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Abstract: The surface energy balance algorithm for land (SEBAL) has been demonstrated to provide
accurate estimates of crop evapotranspiration (ET) and yield at different spatial scales even under
highly heterogeneous conditions. However, validation of the SEBAL using in-field direct and
indirect measurements of plant water status is a necessary step before deploying the algorithm as
an irrigation scheduling tool. To this end, a study was conducted in a maize field located near the
Venice Lagoon area in Italy. The experimental area was irrigated using a 274 m long variable rate
irrigation (VRI) system with 25-m sections. Three irrigation management zones (IMZs; high, medium
and low irrigation requirement zones) were defined combining soil texture and normalized difference
vegetation index (NDVI) data. Soil moisture sensors were installed in the different IMZs and used to
schedule irrigation. In addition, SEBAL-based actual evapotranspiration (ETr) and biomass estimates
were calculated throughout the season. VRI management allowed crop water demand to be matched,
saving up to 42 mm (−16%) of water when compared to uniform irrigation rates. The high irrigation
amounts applied during the growing season to avoid water stress resulted in no significant differences
among the IMZs. SEBAL-based biomass estimates agreed with in-season measurements at 72, 105
and 112 days after planting (DAP; r2 = 0.87). Seasonal ET matched the spatial variability observed in
the measured yield map at harvest. Moreover, the SEBAL-derived yield map largely agreed with
the measured yield map with relative errors of 0.3% among the IMZs and of 1% (0.21 t ha−1) for the
whole field. While the FAO method-based stress coefficient (Ks) never dropped below the optimum
condition (Ks = 1) for all the IMZs and the uniform zone, SEBAL Ks was sensitive to changes in water
status and remained below 1 during most of the growing season. Using SEBAL to capture the daily
spatial variation in crop water needs and growth would enable the definition of transient, dynamic
IMZs. This allows farmers to apply proper irrigation amounts increasing water use efficiency.
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1. Introduction

Agriculture is a major and inefficient consumer of fresh water and the competition with other
sectors for water is likely to increase exponentially in the next decades [1]. For this reason, a more
reasonable and efficient use of water in agriculture is a crucial aspect in order to meet the food needs of
the rapidly increasing world population [2,3].

Variable rate irrigation (VRI) has been demonstrated to provide better water use efficiency (WUE)
while increasing crop yields [4–6]. VRI systems are today integrated with a wide variety of information
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in order to define proper rates for each irrigation management zone (IMZ), ranging from soil moisture
sensing to thermal imagery [7–10].

Crop evapotranspiration (ETc) is an important factor in estimating crop water demand and has
been used to estimate yields and schedule irrigation [8,11]. Commonly, ETc from agricultural areas is
calculated by multiplying the reference evapotranspiration (ET0; [12]) by a constant crop coefficient
without considering the possible ETc spatial variations in water or nutrient-limited zones ([13]).

Energy balance techniques [14–17] have been extensively used to map evapotranspiration at
the local or regional scale through satellite-based image-processing tools such as the surface energy
balance algorithms for land (SEBAL; [18]) and mapping evapotranspiration at high resolution with
internalized calibration (METRIC™; [13]). These approaches have been tested under different soil and
climate conditions in more than 30 countries worldwide [19–22] with typical field scale accuracy in ET
estimates ranging between 85% for one single-day events up to 95% on a seasonal basis [20].

SEBAL estimates the evapotranspiration component converting the sensed satellite radiances
(visible, near infrared and thermal-infrared) into surface parameters such as surface temperature, surface
albedo, and normalized difference vegetation index (NDVI). The different components of the energy
balance equation are then calculated using these surface parameters [13]. SEBAL’s main advantages
are (i) limited input data required, (ii) it estimates ET without a priori knowledge on soil, crop and
management conditions (no land use classification required), (iii) it is based on a physical concept,
applicable for various climates and (iv) it can be applied at different spatial and temporal resolution [18].

While remote sensing-based energy balance techniques (e.g., SEBAL) have been extensively
used to map evapotranspiration at different scales with interesting results [21,22], the effort in using
remotely sensed data to evaluate water management practices and schedule irrigation has been limited.
Some authors [23] argued the temporal and spatial resolution of currently available remote sensing data
are not sufficient to use actual evapotranspiration estimates for on-farm research. Typical turnaround
time for satellite image acquisition and processing is between one and three weeks [23], whereas ET maps
should be delivered almost in real-time to correctly use the remotely sensed information for irrigation
scheduling. Moreover, the spatial resolution of ET maps calculated applying remote sensing-based
energy balance techniques frequently does not match with spatial resolution requested for VRI.

However, data fusion, sub-pixel extraction [23] and temporal integration techniques [24–26] could
represent an alternative to improve both spatial and temporal resolution. The availability of new
satellite platforms with higher temporal and spatial resolution is a need for a better deployment of these
models. In addition, evapotranspiration estimates need to be validated by means of well-established
methods, such as soil moisture sensing, shown to be a strong indicator of plant water status in order to
define specific irrigation thresholds [10].

The objective of this study is to calculate SEBAL-based actual ET estimates in a pivot-irrigated
field in North-Eastern Italy and compare the results to soil moisture data and crop stress coefficients
(Ks). Accuracy of the SEBAL results is then assessed by comparing spatially distributed biomass and
crop yield measurements.

2. Materials and Methods

2.1. Study Area and Plant Material

To validate SEBAL-based ET and biomass estimates, a study was conducted on a pivot-irrigated,
16-ha field located in Pettorazza Grimani, Italy (45◦6′7.19′′N, 12◦0′45.51′′E; Figure 1). Maize (Zea mais
L.) seeds of PR32B10 (Pioneer Hi-Bred International, Inc., Johnston, IA, USA) variety were planted
on April 13th, 2015 at 0.45 m inter-row spacing and seeding rate of 8 seeds m−2. Prior to planting,
cultivation operations included an autumn plowing at 30 cm depth and a seedbed preparation carried
out by using a spring tine cultivator. Fertilization included a base-dressing of 65 kg N ha−1 with
manure, 92 kg P2O5 ha−1, 111 kg K ha−1 K2O before the autumn plowing and a top-dressing of 184 kg
N ha−1 (urea). Maize was harvested on September 7th, 2015.
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Figure 1. Aerial image of the study area with the field boundaries (in red).

2.2. Soil Sampling and Management Zone Delineation

Irrigation management zones were defined integrating soil texture and NDVI data. A mixed-
sampling scheme of the top soil layer (0–0.3 m) was followed based on a regular grid: 55 samples were
collected at the nodes of 55 m × 65 m grids and 48 additional points at the nodes of 16 transects at 2.5,
15 and 30 m from each randomly chosen grid node, resulting in a total of 103 samples (Figure 2a; [27]).
Soil texture was determined for all the 103 disturbed soil samples (Figure 2b,c) using a Malvern
Mastersizer 2000 (Malvern Instruments Ltd, Great Malvern, UK) laser particle size analyzer (see
Supplementary Materials for texture analysis method) and spatially interpolated using ordinary
kriging. Maize spatial variability in NDVI was estimated at the peak of plant vigor (tasseling/silking
growth stage) from previous seasons using LANDSAT 7 images of June 29th, 2009 and June 24th,
2013 [28]. LANDSAT 7 images were selected since they have the same spatial resolution as the VRI
center pivot (30 m x 30 m pixels). Moreover, these images were selected since they represented the
maize variability in NDVI during two extremely different growing seasons: A rainy (2009) and a dry
(2013) year.
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Figure 2. Soil sampling scheme utilized for the determination of soil texture with the 103 sampling
points (a), clay content (expressed as percentage, %; b) and sand (expressed as percentage, %; c) content
maps resulting from ordinary kriging. Modified from [28].

The investigated area was then divided into three IMZs based on the management zone analyst 1.0’s
fuzziness performance index (FPI) and the normalized classification entropy (NCE) [29]. As discussed
in [29], the optimal number of zones (clusters) was identified when each index had its minimum
representing the least membership sharing (FPI) or greatest amount of organization (NCE). In addition,
a fourth IMZ was defined and treated as the uniform irrigation zone.

2.3. Soil Moisture Assessment and Variable Rate Irrigation System Assessment

To monitor the soil moisture condition in the field, three 5TE soil moisture sensors (Decagon
Devices Inc., Pullman, WA, USA) were installed in each IMZ at three different depths, 0.1, 0.3 and
0.5 m below the soil surface. Each array of soil moisture sensors was connected to an EM50G wireless
cellular data logger (Decagon Devices Inc., Pullman, WA, USA). Before field installation, all sensors
were calibrated in the laboratory (accuracy of ± 4%; [28]). The sensors collected soil moisture data
every 30 min. Data were averaged for each array of sensors to get daily averages for the three different
depths and then a unique average for each location. In the three IMZs, irrigation was scheduled when
volumetric water content (VWC) approached 35% for zone 1, 32% for zone 2 and 28.5% for zone 3.
The specific irrigation thresholds were defined based on soil hydraulic parameters for the different
IMZs. Having the zones different soil characteristics, the thresholds were defined accordingly. In the
Uniform IMZ, irrigation was applied at the maximum rate (38 mm) each time one of the other IMZs
was irrigated.

Irrigation was supplied using a 270-m long, center pivot equipped with a Valley® (Valley Irrigation,
Valley, USA) variable rate irrigation system. Each sprinkler was controlled (on or off) by a pneumatically
actuated flow control valve. The 96 sprinklers were grouped into 10 zones, each about 25 m in length.
The uniformity of the irrigation system was assessed before the beginning of the growing season,
following the American Society of Agricultural and Biological Engineers (ASABE) standards and the
“catch can” layout proposed by [28,30,31]. The uniformity of application of the conventionally operated
pivot (without VRI) was evaluated using the Hermann and Hein (CUHH) uniformity coefficient [32]
and the lower quarter distribution uniformity (DUlq) coefficient [30]. The uniformity test resulted in
high CUHH and DUld (93.9 and 0.91, respectively). Moreover, measured collector volumes (observed)
were compared to the predicted volumes (expected) [33] in order to test the performance of the VRI
system. The application rates were set at 50%, 60%, 70%, 80% and 90% of the maximum pivot rate
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(30 mm). The catch cans were placed following two patterns, transect and arc-wise. Root mean square
error (RMSE) of 1.7 and r2 = 0.86 highlighted a good fit between expected and observed rates [28].

2.4. Evapotranspiration, Biomass and Yield Estimates Using the Surface Energy Balance Algorithm for
Land (SEBAL)

The surface energy balance algorithm for land (SEBAL) determines the actual evapotranspiration
(ETr) of each pixel by solving the energy balance equation (Equation (1); [18]):

λE = Rn −G0 −H, (1)

where Rn is the net radiation, λE is the latent heat flux, G0 is the soil heat flux and H is the sensible
heat flux.

Rn is calculated from surface reflectance and surface temperature, the soil heat flux (G0) as a
function of Rn, surface temperature and NDVI. H is considered proportional to the ratio between the
surface-air temperature difference (dT) and bulk aerodynamic resistance (rah) [18,24]. SEBAL computes
the sensible heat flux H through a “calibration” procedure where dry (Rn = H + G0, thus λEdry ~ 0)
and wet (Rn = G0 + λE, Hwet ~ 0) pixels are selected and used to calculate the vertical temperature
difference (∆T) required to match the variation in H between the dry and wet pixels [26]. The wet pixel
was identified as a very well watered crop pixel (low temperature, low albedo and high NDVI) and
the dry pixel was searched between poorly vegetated or base soil areas with high temperature, high
albedo and low NDVI.

Therefore, SEBAL calculates the evaporative fraction (Λ) considering the H andλE components ([18];
Equation (2)).

Λ =
λE

(Rn −G0)
=

Rn −Go −H
Rn −Go

(2)

Moreover, the evaporative fraction (Λ) is assumed to be constant throughout the day. In fact, the
difference between the Λ at the moment of image collection and the 24-h Λ average is considered as
non-significant [24,26].

The latent heat flux λE is then calculated multiplying the Λ by the diurnal net radiation (Rn24h) as
in Equation (3):

λE = Λ ×Rn24h. (3)

Landsat 7 and 8 satellite images from April 19th, May 14th and 29th, June 6th and 30th, July 8th,
16th and 24th, August 9th and 17th, and September 2nd, 2015 were downloaded and automatically
processed using a web-based platform called Tethys (Centrale Valutativa s.r.l.) to estimate the energy
balance components. All dates had favorable clear-sky weather conditions. Visible bands (bands 1, 2,
3, 4, 5 and 7) were used for albedo (α), and vegetation index calculations. Thermal band (band 6) was
used for surface temperature (Ts) and sensible heat (H). The spatial resolution was 30 m × 30 m on the
visible bands and 60 m × 60 m on the thermal band. An atmospheric correction was performed to
convert the top-of-atmosphere (TOA) radiance into surface reflectance using the second simulation of
satellite signal in the solar spectrum algorithm (6S; [34]).

To overcome the lack of satellite images on a daily basis, actual evapotranspiration (ETr) was
calculated for each of the aforementioned satellite image acquisition dates. Then, ETr on the date
j was divided by the reference evapotranspiration (ET0) on the same date j to calculate the fraction
ETrFj. ET0 was estimated using the FAO-56 method (Penman–Monteith equation) [35]. The fraction
ETrFj = ETr/ET0 was then considered constant for the time period between j and the successive
acquisition date j + 1 [24,26]. Seasonal actual evapotranspiration (ETseasonal) was then calculated using
Equation (4).

ETseasonal =
∑

j

(ETrF j ×
∑t j+1

i=t j
ET0i), (4)
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where tj and tj + 1 represents the time period between two consecutive image acquisition dates.
Maize aboveground biomass production (in kg ha−1 day−1) for each pixel of the satellite images

was calculated from Tethys using the fraction of absorbed photosynthetically active radiation (fPAR) =

absorbed PAR (APAR)/total PAR (PAR), the evaporative fraction (Λ) and light use efficiency (e’). fPAR
was estimated from NDVI values as shown in Equation (5) [17]:

f PAR = −0.161 + 1.257×NDVI. (5)

The light use efficiency factor was set at 4 g/MJ [34]. Total biomass (BIO) production was converted
into total above-ground biomass as total biomass (BIO) × 0.77 (Equation (6); [17]).

BIO = e′ ×Λ × f PAR× 0.84. (6)

Maize yield was obtained multiplying the total aboveground biomass for each of the irrigation
management zones by a specific harvest index (HI) factor equal to 0.5. Measured and SEBAL-derived
yield averages were also calculated for each IMZ, uniform zone and for the rainfed portion of the
field (top right corner). Moreover, differences between the measured and SEBAL-estimated yield were
calculated for each pixel as in Equation (7):

Delta =
SEBAL yield− observed yield

observed yield
× 100. (7)

2.5. Crop Growth Data

To monitor crop growth during the season, biomass samples were collected on three sampling
dates, at 72 (June 24th, 2015), 102 (July 24th, 2015) and 115 (August 6th, 2015) days after planting (DAP).
On each sampling date, two 1 m2 sections were destructively harvested for each IMZ. The biomass
was then dried for 24 h in a forced-air oven to determine the total above-ground dry weight (DW)
in kg ha−1.

Yield data was collected at harvest using a New Holland CR8080 (New Holland Agriculture,
Italy) combine harvester equipped with a yield monitor (grain mass flow and moisture sensor) and a
differential global positioning system (DGPS). The harvester had a 7.5 m header and collected yield
data every second. Raw data, expressed as 14% grain moisture content, was imported using SMS™
Advanced (AgLeader Technology, Ames, USA), cleaned to exclude field-edge effect and low yield values
due to combine maneuvers and expressed as dry matter per hectare (DM ha−1). The combine-derived
data points were interpolated and resampled at 30 m × 30 m to match the spatial resolution of the
SEBAL yield map.

2.6. SEBAL-Based and Soil Moisture Data-Based Water Stress Coefficient

Water stress coefficients (Ks) were calculated for each soil moisture sensor location using the
moisture data collected at the three different depths. Water content at −33 KPa (field capacity) and
−1500 KPa (permanent wilting point) were estimated from the soil characteristics of each IMZ using
the “Rosetta” model [36]. Soil moisture-based Ks was then calculated on a daily basis using the FAO-56
method as follows [12]:

Ks =
TAW −Dr

RAW
, (8)

where TAW (mm) is the total available soil water in the root zone, Dr (mm) is root zone depletion and
RAW is the fraction of the TAW that a crop can extract from the root zone before reaching water stress
(RAW assumed 0.5 × TAW).

The SEBAL-based Ks (Ks SEBAL) was calculated by extracting the SEBAL actual Kc (Kc SEBAL) for
each sensor location on a daily basis. Therefore, Ks SEBAL was divided by the basal crop coefficient to
estimate the specific Ks (Equation (9)).
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Ks SEBAL =
KcSEBAL

Kcb
, (9)

where Kcb is the basal crop coefficient estimated according to the FAO method [35] and Kcsebal is the
actual crop coefficient calculated from SEBAL.

Ks SEBAL is assumed to be equal to 1 when Kcsebal ≥ Kcb. The Ks values were compared over the
irrigation season to investigate a possible relationship between the two methods and the sensitivity of
Kc SEBAL in capturing water stress-related changes in evapotranspiration.

2.7. Statistical Analyses

A regression analysis was used to evaluate SEBAL performances in estimating the biomass
collected on the aforementioned sampling dates. The coefficient of determination was also calculated
to describe the proportion of the total variance described by the model.

3. Results

3.1. Irrigation Management Zones (IMZs) Delineation

The field presented high variability in soil texture moving along the north-south axis with
coefficient of variation of 25% for sand and 23% for clay. The sandy areas were located in the southern
part while the north part of the field had high clay content (Figure 2). NDVI maps were strongly
dependent on the season with the sandy areas showing high NDVI values in rainy seasons as in the 2009
map (Supplementary Materials Figure S1) and low values in dry seasons (2013 map, Supplementary
Materials Figure S1) [28]). Soil texture (sand and clay; Figure 2) and NDVI data were integrated
in order to delineate the IMZs using the aforementioned Management Zone Analyst software. The
optimal number of management zones was selected based on the fuzziness performance index (FPI)
and the normalized classification entropy (NCE) indices as shown in Figure 3 [29]. The cluster analysis
identified a total of four zones but only the three IMZs under the pivot-irrigated area were considered
for the experiment (Figure 4a): Zone 1, located in the north-eastern part of the field, was characterized
by silty loam texture; Zone 2, located in the central part of the field, by loam texture, and Zone 3, in the
south-western part of the field, by sandy-loam texture. The irrigation application map (Figure 4b) was
developed matching the aforementioned management zones (zone 1, 2 and 3), and a fourth, uniform
irrigated area to the resolution of the center pivot. The application map was then downloaded to the
VRI controller and used for every irrigation event.

Figure 3. Fuzziness performance index (FPI) and normalized classification entropy (NCE) values as
calculated by the Management Zone Analyst during the cluster analysis.
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Figure 4. Management zones resulting from the Management Zone Analyst cluster analysis (a), final
application map used for variable rate irrigation with the integration of the three IMZs (zone 1—orange;
zone 2—red, zone 3—light blue) and the uniform irrigated area (green zone; b).

3.2. Soil Moisture Data and Irrigation Prescriptions

In 2015, rainfall totaled 272.8 mm between planting and harvest (Figure 5). The growing season
was characterized by a dry April, July, August, September and a wet period between June and July.
Total irrigation rates applied for each IMZ and the uniform zone are presented in Table 1 [28]. The high
water demand during the growing reason resulted in a progressive decrease of the VWC below field
capacity from mid-July (93 DAP) to the beginning of August, since the time required from the pivot for
a complete rotation was the limiting factor (Figure 6).

Figure 5. Daily maximum (black line), minimum (red line) air temperature and rainfall (vertical
bars) during the 2015 growing season from the Agenzia Regionale per la Prevenzione e Protezione
Ambientale del Veneto (ARPAV; http://www.arpa.veneto.it/) weather station.

http://www.arpa.veneto.it/
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Table 1. Irrigation supplied during the 2015 growing season for all IMZs and the uniform zone.

Irrigation Event
(DAP) IMZ 1 (mm) IMZ 2 (mm) IMZ 3 (mm) Uniform Zone

(mm)

75 34 38 30 38
81 34 38 30 38
87 38 38 30 38
95 38 38 38 38
102 38 38 34 38
115 38 38 30 38
122 30 30 24 30

TOTAL 250 258 216 258

As discussed before, irrigation was triggered when VWC approached 35% for zone 1, 32% for zone
2 and 28.5% for zone 3 (black dotted lines reported in Figure 6). Moreover, VRI allowed water saving
of 8 mm (IMZ 1) and 42 mm (IMZ 3) throughout the season when compared to uniform irrigation
rates, while IMZ 2 totaled the same amount of water supplied in the uniform zone (Table 1).

Figure 6. Cont.
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Figure 6. Volumetric water content (VWC) data for the three IMZs (a–c) and the uniform area (d).
Horizontal black dotted lines represent the irrigation threshold used for scheduling irrigation over the
2015 growing season (only for the three IMZs), red dotted lines represent the 50% total available soil
water in the root zone (TAW) threshold calculated using the FAO method [35].

3.3. Measured and SEBAL-Based Data

Figure 7 shows the maize biomass values in t DM ha−1 hand harvested for each IMZ on the three
aforementioned sampling dates (blue bars). The high irrigation amounts applied during the growing
season to avoid water stress in the experimental area resulted in no significant differences among
the four irrigation zones. SEBAL-based biomass values extracted from the sensor locations at 72, 102
and 115 DAP resulted in a good agreement with observed data (r2 = 0.87, Supplementary Materials
Figure S2). However, as shown in Figure 7, SEBAL considerably underestimated the measured biomass
at every sampling date. This underestimation in biomass could be related to the different spatial
resolutions of the two systems: While biomass samples were collected on a 1 m2 sections, SEBAL
provided biomass estimates on 30 m pixels × 30 m pixels.



Remote Sens. 2019, 11, 2069 11 of 18

Figure 7. Biomass samples collected at 72 (24/6), 102 (24/7) and 115 (6/8) days after planting (DAP)
during the growing season (blue bars) and SEBAL biomass estimates on the same sampling dates for
all the zones.

SEBAL-derived ETr maps on June 2nd, July 2nd and August 6th (Figure 8) exhibited a marked
temporal variation across the field (NDVI maps used to calculate ETr are shown in Supplementary
Materials Figure S3). While early season ETr maps as June 2nd, 2015 presented a limited variability
in ET with values ranging between 3.4 and 4.3 mm/d (Figure 8a), late in the season the variability
increased as in the case of August 6th, 2015 (Figure 8c) with ET values between 4.0 and 6.2 mm/d.
In general, the central part of the field had greater ETr values and the right-hand part had low ETr.

Figure 8. Temporal variability in SEBAL actual evapotranspiration (ETr) maps on June 2nd (a), July
2nd (b) and August 6th, 2015 (c).

This is confirmed from the seasonal (April 13th to September 7th) evapotranspiration map
(ETseasonal; Figure 9). Seasonal ET ranged between 471 mm to 554 mm with the lowest values in the top
right part of the field and the highest values in the central area. ETseasonal map largely matches the
spatial variability of the measured yield map, with high seasonal ET associated with high yielding
zones and low ET characterizing the low yielding zones (Figure 10a).
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Figure 9. Map of seasonal ET (ETseasonal) for the study area in 2015 during the growing season (April
13th to September 7th).

Figure 10. Measured (a) and SEBAL (b) yield maps, relative error map (c) between measured and
SEBAL yield values.

The SEBAL-based yield map (Figure 10b) had a similar spatial pattern when compared to the
measured yield map. Measured yield values ranged between 5.2 to 13.2 t ha−1, whereas SEBAL yield
ranged between 7.5 to 11.1 t ha−1. In both maps, low maize yields were generally observed in the
right-hand part of the field, with the lowest yielding area at the top right corner. Moreover, a relative
error map was generated as the difference between measured and SEBAL yield values on a pixel
basis (Figure 10c). Almost all the pixels with relative errors higher than 25% are located outside the
pivot-irrigated area in the rainfed portion of the field, indicating actual biomass or harvest index (HI)
could have been overestimated. However, more than 75% of the map presented relative errors lower
than 25% between measured and SEBAL yields with most of the pixels having errors below 15%.
At the whole field, SEBAL underestimated the measured yield by less than 1 % (0.21 t DM ha−1), which
represents an excellent performance in agreement with [37].

In addition, measured and SEBAL yield were averaged at the IMZ scale, considering also the
rainfed part of the field (top right corner; Table 2). Measured yield averages between 10.47 and 10.92 t
ha−1 in the irrigated areas and 9.39 t ha−1 in the rainfed portion. Differences in yield were not significant
between the VRI and the uniform irrigated areas, however, VRI resulted in water savings up to 42 mm
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as mentioned in 3.2. SEBAL was in a good agreement with measured data, slightly underestimating
yield in IMZ 1, IMZ 2 and uniform zone, between −1.9% and −3.6%, and overestimating yield (0.8%)
in IMZ 2. A 6.4% overestimation was observed in the rainfed zone. Overall, SEBAL underestimated
the total yield by 0.3%, which represents again an excellent result.

Table 2. Irrigation supplied during the growing season for all the management zones and the
uniform zone.

Irrigation
Management

Zone

SEBAL
Above-Ground

Biomass (t DM ha−1)

Harvest
Index

Measured
Yield (t

DM ha−1)

SEBAL-Estimated
Yield (t DM

ha−1)

Difference
(%)

IMZ 1 20.77 0.50 10.92 10.53 −3.6%
IMZ 2 21.23 0.50 10.47 10.55 0.8%
IMZ 3 20.66 0.50 10.53 10.33 −1.9%

Uniform 21.07 0.50 10.85 10.53 −2.9%
Non-irrigated Zone 20.02 0.50 9.39 9.99 6.4%

3.4. SEBAL and Soil Moisture-Based Ks

The water stress coefficient (Ks) was used to estimate possible reduction in the potential
evapotranspiration over the season. Daily Ks were calculated using the previously described FAO
method and the SEBAL actual evapotranspiration. Figure 11 shows the FAO Ks (orange lines) and the
SEBAL-based Ks (blue lines) values calculated for all the IMZs and the uniform area.

VWC never exceeded the FAO 50% TAW threshold in all the management zones (Figure 6) and
in consequence FAO Ks was always equal to 1 [36]. Conversely, the SEBAL Ks showed changes over
the growing season in all the management zones with values frequently lower than the optimum
Ks = 1. Moreover, the trend in SEBAL Ks resulted similar in all the zones probably because of the
high frequency of irrigation events allowed to maintain the crop well watered irrespectively of the
soil variability.
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Figure 11. Volumetric water content (VWC), FAO-56 and SEBAL-based water stress coefficients (Ks)
calculated over the 2015 growing season for zone 1 (a), zone 2 (b), zone 3 (c) and the uniform irrigated
area (d).
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4. Discussion

Weather conditions observed during the summer, did not allow us to fully exploit the VRI
potentials. Indeed, exceptionally high temperatures and prolonged drought were observed starting
before maize flowering to mid-August. These conditions smoothed the differences between IMZs in
terms of water retention capabilities and, as a consequence, between irrigation volumes. Nevertheless,
the VRI system coupled with the soil moisture sensors optimized the irrigation scheduling and
maximized yields, allowing for fine tuning of the irrigation, particularly in IMZ 1 and IMZ 3. In turn,
maize yield did not show any significant differences among the management zones, while water
savings compared to the business-as-usual regime ranged from 8 mm (low irrigation requirement
zone) to 40 mm (high irrigation requirement zone). In particular, it is worth pointing out that in the
sandy area (i.e., IMZ 3), it was possible to obtain a reduction of irrigation volumes, still maintaining
yield performances not different from the irrigated control treatment (uniform IMZ).

In the current study we supported the hypothesis that SEBAL estimated parameters such as actual
evapotranspiration, crop coefficient and daily biomass accumulation could be used to understand the
spatial and temporal variation in the maize water status. Moreover, whether the integration between
SEBAL parameters and soil moisture information could represent a viable tool for scheduling irrigation
and providing better crop yields while reducing the irrigation amounts.

SEBAL was able to describe 87% of in-field biomass variability, but average data were overestimated
with respect to the actual values. These discrepancies could be related to the different spatial resolution
between SEBAL and in situ operations. While the former calculated the biomass on a 30 m × 30 m grid,
the hand harvested samples were collected on 1 m2 plots. Improving the sampling pattern, collecting a
more representative sample for each selected pixel, or using SEBAL parameters with higher spatial
resolution could represent possible alternatives to increase the accuracy of estimates on both sides [17].

Conversely, SEBAL-estimated maize yield well correlated to the measured yield map in all the
aforementioned management zones but also on a pixel basis (average error less than 1%; 0.21 t ha−1).
The relative error map (Figure 10c) reinforces the excellent performance of the algorithm as noted
by [37]. Moreover, SEBAL exhibited the highest overestimation of maize yield in the rainfed area
(+6.4%). The authors suggest this was probably related to uncertainties in harvest index (HI), which
could be affected by plants stress conditions. In fact, the integration of a crop stress-related harvest
index model could represent a way to provide better SEBAL-based yield estimates especially for zones
under non optimal conditions, as rainfed areas, or when stress periods occur even in irrigated portions
over the growing season [38].

ETr and crop coefficient maps calculated by SEBAL, clearly highlight the potentialities of the
model to optimize VRI. Unfortunately, it was not possible to compare the accuracy of SEBAL and
FAO methods with respect to field ET measurements (e.g., lysimeters and flux towers). As discussed
in many other studies, SEBAL resulted in underestimation of ET when compared to the FAO dual
coefficient method [19,22,35]. In addition, FAO-56 tabulated Kc and Kcb has been shown to overestimate
the observed crop coefficients and ET for humid regions up to 40% [39,40] due to the complexity of
the interactions between several soil, weather and plant physiological factors. Moreover, weather
conditions (e.g., cloud cover and net radiation) at the time of the satellite overpass and the selection of
dry and wet pixels could strongly influence the final ETc values calculated from SEBAL [41,42].

Anyway, SEBAL ETr maps and Ks values showed a marked variability over the growing season
even if the FAO method suggested no stress occurred (Ks = 1). While the widely-used FAO method does
not account for spatial variability in crop evapotranspiration, the SEBAL ability to use pixel-specific
estimates of plant water status represent a promising tool for the definition of transient irrigation
management zones as the season moves, thus enabling dynamic variable rate irrigation.

5. Conclusions

In this study, the surface energy balance algorithm for land (SEBAL) was used to map crop
evapotranspiration and biomass accumulation and estimate crop yield in a pivot-irrigated maize
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field. Moreover, SEBAL estimates of crop water stress were coupled with in-season soil moisture
sensing data in order to define an irrigation scheduling strategy able to integrate these two approaches.
Measured biomass and maize yield values showed a good agreement with SEBAL estimates, indicating
the algorithm could be used to provide accurate estimates of crop growth and maize final production.
The SEBAL sensitivity to the complex interactions between several soil, weather and plant physiological
factors, allowed also to describe the spatiotemporal variability of crop water demands at the field
scale. These results suggest that the integration of SEBAL with in-field soil moisture sensing could
allow farmers to optimize irrigation scheduling for variable rate irrigation systems, overcoming the
simplified FAO single or dual coefficients methods. However, major advancements are still needed
for a successful use of SEBAL for irrigation purposes. The specific relationship between SEBAL Ks

values and crop water status should be defined in order to identify the proper dynamic variable rate
irrigation zones. SEBAL should be coupled with crop simulation models (e.g., DSSAT) to overcome its
limited use during long cloudy periods. SEBAL applications should be based on satellites data with
higher spatial and temporal resolutions.

Anyway, SEBAL adoption for precision agriculture irrigation will allow us to advance the irrigation
science particularly in environments where water availability is scarce or the quality of irrigation water
is poor.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/17/2069/s1.
Figure S1. Comparison between measured biomass and SEBAL biomass estimates in the three irrigation
management zones at 72, 102 and 115 days after planting. Figure S2. Normalized Difference Vegetation Index
(NDVI) maps from June 29th, 2009 and June 24th, 2013 utilized for the definition of the irrigation management
zones in the experimental area. Figure S3. Normalized Difference Vegetation Index (NDVI) maps from April 19th
(a), May 14th (b), June 6th (c), July 8th (d), July 24th (e), August 9th (f), 2015 used from the Surface Energy Balance
Algorithm for Land (SEBAL) to calculate actual evapotranspiration (ETr).
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