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Abstract: The precise classification of crop types is an important basis of agricultural monitoring
and crop protection. With the rapid development of unmanned aerial vehicle (UAV) technology,
UAV-borne hyperspectral remote sensing imagery with high spatial resolution has become the
ideal data source for the precise classification of crops. For precise classification of crops with a
wide variety of classes and varied spectra, the traditional spectral-based classification method has
difficulty in mining large-scale spatial information and maintaining the detailed features of the
classes. Therefore, a precise crop classification method using spectral-spatial-location fusion based
on conditional random fields (SSLF-CRF) for UAV-borne hyperspectral remote sensing imagery is
proposed in this paper. The proposed method integrates the spectral information, the spatial context,
the spatial features, and the spatial location information in the conditional random field model by
the probabilistic potentials, providing complementary information for the crop discrimination from
different perspectives. The experimental results obtained with two UAV-borne high spatial resolution
hyperspectral images confirm that the proposed method can solve the problems of large-scale spatial
information modeling and spectral variability, improving the classification accuracy for each crop
type. This method has important significance for the precise classification of crops in hyperspectral
remote sensing imagery.

Keywords: hyperspectral remote sensing imagery; conditional random fields; spatial features; spatial
location; precise crop classification; unmanned aerial vehicle

1. Introduction

China is one of the most populous countries in the world. With the rapid development of
urbanization, crop protection in China is becoming more and more important [1,2]. Managing and
monitoring agricultural areas and crop types in a timely manner is the basic requirement for ensuring
food security [3]. The traditional methods of obtaining crop planting information include field
surveys and statistical sampling. Although these methods are both accurate and objective, they
have shortcomings in large-scale implementation and do not provide accurate spatial distribution
information for crop areas [4]. With the development of remote sensing technology, the use of remote
sensing imagery to classify crops is an effective way to monitor the spatial distribution of agriculture
and obtain basic data for crop growth monitoring and yield forecasting [5,6].

Most Chinese agricultural systems are dominated by smallholder family farming, which provides
70–80% of Chinese food sources [7]. These smallholder family farms are characterized by a small
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scale (less than 2 hectares, blurred boundaries), large distribution areas, mixed planting, etc. [8],
meaning that traditional satellite-based multispectral remote sensing images and hyperspectral remote
sensing images are unable to provide a sufficient data resolution for precision agriculture applications.
However, the technology of unmanned aerial vehicles (UAVs) and light-weight sensors has provided
an effective boost to the development of precision agriculture [9].

Compared with satellite or airborne data acquisitions, UAVs have a lower operating cost [10,11],
are capable of more flexible operation [10,12], and allow more flexible flight route design [13]. UAVs
can realize the rapid monitoring of crops and natural resources under custom temporal and spatial
scales, and are now being widely used in the fields of precision agriculture, land-cover mapping [13],
vegetation studies, environmental studies, and disaster monitoring [14]. Pádua et al. [15] used
multi-temporal RGB images obtained by UAV to monitor grapevine growth; Zhou et al. [16] used two
cameras in different spectral ranges installed on a UAV to obtain multi-temporal images to predict rice
yield; and Marcial-Pablo et al. [17] used RGB and UAV-based multispectral images to estimate the
vegetation fraction of corn. Hyperspectral sensors can be installed on UAVs to obtain hyperspectral
remote sensing images with a high spatial resolution. Therefore, more and more spectral information
and richer spatial information can be obtained in these images. At the same time, however, the simple
use of spectral classification alone can no longer be applied to the classification of high spatial resolution
hyperspectral data, and more spatial features need to be extracted for the precise classification of crops.

The random field model is one of the research hotspots of classification methods based on
spatial context information, and it can construct scale-independent contextual information in a
unified probability framework. The Markov random field (MRF) model is a typical random field
model that can model the contextual information of the classification label, but it assumes that the
observation information is conditionally independent, which limits the flexibility of spatial information
utilization [18]. The conditional random field (CRF) model has flexibility of modeling, which overcomes
the shortcomings of the MRF model and allows the posterior probability of given observation data to be
directly modeled [19]. In the CRF model, the local potential function defines the relationship between
random variables in the clique. Based on the different types of cliques, the potential function can be
divided into unary potential, pairwise potential, and higher-order potential functions. The pairwise
CRF model has been successfully applied to remote sensing processing and classification [20–25].
For example, the support vector conditional random field classifier incorporating a Mahalanobis
distance boundary constraint (SVRFMC) can not only avoid the explicit modeling of observed data,
but can also undertake appropriate smoothing with the consideration of contextual information by
integrating SVM and a Mahalanobis distance boundary constraint [21]. The detail-preserving smoothing
classifier based on conditional random fields (DPSCRF) considers the interaction of segmentation
and classification in the CRF model, and adds spatial context information by segmentation [24].
For spatial–spectral fusion based on conditional random fields for the fine classification of crops in
UAV-borne hyperspectral remote sensing imagery (SSF-CRF), the spatial and spectral features of the
high spatial resolution hyperspectral data are fused by combining suitable potential functions in a
pairwise conditional random field model to precisely classify crops [25]. However, these pairwise CRF
models have difficulty in directly modeling large-scale spatial interaction information, resulting in the
model often producing local over-smoothing and spectral variability in classification problems [23].
In the face of the problem of precise classification of crops with a wide variety and varied spectra,
the traditional potential functions have difficulty in maintaining the details of the features in the
classification, and will affect the accuracy of some classes due to the confusion with other classes.

Therefore, in this paper, in view of the problems of local over-smoothing and spectral
variability faced by the CRF model in the precise classification of crops based on high-resolution
hyperspectral remote sensing images, we propose a method for the precise classification of crops
using spectral-spatial-location fusion based on conditional random fields (SSLF-CRF) for UAV-borne
hyperspectral remote sensing imagery. The proposed method is further deepened on the basis of
SSF-CRF, which constructs a unary potential function that combines spectral and spatial feature
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information, a pairwise potential function of the spatial context information, and a higher-order
potential function of the spatial location information. In the method of SSLF-CRF, the spectral
information provides the most basic judgment for classification, based on the spectral diversity of
different features; the spatial feature information offers more detailed information; the spatial context
information uses the spatial relationship of neighboring pixels to spatially smooth and reduce noise;
and the spatial location information provides complementary information for classification from the
perspective of the non-local similarity of classes, which helps to distinguish similar land-cover types

2. Method

2.1. The SSLF-CRF Model

CRF is a probabilistic discriminant model. The maximum posterior probability P
(
x
∣∣∣y )

distribution
is directly modeled as a Gibbs distribution [26,27], under the condition of given observation data,
avoiding modeling the probability distribution of observed variables and having more flexible
contextual information modeling capabilities, as shown in Equation (1):

P
(
x
∣∣∣y )

=
1

Z(y)
exp

−∑
c∈C

ψc(xc, y)

 (1)

where the high spatial resolution hyperspectral remote sensing imagery is represented as y ={
y1, y2, · · · , yN

}
; yi is the spectral vector of the pixel at image position i, where i ∈ V = {1, 2, · · · , N} and

N is the total number of pixels in the observed data; x = {x1, x2, · · · , xN} is the class labels of the whole
image; xi(i = 1, 2, · · ·N) comes from the label set L = {1, 2, · · · , K}, where K is the number of classes;
Z(y) =

∑
x exp

{
−
∑

c∈C ψc(xc, y)
}

is the normalization function; and ψc(xc, y) is the potential function of
clique c to model the relationship of the random variables, where C is the set of all the cliques, which
represents a fully connected subgraph. Correspondingly, the Gibbs energy is as shown in Equation (2):

E
(
x
∣∣∣y )

= − log P
(
x
∣∣∣y )
− log Z =

∑
c∈C

ψc(xc, y) (2)

Based on the CRF model, the goal of image classification is to find the largest label image x by
the Bayesian maximum a posteriori (MAP) rule, so that the posterior probability P

(
x
∣∣∣y )

is the largest.
Therefore, the MAP label XMAP of the random field can be expressed as:

XMAP = argmaxP
(
x
∣∣∣y )

X

= argminE
(
x
∣∣∣y )

X

(3)

Therefore, in the classification problems of the CRF model, maximizing the posterior probability
distribution P

(
x
∣∣∣y )

is equivalent to minimizing the energy function E
(
x
∣∣∣y )

. In the proposed method,
a higher-order CRF model, with the ability to encode higher-order spatial information, is used to
improve the classification performance. The higher-order CRF model can be written as:

E
(
x
∣∣∣y )

=
∑
i∈V

ψi(xi, y) +
∑

i∈V, j∈Ni

ψi j
(
xi, x j, y

)
+

∑
c∈C

ψc(xc, y) (4)

where ψi(xi, y) is the unary potential function; and ψi j
(
xi, x j, y

)
is the pairwise potential function,

which is defined over the local neighborhood Ni of the site of i. C represents the set of higher-order
cliques, and ψc(xc, y) is the higher-order potential function defined over these cliques. In the proposed
method, an eight-neighborhood system is used to encode the interactions of the neighboring variables.
In view of the characteristics of high spatial resolution hyperspectral remote sensing imagery and the
requirements for the precise classification of crops, the unary potential, the pairwise potential, and the
higher-order potential are modeled on the basic framework shown in Equation (4).
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2.1.1. Unary Potential

The unary potential function models the relationship between the label data and the observed
data, and obtains the cost penalty of the specific labeled class by the class member probability of the
corresponding pixel. Each pixel can be independently calculated using any discriminant classifier that
gives the probability of the label, which is usually defined as:

ψi(xi, y) = − ln
{
P
[
xi = lk

∣∣∣ fi(y)
]}

(5)

where f is a feature mapping function that maps any arbitrary subset of a contiguous image cell to a
feature vector, and f i(y) represents the feature vector at position i. P[xi = lk

∣∣∣ f i(y)] is the probability
of pixel i acquiring the label lk that is based on the feature vector. Since the support vector machine
(SVM) classifier performs well in remote sensing image classification with a small number of training
samples [28,29], we use the SVM classifier, with a radial basis function as the kernel type, to provide
the discriminant information of the classes based on the spatial-spectral feature vector. In the proposed
method, the two parameters C and γ are set to the default values.

(1) Spectral Characteristics

Hyperspectral remote sensing imagery usually contains tens or even hundreds of spectral
bands, so the spectral values of adjacent bands in hyperspectral images usually have a strong
correlation [30], which results in data redundancy and can generate a “dimension disaster” problem
during classification [31]. Minimum noise fraction (MNF) rotation is a commonly used method for
extracting spectral features, and it is both simple and easy to implement. After MNF transformation,
the components are arranged according to the signal-to-noise ratio, where the information is mainly
concentrated in the first component. As the components increase, the image quality gradually decreases.
Studies have shown that, compared with the original high-dimensional image data and the feature
image obtained by principal component analysis (PCA) transformation, the low-dimensional feature
image obtained by MNF transformation can extract the spectral information more effectively [32].
Therefore, we choose this method to extract the spectral information of the high spatial resolution
hyperspectral imagery.

(2) Spatial Feature Characteristics

(A) Texture Features

Hyperspectral remote sensing images not only have continuous and abundant spectral information,
but also rich texture information. Texture is the visual effect caused by spatial variation in tonal quantity
over relatively small areas, which has been widely used in remote sensing image processing [33–36].
A number of studies have demonstrated the efficiency of texture for improving land-cover classification
accuracy [37,38]. The gray-level co-occurrence matrix (GLCM) is a commonly used method for
extracting texture information with a better discriminative ability [39,40]. The principle is to establish
a GLCM between two pixels in a certain positional relationship in the image and to extract the
corresponding feature quantity from this matrix for the texture analysis.

If we let f (x, y) be a two-dimensional digital image of size M×N, and the gray level is Ng, then
the GLCM satisfying a certain spatial relationship is:

P(i, j) = #
{
(x1, y1), (x2, y2) ∈M, N

∣∣∣ f (x1, y1) = i, f (x2, y2) = j
}

(6)

where #(x) is the number of elements in the set x, and P is the matrix of Ng ×Ng. If the distance
between (x1, y1) and (x2, y2) is d and the angle is θ, then the GLCM P(i, j, d,θ) of various spacings
and angles is:

P(i, j, d,θ) = #
{
(x1, y1), (x2, y2) ∈M, N

∣∣∣ f (x1, y1) = i, f (x2, y2) = j
}

(7)
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In this paper, we use the six texture metrics of homogeneity, angular second moment, contrast,
dissimilarity, mean, and entropy:

Hom =
L−1∑
i=0

L−1∑
j=o

p(i, j)

1 + (i− j)2 (8)

ASM =
L−1∑
i=0

L−1∑
j=0

p(i, j)2 (9)

Con =
L−1∑
n=0

n2


L−1∑
i=0

L−1∑
j=0

p(i, j)


n=|i− j|

(10)

Dis =
L−1∑
i=0

L−1∑
j=0

∣∣∣i− j
∣∣∣p(i, j) (11)

Mean =
1

n× n

∑
i

∑
j

f (i, j) (12)

Ent = −
L−1∑
i=0

L−1∑
j=0

p(i, j) log2 p(i, j) (13)

(B) Endmember Components

There are some mixed pixels in high spatial resolution hyperspectral images, which have a certain
degree of influence on the classification. If a method of mixed pixel decomposition is used, the
corresponding percentage of each class in the mixed pixel can be expressed, thereby obtaining an
abundance image equal to the number of classes. The endmember is a physical quantity associated
with a mixed pixel. It is the main parameter describing the linear mixed model, representing the
characteristic feature with a relatively fixed spectrum. The endmember extraction can obtain more
detailed information of the image. In the proposed method, the sequential maximum angle convex
cone (SMACC) endmember model is used to extract the endmember spectra and the abundance image,
to form the endmember component [41], which can be defined as:

H(c, i) =
N∑
k

R(c, k)A(k, j) (14)

where H is the spectral endmember; c and i are the band index and the pixel index, respectively; k
and j represent an index from 1 to the largest endmember; R is the matrix containing the endmember
spectra; and A is the abundance matrix containing endmember j to endmember k in each pixel.

(C) Morphological Features

Mathematical morphology is an effective image feature extraction tool that describes the local
characteristics of images. The basic morphological operations are corrosion, expansion, and opening
and closing operations, which act on the image through a series of shape regions called structuring
elements (SEs). The morphological opening and closing reconstructions are another common kind
of operator, which have a better shape preservation ability than the classical morphological filters.
Since the shape of the SEs used in the filtering is adaptive, with respect to the structures present in the
image itself, it nominally introduces no shape noise [42,43], as shown in Figure 1. In the proposed
method, we extract the spatial information of the images based on “opening reconstruction followed
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by closing reconstruction” (OFC), which can simultaneously smooth the bright and dark details of
the structure while maintaining the overall feature stability and improving the consistency within the
object area [44,45].
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Figure 1. Morphological reconstruction.

The OFC operator is a hybrid operation of opening by reconstruction (OBR) and closing by
reconstruction (CBR), which can be defined as:

OFCSE( f ) = γSE
R (ϕSE

R ( f )) (15)

where ϕSE
R ( f ) indicates the closing reconstruction of image f , and γSE

R (ϕSE
R ( f )) is the opening

reconstruction of the closing reconstruction image.

2.1.2. Pairwise Potential

Based on the theory of spatial correlation, the pairwise potential function simulates the spatial
context information between each pixel and its neighborhood by considering the spatial pattern
prior knowledge of the land-cover classes, so that the spectral changes and noise can be mitigated.
The pairwise potential function can model the spatial smoothing prior, and support adjacent pixels
of the homogeneous region to obtain the same class label. In this paper, it is defined as shown in
Equations (16) and (17) [46,47]:

ψi j
(
xi, x j, y

)
=

{
0 i f xi = x j

gi j(y) otherwise
(16)

gi j = λ

1 + θ
exp

(
−‖yi − y j‖

2
)
/π

‖i− j‖2

 (17)

where (i, j) is the spatial position of the adjacent pixel, and gi j is the smoothing term associated with
the data y, which is used to measure the difference between adjacent pixels. yi and y j are the spectral
vectors representing the pixels of i and j. The parameters λ and θ are set to control the strength of the
pairwise potential function, and π is twice the mean-square error between the spectral vectors of all
the neighboring pixels in the image, i.e., 2

〈
‖yi − y j‖

2
〉
, where 〈.〉 represents the mean operation. The

pairwise potential function can encourage adjacent pixels to have the same class in the classification
result, thereby enhancing the spatial correlation.

2.1.3. Higher-Order Potential

Location information in local areas can help to distinguish confusing classes and mitigate the
effects of spectral variability. The higher-order potential function in the CRF model can capture richer
spatial interactions, it can explicitly model the spatial location information by considering the non-local
spatial interaction between the target pixel and the nearest-neighbor training data, and it can provide



Remote Sens. 2019, 11, 2011 7 of 21

the complementary information of the feature class from the perspective of the non-local similarity of
the class. It can be expressed as:

ψc(xc, y) =
(
‖i− j‖2

)
/δs + ‖yi − y j‖

2/δr + Kc (18)

Kc = ln

 K∑
k=1

exp

−‖i− j‖2

δs

 ∗ exp

−‖yi − y j‖
2

δr


 (19)

j = argmin(‖ j− i‖2)
j

, j ∈ Sk (20)

k = argmin
(
‖µk − yi‖

2
)

k

, k ∈M (21)

(S,µ) = argmin
S,µ′

 M∑
l=1, j∈Sl

‖yl
j − µ

′

l ‖
2

, l = xi ∈ L (22)

The higher-order cliques in the higher-order potential function consist of the target pixel i and the
training data. yl is the training samples representing the class label l. The set S = {S1, S2, · · · , SM} is a
set of patterns formed by automatic clustering of training data yl, and µ is the center corresponding to
each pattern. In the proposed method, an adaptive mean shift clustering algorithm is used to obtain M
patterns of the same feature class. Each pattern of the same feature has similar spectral characteristics
and is represented by its corresponding mode center. For the target pixel i to be calculated, a pattern
that is most similar to each feature class can be obtained based on the spectral vector distance. In the
modeled higher-order potential function, the candidate pixels of each class are searched by finding the
nearest-neighboring pixel to the target pixel space position. Equation (18) calculates the higher-order
potential function based on the distance using the candidate pixels of each feature class in the spatial
location and the spectral domain, where the pixel at position i represents the target pixel to be
calculated, and the pixel at j is the candidate pixel. δs and δr are two independent parameters, which
are respectively set as the second smallest value of the spatial distances and spectral distances between
the target pixel and the corresponding candidate pixel for each class. Kc is a regularization constant.

Since the higher-order potential function can encode the spatial interaction between each target
pixel and the training data, it can be transformed into a unary potential function for solving, and
the higher-order potential function is re-described using the class member probability, as shown in
Equation (23):

PHP(xi = lk) = exp(−ψc(xc, y)) =
1

exp(Kc)
exp

−‖i− j‖2

δs

 ∗ exp

−‖yi − y j‖
2

δr

 (23)

After the higher-order potential function is transformed into the class member probability of
the target pixel, the Gaussian decreasing function can be used to calculate the distance in the spatial
location domain and in the spectral space. In this paper, the class membership probability obtained
by the higher-order potential function is integrated with the unary potential function to effectively
utilize the complementary advantages of the spectral and spatial position information, as shown
in Equation (24):

ψi(xi) = − ln
(
(1− β)P(xi = lk) + βPHP(xi = lk)

)
(24)

where β is a free parameter from 0 to 1 for balancing the spectral information and the spatial
location information.
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2.2. Algorithm Flowchart

The flowchart of the algorithm for precise crop classification using spectral-spatial-location fusion
based on conditional random fields (SSLF-CRF) for UAV-borne hyperspectral remote sensing imagery
is shown in Figure 2.
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(SSFL-CRF) method.

This method models the spectral information, the spatial feature information, the spatial context
information, and the spatial location information through the unary potential, pairwise potential, and
higher-order potential, respectively, which can integrate the complementary information from three
different perspectives and make full use of the spatial information of the image, thereby improving the
classification results. The SSLF-CRF method is described in detail as follows:

(1) According to the characteristics of high spatial resolution hyperspectral remote sensing data
obtained by UAV, the original image is subjected to MNF rotation. The noise covariance matrix in
the principal component is used to separate and readjust the noise in the data, to minimize the
variance of the transformed noise data and bands that are not relevant.

(2) The unary potential function model the spectral and spatial feature information. The spectral
information is the most basic information for judging the various land-cover classes, and the
spatial feature information provides more details for the classification. Representative features
are selected from the perspective of mathematical morphology, spatial texture, and mixed
pixel decomposition, and then combined with the spectral information of each pixel to form
a spectral-spatial fusion feature vector. The SVM classifier is used to model the relationship
between the label and the spectral-spatial fusion feature vector, and the probability estimate of
each pixel is calculated independently, based on the feature vector, according to the given label.

(3) The spatial smoothing term simulates the spatial context information for each pixel and its
corresponding neighborhood through the label field and observation field, which is modeled by
the pairwise potential function. According to spatial correlation theory, the spatial smoothing
term encourages the neighboring pixels of the homogeneous regions to share the same class label,
and punishes the class discontinuity in the local regions.

(4) Based on the characteristics of the similar spectral properties of the same feature class in a
local region, the higher-order potential function is used to explicitly model the spatial location
information by considering the training data of the target pixel closest to its spatial location, and
it makes full use of the non-local similarity of the feature class to provide auxiliary information
for the features that are difficult to distinguish. Differing from the spectral, spatial feature, and
spatial contextual information, the spatial location information uses the regularity of the image to
model the nonlocal similarity of the land-cover types through the location information.
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3. Experimental Results

3.1. Study Areas

The two datasets used in the experiments cover the cities of Hanchuan (113◦22′–113◦57′E,
30◦22′–30◦51′N) and Honghu (113◦07′–114◦05′E, 29◦39′–30◦12′N) in Hubei Province, China
(see Figures 3 and 4).
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Located in the central part of Hubei Province, China, the city of Hanchuan is situated on the
lower reaches of the Han River and in the middle of the Jianghan Plain, where the terrain is flat and
low-lying. The climate of this city is subtropical humid monsoon. A wide variety of crops are grown
in the area, including rice, wheat, cotton, and rapeseed.

The city of Honghu is located in the south-central part of Hubei Province, in the middle and lower
reaches of the Yangtze River, and in the southeast of Jianghan Plain. The terrain is higher in the north
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and south and is lower in the central part, forming a landform with a wide area and flat terrain. The
climatic characteristics of the city of Honghu are similar to those of the city of Hanchuan, and both
cities belong to the subtropical humid monsoon climate zone. The main crops of the Honghu area are
cotton, rice, wheat, barley, broad beans, sorghum, and rapeseed.

3.2. Data Collection

The experimental data acquisition process consisted of two parts: (1) acquisition of aerial remote
sensing images; and (2) acquisition of the ground truth. The drone model used for collecting the
data was a DJI Matrice 600 Pro, and the hyperspectral imager was a Headwall Nano-Hyperspec
hyperspectral imaging sensor manufactured by Headwall Photonics Inc. (Fitchburg, MA, USA)
and provided by Xingbo Keyi Co., Ltd. (Guangzhou, China) ultra-micro airborne hyperspectral
imaging spectrometer. This unit has a global positioning system/inertial measurement unit (GPS/IMU)
navigation system and a complete data acquisition storage module. The integrated data acquisition
system has Gig-E connection, which allows the data to be downloaded during flight. The synchronously
acquired global positioning system/inertial navigation system (GPS/INS) data facilitate the subsequent
geometric correction. Furthermore, the weight of the spectrometer is only 0.5 kg, which significantly
reduces the burden on the UAV. The parameters of the Nano-Hyperspec imager are listed in Table 1.

Table 1. Nano-Hyperspec hyperspectral imaging sensor parameter information.

Class Parameter Class Parameter

Wavelength range 400–1000 nm Field of view 33 22 16
Number of spectral

channels 270 Storage 480 GB

Lens focal length 8 mm 12 mm 17 mm Camera type COMS
Operating temperature 0~50°C Weight <0.6 kg (no lens)

3.3. Preprocessing of the UAV Images

Taking into account the hardware conditions and experimental requirements, the following
pre-processing was performed on the high spatial resolution hyperspectral images acquired by the
UAV: laboratory calibration, geometric correction, radiometric correction, and test sample production.
In view of the low flight height of the drone, the complex atmospheric effects in flight could be ignored.
The specific process of the preprocessing is described as follows:

(1) The laboratory calibration of the sensor was the first step, converting the output signal of each
sensor unit into an accurate radiance value.

(2) The second step was geometric correction. The UAV integrates the sensors and the position
and orientation system (POS) that combined with the differential GPS technology and Inertial
Measurement Unit (IMU) technology, which can provide the position and attitude parameters of
the sensor. For the geometric correction, the time standard of the POS data and hyperspectral
image acquisition should be unified and corresponding. The correspondence between the image
pixels and ground coordinates could thus be established by coordinate system transformation.
Finally, the corrected pixels were resampled and the corrected image was reconstructed.

(3) The third step was radiometric correction. We used a calibration blanket with a third-order
reflectivity with reflectances of 11%, 32% and 56%, respectively. Before the UAV took off, the
calibration blanket was placed in a suitable position in the study area to ensure that the study
area and the calibration blanket appeared in the same image at the same time. Three sets of ROIs
were selected in the three reflectance regions of the calibration blanket by means of ENVI, and the
average radiation value of each group of ROIs was calculated. Finally, the standard reflectance of
the calibration blanket and the radiation values could be linearly regressed in the IDL, according
to Equation (25).

re f lectance = a·DN(radiance) + b (25)
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1. The fourth step was test sample production. We obtained GPS linear feature information at
where the data were acquired, and obtained ground marks with reference to the relative features
synchronously, to generate the ground-truth data.

3.4. Experimental Description

In the experiments, the comparison algorithms were a pixel-based classification method, an
object-oriented classification method, and random field based classification methods. The pixel-based
classification method was the traditional SVM algorithm with a radial basis function as the kernel
type. The object-oriented classification approach used a majority voting strategy for each segmentation
region based on the same pixelwise SVM classification map. The segmentation was provided by
mean shift segmentation (MS) [48]. The random field based methods were the Markovian support
vector classifier (MSVC) [49], SVRFMC [21], DPSCRF [24], and SSF-CRF [25]. The MSVC algorithm
integrates SVM into the MRF model, and obtains the final classification result through the iterated
conditional modes (ICM) algorithm, using the Gaussian radial basis function and the Potts model as
the kernel function and the local prior energy function, respectively. SVRFMC is a CRF classification
algorithm based on Markov boundary constraints, where the spatial term is constrained by the Markov
distance boundary, to maintain the spatial details of the classification results. DPSCRF considers the
interaction of segmentation and classification in the CRF model, and adds large-scale spatial context
information by segmentation. SSF-CRF fuses the spatial and spectral features of the high spatial
resolution hyperspectral data by combining suitable potential functions in a pairwise conditional
random field model.

In each experiment, three kinds of accuracies were used to assess the quantitative performance:
the accuracy of each class, the overall accuracy (OA: the percentage of correctly classified pixels), and
the Kappa coefficient (Kappa) [50]. For each algorithm, 1%, 3%, 5%, and 10% of the training samples
were randomly selected to classify, and the remaining 99%, 97%, 95%, and 90% of the samples were
used to verify the precision.

3.5. Experiment 1: Hanchuan Dataset

The dataset used in the first set of experiments was a UAV-borne high spatial resolution
hyperspectral remote sensing image acquired over the city of Hanchuan, Hubei Province, China, in
June 2016. The spatial resolution is 0.1 m. The image contains 303 × 600 pixels and 270 spectral
channels, including nine land-cover classes: red roof, gray roof, tree, road, strawberry, pea, soy, shadow,
and iron sheet. The true-color image is shown in Figure 5a and the corresponding ground-truth map
is displayed in Figure 5b. Table 2 lists the number of training and test samples for each class at 1%
training samples.

Table 2. The training and test sample information for the Hanchuan dataset.

Class Training Samples Test Samples

Red roof 65 6525
Gray roof 48 4766

Tree 117 11664
Road 72 7138

Strawberry 226 22402
Pea 110 10937
Soy 13 1322

Shadow 763 75609
Iron sheet 10 1006
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In the experiment with the Hanchuan dataset, the original image was reduced from 270 dimensions
to 10 dimensions by MNF, according to the characteristics of the image. In order to introduce as little
noise as possible, the most suitable spatial features were selected for the classification through a large
number of experiments as follows: (1) the four endmembers of shadow, tree, strawberry, and red
roof; (2) the four texture features of homogeneity, angular second moment, contrast, and mean were
extracted with a window of 7 × 7; and (3) the morphological features were extracted with a disk-shaped
SE with a size of 8. The parameters λ, θ, and β were set to 0.7, 2.4, and 0.4, to obtain the best results.

The experimental results corresponding to the different classification algorithms (SVM, MS,
SVRFMC, DPSCRF, MSVC, SSF-CRF, and SSLF-CRF) are shown in Figure 6. Figure 6a is the classification
result of SVM, which delivers a salt-and-pepper appearance because this algorithm does not consider
the spatial information. Figure 6b–g are the results of the algorithms that consider the spatial context
and spatial feature information, where the classification effects are smoother and the visual effects
are better than those of the SVM algorithm. However, due to the influence of spectral variation, the
different algorithms show different performances in terms of detail retention. For example, as shown
in Figure 5a, the spectra of the iron sheet, gray roof, pea, tree, and soy classes have a certain similarity,
so it is a challenging task to accurately distinguish these classes. In Figure 6b–e, the iron sheet is not
easily identified, and for the most part is misclassified as gray roof and road, as shown by the red box
in the figures. The features in the black box are pea, but this part was misclassified as tree or soy in
most of the methods.

When compared with the result of SSF-CRF, the edge of this part in SSLF-CRF is the clearest. The
features in the blue box are soy, but this part is mainly classified as tree by the methods of MS, SVRFMC,
DPSCRF, and MSVC. In the proposed SSLF-CRF method, while alleviating the salt-and-pepper noise,
the above misclassified classes can also be correctly identified. With the proposed method, most of the
land-cover classes maintain a more complete boundary shape and useful feature details, with a better
visual classification performance.
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Figure 6. Hanchuan dataset classification results: (a) support vector machine (SVM); (b) mean shift
segmentation (MS); (c) support vector conditional random field classifier with a Mahalanobis distance
boundary constraint (SVRFMC); (d) detail-preserving smoothing classifier based on conditional random
fields (DPSCRF); (e) Markovian support vector classifier (MSVC); (f) spatial-spectral fusion based on
conditional random fields (SSF-CRF); (g) spatial-spectral-location fusion based on conditional random
fields (SSLF-CRF).



Remote Sens. 2019, 11, 2011 14 of 21

The quantitative accuracy evaluation for the different algorithms (SVM, MS, SVRFMC, DPSCRF,
MSVC, SSF-CRF, and SSLF-CRF) is provided in Table 3. As can be seen from Table 3, when the
training samples are 1%, the OA and Kappa values of the algorithms merging spatial and spectral
information are improved, compared to the pixel classification method of SVM. In particular, since
the SSLF-CRF method combines spatial context, spatial features, spatial location information, and
spectral information, the accuracy is improved by about 10%, which indicates the importance of
spatial information for improving the classification accuracy. For the misclassification of classes due to
spectral variability, the advantages of the SSLF-CRF method are also fully reflected in the accuracy
evaluation. For example, the highest precisions for road and gray roof in the other algorithms are
76.42% and 76.88%, respectively, but with the SSLF-CRF method, the precision reaches 82.57% and
82.27%, representing increases of about 6%. That is to say, this algorithm can effectively distinguish the
easily confused land-cover classes caused by spectral variation.

Table 3. The classification accuracies for the Hanchuan dataset.

Class
Accuracy (%)

SVM MS SVRFMC DPSCRF MSVC SSF-CRF SSLF-CRF

Red roof 49.72 48.89 64.75 49.96 67.43 82.16 84.08
Tree 67.30 73.95 92.47 80.38 84.33 96.12 97.12
Road 65.07 66.77 74.91 62.58 75.39 76.42 82.57

Strawberry 94.55 95.37 97.54 96.89 95.74 98.00 97.96
Pea 64.12 65.49 79.55 67.51 78.37 91.66 92.90
Soy 35.78 29.95 47.81 13.92 78.67 89.26 86.46

Shadow 97.19 97.41 98.84 97.53 97.83 98.07 98.04
Gray roof 53.90 53.67 74.21 64.06 72.05 76.88 82.27
Iron sheet 42.25 43.54 22.07 37.57 43.84 71.97 69.88

OA 85.51 86.41 91.98 87.40 90.91 94.60 95.29
Kappa 0.7757 0.7890 0.8760 0.8043 0.8607 0.9177 0.9286

3.6. Experiment 2: Honghu Dataset

The second group of experiments used a UAV-borne hyperspectral remote sensing image with a
0.4-m spatial resolution acquired in Honghu City, Hubei Province, China, in November 2017. This
image has a spatial dimension of 400 × 400 pixels and 270 spectral bands. In these experiments,
18 classes of interest were considered: red roof, bare soil, rape, cotton, Chinese cabbage, pakchoi, cabbage,
tuber mustard, Brassica parachinensis, Brassica chinensis, small Brassica chinensis, Lactuca sativa, celtuce,
film-covered lettuce, romaine lettuce, carrot, white radish, and spouting garlic. The overview of the area is
shown in Figure 7a by the true-color image, and the corresponding reference ground truth is shown
in Figure 7b. The numbers of randomly selected training and test samples for each class are listed
in Table 4.

In order to introduce as little noise as possible while improving the experimental efficiency,
the original data were reduced from 270 dimensions to 10 dimensions by MNF. The most suitable
spatial features were selected for the classification through a large number of experiments as follows:
(1) the four endmembers of bare soil, rape, and film-covered lettuce; (2) the four texture features of
homogeneity, dissimilarity, entropy, and mean were extracted with a window of 7 × 7; and (3) the
morphological features were extracted with a disk-shaped SE with a size of 8. The parameters λ, θ,
and β were set to 0.4, 3.6, and 0.3, to obtain the best results.

For the experiments with the Honghu dataset, the experimental results corresponding to the
different classification algorithms (SVM, MS, SVRFMC, DPSCRF, MSVC, SSF-CRF and SSLF-CRF)
are shown in Figure 8a–g, respectively. As with the Hanchuan dataset, the classification result of the
SVM algorithm in Figure 8a contains a large amount of salt-and-pepper noise. After considering the
spatial context information, the classification effects of the various algorithms are greatly improved.
As shown in Figure 8b–g, the salt-and-pepper noise is significantly reduced, and the boundaries of the
various types of features are relatively complete. However, several types of crops with similar spectra
in the Honghu dataset, such as romaine lettuce/film-covered lettuce and pakchoi/rape, are apparently
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misclassified due to the influence of spectral variation. As shown by the red box in Figure 8, the
romaine lettuce is almost completely classified as film-covered lettuce in the classification results of
the MS, SVRFMC, DPSCRF, and MSVC algorithms. The crop in the black box is pakchoi, but this is
misclassified as rape, small Brassica chinensis, bare soil, and other features by the other algorithms. The
SSLF-CRF algorithm considers the spatial features and the spatial location information, so for the
above land-cover classes, not only are the types correctly identified, but the boundary shapes and
details are also kept intact.
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Table 4. The training and test sample information for the Honghu dataset.

Class Training
Samples Test Samples Class Training

Samples Test Samples

Red roof 22 2182 Brassica chinensis 72 7181

Bare soil 118 11692 Small Brassica
chinensis 159 15769

Cotton 14 1410 Lactuca sativa 52 5220
Rape 379 37541 Celtuce 10 993

Chinese cabbage 107 10688 Film-covered lettuce 72 7191
Pakchoi 40 4015 Romaine lettuce 30 2981
Cabbage 103 10204 Carrot 27 2766

Tuber mustard 114 11327 White radish 40 4042
Brassica parachinensis 63 6240 Spouting garlic 20 2046

The accuracy evaluation for the different algorithms (SVM, MS, SVRFMC, DPSCRF, MSVC,
SSF-CRF, and SSLF-CRF) is provided in Table 5. From the quantitative accuracy analysis, it can be
seen that when the training samples are 1%, compared with the SVM pixel classification algorithm, the
methods combining spatial information show an improvement in both OA and Kappa. For example,
the accuracy of the object-oriented classification method of MS is improved by about 8%, and the
results of the random field based methods of SVRFMC, DPSCRF, MSVC, SSF-CRF, and SSLF-CRF
are improved by about 15%, 5%, 5%, 21% and 22%, respectively. Due to the consideration of the
spatial location in SSLF-CRF, a better quantitative performance is shown in the classification accuracy.
However, for those species with spectral variability, which are difficult to distinguish and easy to
misclassify, the poor classification effect is reflected in the accuracy of each class. From Table 5, we
can see that SSLF-CRF obtains a satisfactory result for each class, which indicates that the method not
only considers the spectral information, but also combines the spatial features and spatial location
information, effectively reducing the misclassification of the various classes.
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Table 5. The classification accuracies for the Honghu dataset.

Class
Accuracy (%)

SVM MS SVRFMC DPSCRF MSVC SSF-CRF SSLF-CRF

Red roof 77.59 93.77 99.40 86.16 89.18 98.49 98.53
Bare soil 93.86 94.97 98.12 96.07 94.02 99.66 99.82
Cotton 83.55 95.89 98.58 97.09 91.77 99.01 99.08
Rape 96.19 98.90 99.80 98.11 98.73 99.91 99.91

Chinese cabbage 88.00 94.60 99.00 93.86 93.04 99.44 99.46
Pakchoi 1.79 14.92 13.87 3.76 10.76 87.50 87.90
Cabbage 94.13 97.28 99.30 97.29 96.32 99.57 99.64

Tuber mustard 63.15 77.96 90.17 80.52 70.80 98.54 98.75
Brassica parachinensis 62.36 72.72 93.69 83.51 67.32 97.63 97.63

Brassica chinensis 39.02 66.02 75.20 34.38 65.76 98.45 99.09
Small Brassica

chinensis 77.68 82.67 92.68 84.31 83.46 94.98 95.03

Lactuca sativa 71.63 76.38 85.75 74.75 80.65 97.18 97.28
Celtuce 42.30 68.98 87.51 46.02 71.40 78.15 78.45

Film-covered lettuce 88.65 96.37 98.69 97.68 95.61 99.74 99.75
Romaine lettuce 31.23 36.30 27.31 8.45 43.17 95.64 96.04

Carrot 34.89 48.48 82.43 58.68 60.48 95.41 96.28
White radish 51.31 72.64 89.46 59.35 78.33 92.45 92.75

Sprouting garlic 39.20 61.29 82.94 21.80 71.16 97.21 97.17
OA 76.97 84.77 91.08 81.97 84.32 97.95 98.07

Kappa 0.7367 0.8262 0.8985 0.7936 0.8217 0.9768 0.9782
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3.7. Sensitivity Analysis for the Training Sample Size

Training sample ratios of 1%, 3%, 5%, and 10% were used for each algorithm with each dataset to
validate the SSLF-CRF method proposed in this paper. In all the experiments, we randomly selected
1%, 3%, 5%, and 10% training samples to validate each algorithm, and the remaining 99%, 97%, 95%,
and 90% of the samples were used to evaluate the classification accuracy. The classification OAs for the
different classification algorithms under different training sample sizes are shown in Figure 9.

Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 23 

 

Table 5. Cont. 

Romaine lettuce 31.23 36.30 27.31 8.45 43.17 95.64 96.04 

Carrot 34.89 48.48 82.43 58.68 60.48 95.41 96.28 

White radish 51.31 72.64 89.46 59.35 78.33 92.45 92.75 

Sprouting garlic 39.20 61.29 82.94 21.80 71.16 97.21 97.17 

OA 76.97 84.77 91.08 81.97 84.32 97.95 98.07 

Kappa 0.7367 0.8262 0.8985 0.7936 0.8217 0.9768 0.9782 

The accuracy evaluation for the different algorithms (SVM, MS, SVRFMC, DPSCRF, MSVC, SSF-
CRF, and SSLF-CRF) is provided in Table 5. From the quantitative accuracy analysis, it can be seen 
that when the training samples are 1%, compared with the SVM pixel classification algorithm, the 
methods combining spatial information show an improvement in both OA and Kappa. For example, 
the accuracy of the object-oriented classification method of MS is improved by about 8%, and the 
results of the random field based methods of SVRFMC, DPSCRF, MSVC, SSF-CRF, and SSLF-CRF 
are improved by about 15%, 5%, 5%, 21% and 22%, respectively. Due to the consideration of the 
spatial location in SSLF-CRF, a better quantitative performance is shown in the classification accuracy. 
However, for those species with spectral variability, which are difficult to distinguish and easy to 
misclassify, the poor classification effect is reflected in the accuracy of each class. From Table 5, we 
can see that SSLF-CRF obtains a satisfactory result for each class, which indicates that the method not 
only considers the spectral information, but also combines the spatial features and spatial location 
information, effectively reducing the misclassification of the various classes. 

3.7. Sensitivity Analysis for the Training Sample Size 

Training sample ratios of 1%, 3%, 5%, and 10% were used for each algorithm with each dataset 
to validate the SSLF-CRF method proposed in this paper. In all the experiments, we randomly 
selected 1%, 3%, 5%, and 10% training samples to validate each algorithm, and the remaining 99%，

97%, 95%, and 90% of the samples were used to evaluate the classification accuracy. The classification 
OAs for the different classification algorithms under different training sample sizes are shown in 
Figure 9. 

 

(a) Fix mistake in axis label Training 

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 23 

 

Figure 9. Cont. 

 

(b) Fix mistake in axis label Training 

Figure 9. Sensitivity analysis for the training sample size: (a) Hanchuan dataset; (b) Honghu dataset. 

We can see from Figure 9 that as the training samples increase, the accuracies of each algorithm 
increase significantly, for both datasets. However, given the different sizes of training samples, the 
performances of each algorithm in the two datasets are not exactly consistent, and are ranked as SSLF-
CRF>SSF-CRF>SVRFMC>MSVC>DPSCRF>MS>SVM and SSLF-CRF>SSF-CRF>SVRFMC>MSVC> 
MS>DPSCRF>SVM, respectively. The object-oriented MS method performs better in the Honghu 
dataset than in the Hanchuan dataset. 

4. Discussion 

The important innovation of the proposed method is to integrate the spectral feature, spatial 
features, spatial context information and spatial location information of hyperspectral images by 
constructing higher-order potential function in the conditional random field model. The general crop 
classification methods are relatively simple, which may only use the above single or a few features, 
so that the image information cannot be fully utilized, and there is a certain room for improvement 
in classification accuracy. For UAV hyperspectral remote sensing image crop precise classification, 
spectral information provides the most basic information for their discrimination, based on the 
spectral differences of various land-cover classes; the spatial feature information provides more 
details for the classification from the perspective of mathematical morphology, texture and 
endmember components; the spatial context information takes into account the local spatial 
interaction of adjacent pixels, and provides spatial smoothing, which can effectively reduce the salt-
and-pepper noise; the spatial location information fully exploits the spatial rule information of the 
image by considering non-local interactions of the same feature, providing auxiliary information for 
confusing classes. These information can offer complementary information for the discrimination of 
features from different angles, thus improving the classification effect to a certain extent and 
heightening the classification accuracy. Therefore, through constructing appropriate potential 
functions in the CRF model to fuse these features, this method can effectively improve the accuracy 
of crop precise classification of UAV hyperspectral remote sensing images, compared with the 
general classification methods. 

Figure 9. Sensitivity analysis for the training sample size: (a) Hanchuan dataset; (b) Honghu dataset.



Remote Sens. 2019, 11, 2011 18 of 21

We can see from Figure 9 that as the training samples increase, the accuracies of each algorithm
increase significantly, for both datasets. However, given the different sizes of training samples, the
performances of each algorithm in the two datasets are not exactly consistent, and are ranked as
SSLF-CRF > SSF-CRF > SVRFMC > MSVC > DPSCRF > MS > SVM and SSLF-CRF > SSF-CRF >

SVRFMC > MSVC > MS > DPSCRF > SVM, respectively. The object-oriented MS method performs
better in the Honghu dataset than in the Hanchuan dataset.

4. Discussion

The important innovation of the proposed method is to integrate the spectral feature, spatial
features, spatial context information and spatial location information of hyperspectral images by
constructing higher-order potential function in the conditional random field model. The general crop
classification methods are relatively simple, which may only use the above single or a few features,
so that the image information cannot be fully utilized, and there is a certain room for improvement
in classification accuracy. For UAV hyperspectral remote sensing image crop precise classification,
spectral information provides the most basic information for their discrimination, based on the spectral
differences of various land-cover classes; the spatial feature information provides more details for the
classification from the perspective of mathematical morphology, texture and endmember components;
the spatial context information takes into account the local spatial interaction of adjacent pixels, and
provides spatial smoothing, which can effectively reduce the salt-and-pepper noise; the spatial location
information fully exploits the spatial rule information of the image by considering non-local interactions
of the same feature, providing auxiliary information for confusing classes. These information can offer
complementary information for the discrimination of features from different angles, thus improving the
classification effect to a certain extent and heightening the classification accuracy. Therefore, through
constructing appropriate potential functions in the CRF model to fuse these features, this method can
effectively improve the accuracy of crop precise classification of UAV hyperspectral remote sensing
images, compared with the general classification methods.

In terms of sample selection, we randomly selected 1%, 3%, 5%, and 10% of training samples for
classification. The remaining 99%, 97%, 95%, and 90% were used as test samples to verify classification
accuracy. In the Hanchuan dataset, the accuracy of the proposed method increases with the training
samples to a greater extent than with the Honghu dataset. This is because the Honghu dataset is more
regular than the Hanchuan dataset. Therefore, even under 1% training samples, the proposed method
can obtain a better classification accuracy, due to its strong ability to combine spatial information with
spectral information.

In the UAV hyperspectral remote sensing image crop precise classification model of this paper,
there are several aspects that can be optimized and further studied in the classification process. First
of all, the extraction of spatial feature information is manually selected through a large number of
experiments. This process can select the most suitable spatial features to participate in the classification,
so that the classification effect is optimal, but it also takes a lot of time. So authors will perform
automatic features extraction studies in the follow-up research to increase the efficiency of the method.
Secondly, due to the limitation of the endurance of the drone, the experimental datasets obtained by us
have small range, so this method is more advantageous when it is applied to small-and medium-scale
crop classification applications. However, for common high resolution multi-spectral remote sensing
images with rich spatial information, we can also combine them with hyperspectral remote sensing
images to make them a data source with high spatial resolution and high spectral resolution. Therefore,
it can be applied to the precise classification of crops in a wider range, and improve the applicability
and application value of the research results.

5. Conclusions

With the rapid development of UAV technology, UAV-borne high spatial resolution hyperspectral
data have become an ideal data source for the precise classification of crops. Based on the advantages
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of the high spatial resolution and high spectral resolution of this type of data, we have proposed a
spatial-spectral-location fusion higher-order CRF precise crop classification method for UAV-borne
hyperspectral remote sensing imagery. The proposed method integrates spectral and spatial
feature, spatial context, and spatial location information in the higher-order CRF model, providing
complementary information for the land-cover type discrimination from different perspectives, and
mining the large-scale spatial local similarity of crops. It not only resolves the limitations of the
pairwise CRF model in large-scale spatial context information modeling, but also greatly alleviates the
problems of local over-smoothing and spectral variability encountered by the CRF model in the precise
classification of crops based on high-resolution hyperspectral remote sensing imagery. The experiments
on UAV-borne high spatial resolution hyperspectral remote sensing images of Hanchuan and Honghu
(China), confirmed that the SSLF-CRF method shows an excellent classification performance, in terms
of both qualitative and quantitative evaluations.
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