≥70% for creating orthomosaic images) so that
the time issue and light variation can be moderated consequently.

5. Conclusions

The potential of predicting maturity dates of soybean breeding lines using UAV-based multispectral
imagery was investigated in this paper. Maturity dates of 326 soybean breeding lines were taken
using visual ratings from the beginning maturity stage (R7) to full maturity stage (R8), and the aerial
multispectral images were also taken during this period on 27 August, 14 September and 27 September.
One hundred and thirty features were extracted from the five-band multispectral images. The maturity
dates of soybean lines were predicted and evaluated using PLSR models with 10-fold cross-validation.
The results showed that the estimations at later stages had a better accuracy than those at earlier stages.
Twenty image features with importance were then selected to simplify the PLSR models. The changing
rates in image features between each of the two collection days were calculated. The estimation
accuracy was improved by the simplified PLSR models with the selected image features and their
changing rates. The adjusted maturity dates were proposed to tolerate the variances of canopy green
leaves and calculated based on the variances in NDVIrededge_mean and CCCI_mean. The best
prediction (R2 = 0.81, RMSE = 1.4 days) was made by the PLSR model using selected images features
taken on 14 September and their changing rates between 14 September and 27 September as predictors
and the adjusted maturity dates as responses with five components. This study outperformed other
similar studies in terms of prediction accuracy and practical usefulness. Another contribution of
this paper is that based on our observations from canopy images, the adjusted maturity dates were
proposed to tolerate the variances of canopy green leaves as well as errors from subjective judgments
and estimations of breeders.
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Appendix A

Table A1. Vegetation indices.

No. Index Name Descriptions Formula

1 NDVI Normalized difference VI* nir−red
nir+red

2 ATSAVI Adjusted transformed soil-adjusted VI 1.22× nir−1.22×red−0.03
1.22∗nir+red−0.0366+0.08×(1+a2)

3 ARVI2 Atmospherically Resistant VI 2 −0.18 + 0.17× nir−red
nir+red
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Table A1. Cont.

No. Index Name Descriptions Formula

4 BWDRVI Blue-wide dynamic range VI 0.1×nir−red
0.1×nir+red

5 CCCI Canopy Chlorophyll Content Index
nir−re
nir+re

NDVI
6 CIgreen Chlorophyll Index Green nir

green−1
7 CIrededge Chlorophyll Index RedEdge nir

re−1
8 CVI Chlorophyll VI nir× red

green2

9 CI Coloration Index red−blue
red

10 CTVI Corrected Transformed VI NDVI+0.5
|NDVI+0.5| ×

√
|NDVI + 0.5|

11 GDVI Green Difference VI nir− green
12 EVI Enhanced VI 2.5× nir−red

nir+6×red−7.5×blue+1
13 EVI2 Enhanced VI 2 2.4× nir−red

nir+red+1
14 EVI22 Enhanced VI 2-2 2.5× nir−red

nir+2.4×red+1

15 GEMI Global Environment Monitoring Index a =
2×(nir2

−red2)+1.5×nir+0.5×red
nir+red+0.5

GEMI = a× (1− 0.25× a) − red−0.125
1−red

16 GARI Green atmospherically resistant VI nir−(green−(blue−red))
nir+(green+(blue−red))

17 GLI Green leaf index 2×green−red−blue
2×green+red+blue

18 GBNDVI Green-Blue NDVI nir−(green+blue)
nir+(green+blue)

19 GRNDVI Green-Red NDVI nir−(green+red)
nir+(green+red)

20 H Hue tan−1
(

2×red−green−blue
30.5 × (green− blue)

)
21 IPVI Infrared percentage VI nir

2×(nir+red) ×NDVI

22 I Intensity red+green+blue
30.5

23 LogR Log Ratio log
(

nir
red

)
24 MSAVI Modified Soil Adjusted VI 1

2 ×

(
2× nir + 1−

√
(2× nir + 1)2

− 8× (nir− red)
)

25 NormG Norm Green
green

nir+red+green

26 NormNIR Norm NIR nir
nir+red+green

27 NormR Norm Red red
nir+red+green

28 NGRDI Normalized green red difference index green−red
green+red

29 BNDVI Blue-normalized difference VI nir−blue
nir+blue

30 GNDVI Green NDVI nir−green
nir+green

31 NDRE Normalized Difference Red-Edge nir−re
nir+re .

32 RI Redness Index red−green
red+green

33 NDVIrededge Normalized Difference Rededge/Red re−red
re+red

34 PNDVI Pan NDVI nir−(green+red+blue)
nir+(green+red+blue)

35 RBNDVI Red-Blue NDVI nir−(red+blue)
nir+(red+blue)

36 IF Shape Index 2×red−green−blue
green−blue

37 GRVI Green Ratio VI nir
green

38 DVI Difference VI nir
red

39 RRI1 RedEdge Ratio Index 1 nir
re

40 IO Iron Oxide red
blue

41 RGR Red–Green Ratio red
green

42 SRRedNIR Red/NIR Ratio VI red
nir

43 RRI2 Rededge/Red RedEdge Ratio Index 2 re
red

44 SQRTIRR SQRT(IR/R)
√

nir
red

45 TNDVI Transformed NDVI
√

nir−red
nir+red + 0.5

46 TGI Triangular greenness index −0.5× (0.19× (red− green) − 0.12× (red− blue))
47 WDRVI Wide Dynamic Range VI 0.1×nir−red

0.1×nir+red

48 MSR Modified Simple Ratio
red√
nir
red +1

49 MTVI2 Modified Triangular VI
1.5×(1.2×(nir−green)−2.5×(red−green))√

(3−nir)2
−6×nir+5×

√
red−0.5

50 RDVI Renormalized Difference VI nir−red
√

nir+red
51 IRG Red Green Ratio Index red− green
52 OSAVI Optimized Soil Adjusted VI nir−red

nir+red+0.16

53 SRNDVI Simple Ratio × Normalized Difference
Vegetation Index

nir2
−red

nir+red2

54 SARVI2 Soil and Atmospherically Resistant Vegetation
Index 2 2.5× nir−red

1+nir+6×red−7.5×blue

*VI: Vegetation index.



Remote Sens. 2019, 11, 2075 16 of 17

References

1. Hincks, J.; The World Is Headed for a Food Security Crisis. Here’s How We Can Avert It. 2018. Available
online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
(accessed on 15 February 2019).

2. Breene, K. Food Security and Why It Matters. 2018. Available online: https://www.weforum.org/agenda/

2016/01/food-security-and-why-it-matters/ (accessed on 15 February 2019).
3. Sun, M. Efficiency Study of Testing and Selection in Progeny-Row Yield Trials and Multiple-Environment

Yield Trials in Soybean Breeding. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2014.
4. Breseghello, F.; Coelho, A.S.G. Traditional and Modern Plant Breeding Methods with Examples in Rice

(Oryza sativa L.). J. Agric. Food Chem. 2013, 61, 8277–8286. [CrossRef] [PubMed]
5. Staton, M. What Is the Relationship between Soybean Maturity Group and Yield; Michigan State University

Extension: East Lansing, MI, USA, 2017.
6. Mourtzinis, S.; Conley, S.P. Delineating Soybean Maturity Groups across the United States. Agron. J. 2017,

109, 1397. [CrossRef]
7. Fehr, W. Principles of Cultivar Development: Theory and Technique; Macmillan Publishing Company: London,

UK, 1991.
8. Masuka, B.; Atlin, G.N.; Olsen, M.; Magorokosho, C.; Labuschagne, M.; Crossa, J.; Bänziger, M.; Pixley, K.V.;

Vivek, B.S.; von Biljon, A.; et al. Gains in Maize Genetic Improvement in Eastern and Southern Africa: I.
CIMMYT Hybrid Breeding Pipeline. Crop Sci. 2017, 57, 168–179. [CrossRef]

9. Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve
soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote
Sens. Environ. 2016, 187, 91–101. [CrossRef]

10. Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of Development Descriptions for Soybeans,
Glycine max (L.) Merrill1. Crop Sci. 1971, 11, 929. [CrossRef]

11. Peske, S.T.; Höfs, A.; Hamer, E. Seed moisture range in a soybean plant. Rev. Bras. Sement. 2004, 26, 120–124.
[CrossRef]

12. Rundquist, D.C.; Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Keydan, G.; Leavitt, B. Remote estimation of leaf
area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [CrossRef]

13. Barnes, E.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.;
Riley, E.; Thompson, T. Coincident detection of crop water stress, nitrogen status and canopy density
using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision
Agriculture, Bloomington, MN, USA, 16–19 July 2000.

14. Christenson, B.S.; Schapaugh, W.T.; An, N.; Price, K.P.; Prasad, V.; Fritz, A.K. Predicting Soybean Relative
Maturity and Seed Yield Using Canopy Reflectance. Crop. Sci. 2016, 56, 625. [CrossRef]

15. MicaSense. Use of Calibrated Reflectance Panels for RedEdge Data. 2017. Available
online: https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-
Panels-For-RedEdge-Data (accessed on 20 April 2019).

16. MicaSense. How to Process RedEdge Data in Pix4D. 2018. Available online: https://support.micasense.com/

hc/en-us/articles/115000831714-How-to-Process-RedEdge-Data-in-Pix4D (accessed on 20 April 2019).
17. Yang, C.; Everitt, J.H.; Bradford, J.M.; Murden, D. Airborne Hyperspectral Imagery and Yield Monitor Data

for Mapping Cotton Yield Variability. Precis. Agric. 2004, 5, 445–461. [CrossRef]
18. Hancock, D.W.; Dougherty, C.T. Relationships between Blue- and Red-based Vegetation Indices and Leaf

Area and Yield of Alfalfa. Crop Sci. 2007, 47, 2547–2556. [CrossRef]
19. Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices

for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892–3919. [CrossRef]
20. Henrich, V.; Götze, C.; Jung, A.; Sandow, C. Development of an Online indices-database: Motivation, concept

and implementation. In Proceedings of the 6th EARSeL Imaging Spectroscopy SIG Workshop Innovative
Tool for Scientific and Commercial Environment Applications, Tel Aviv, Israel, 16–19 March 2009.

21. Ishtiaq, K.S.; Abdul-Aziz, O.I. Relative Linkages of Canopy-Level CO2 Fluxes with the Climatic and
Environmental Variables for US Deciduous Forests. Environ. Manag. 2015, 55, 943–960. [CrossRef]

22. Eigenvector Research. Vip. 2018. Available online: http://wiki.eigenvector.com/index.php?title=Vip
(accessed on 15 February 2019).

https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.weforum.org/agenda/2016/01/food-security-and-why-it-matters/
https://www.weforum.org/agenda/2016/01/food-security-and-why-it-matters/
http://dx.doi.org/10.1021/jf305531j
http://www.ncbi.nlm.nih.gov/pubmed/23551250
http://dx.doi.org/10.2134/agronj2016.10.0581
http://dx.doi.org/10.2135/cropsci2016.05.0343
http://dx.doi.org/10.1016/j.rse.2016.10.005
http://dx.doi.org/10.2135/cropsci1971.0011183X001100060051x
http://dx.doi.org/10.1590/S0101-31222004000100018
http://dx.doi.org/10.1029/2002GL016450
http://dx.doi.org/10.2135/cropsci2015.04.0237
https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data
https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data
https://support.micasense.com/hc/en-us/articles/115000831714-How-to-Process-RedEdge-Data-in-Pix4D
https://support.micasense.com/hc/en-us/articles/115000831714-How-to-Process-RedEdge-Data-in-Pix4D
http://dx.doi.org/10.1007/s11119-004-5319-8
http://dx.doi.org/10.2135/cropsci2007.01.0031
http://dx.doi.org/10.3390/rs4123892
http://dx.doi.org/10.1007/s00267-014-0437-1
http://wiki.eigenvector.com/index.php?title=Vip


Remote Sens. 2019, 11, 2075 17 of 17

23. MathWorks Support Team. How to Calculate the Variable Importance in Projection from Outputs
of PLSREGRESS. Available online: https://www.mathworks.com/matlabcentral/answers/443239-how-to-
calculate-the-variable-importance-in-projection-from-outputs-of-plsregress (accessed on 15 February 2019).

24. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 112.

25. Chen, D.; Neumann, K.; Friedel, S.; Kilian, B.; Chen, M.; Altmann, T.; Klukas, C. Dissecting the phenotypic
components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell
2014, 26, 4636–4655. [CrossRef] [PubMed]

26. Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus
hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll. Estim. J. Plant
Physiol. 1994, 143, 286–292. [CrossRef]

27. Viña, A.; Gitelson, A.A. New developments in the remote estimation of the fraction of absorbed
photosynthetically active radiation in crops. Geophys. Res. Lett. 2005, 32. [CrossRef]

28. MicaSense. DLS Sensor Basic Usage. 2017. Available online: https://micasense.github.io/imageprocessing/

MicaSense%20Image%20Processing%20Tutorial%203.html (accessed on 20 April 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.mathworks.com/matlabcentral/answers/443239-how-to-calculate-the-variable-importance-in-projection-from-outputs-of-plsregress
https://www.mathworks.com/matlabcentral/answers/443239-how-to-calculate-the-variable-importance-in-projection-from-outputs-of-plsregress
http://dx.doi.org/10.1105/tpc.114.129601
http://www.ncbi.nlm.nih.gov/pubmed/25501589
http://dx.doi.org/10.1016/S0176-1617(11)81633-0
http://dx.doi.org/10.1029/2005GL023647
https://micasense.github.io/imageprocessing/MicaSense%20Image%20Processing%20Tutorial%203.html
https://micasense.github.io/imageprocessing/MicaSense%20Image%20Processing%20Tutorial%203.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Field Experiment 
	UAV Data Collection 
	Image Processing 
	Maturity Date and Adjusted Maturity Date 
	Data Analysis 

	Results 
	Estimation of Soybean Maturity Dates Using PLSR 
	Model Parsimony 
	Adjusted Maturity Dates Based on the Variances in Image Features 

	Discussion and Future Work 
	Estimation of Soybean Maturity Dates at Different Growth Stages 
	Selected Features for Parsimonious Models 
	Adjusted Maturity Dates 
	Future Work 

	Conclusions 
	
	References

