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Abstract: This research addresses the aerosol characteristics and variability over Cairo and the
Greater Delta region over the last 20 years using an integrative multi-sensor approach of remotely
sensed and PM10 ground data. The accuracy of these satellite aerosol products is also evaluated and
compared through cross-validation against ground observations from the AErosol RObotic NETwork
(AERONET) project measured at local stations. The results show the validity of using Multi-angle
Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors on the Terra and Aqua platforms for quantitative aerosol optical depth (AOD) assessment as
compared to Ozone Monitoring Instrument (OMI), Sea-viewing Wide Field-of-view Sensor (SeaWiFS),
and POLarization and Directionality of the Earth’s Reflectances (POLDER). In addition, extracted
MISR-based aerosol products have been proven to be quite effective in investigating the characteristics
of mixed aerosols. Daily AERONET AOD observations were collected and classified using K-means
unsupervised machine learning algorithms, showing five typical patterns of aerosols in the region
under investigation. Four seasonal aerosol emerging episodes are identified and analyzed using
multiple indicators, including aerosol optical depth (AOD), size distribution, single scattering albedo
(SSA), and Ångström exponent (AE). The movements and detailed aerosol composition of the
aforementioned episodes are demonstrated using NASA’s Goddard Space Flight Center (GSFC) back
trajectories model in collaboration with aerosol subtype products from the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) mission. These episodes indicate that during
the spring, fall, and summer, most of the severe aerosol events are caused by dust or mixed related
scenarios, whereas during winter, aerosols of finer size lead to severe heavy conditions. It also
demonstrates the impacts of different aerosol sources on urban human health, which are presented
by the variations of multiple parameters, including solar radiation, air temperature, humidity, and
UV exposure. Scarce ground PM10 data were collected and compared against satellite products,
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yet owed to their discrete nature of availability, our approach made use of the Random Decision
Forest (RDF) model to convert satellite-based AOD and other meteorological parameters to predict
PM10. The RDF model with inputs from the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) and Global Land Data Assimilation System (GLDAS) datasets
improves the performance of using AOD products to estimate PM10 values. The connection between
climate variability and aerosol intensity, as well as their impact on health-related PM2.5 over Egypt is
also demonstrated.

Keywords: Greater Delta region; AERONET; air pollution; PM10; meteorological parameters; optical
properties; UV; CALIPSO aerosols; random forest

1. Introduction

Air pollution is reported as one of the most severe environmental problems for the Greater Delta
region of Egypt [1–3]. Over the past few decades, Egypt has been introduced to numerous activities,
including unplanned urbanization, air polluting industries, and energy production that contributed
to excessive air pollution with gases, particulates, and aerosols at levels often exceeding the World
Health Organization (WHO) guidelines [3,4]. The Greater Delta region, especially its largest city, Cairo,
is a densely populated region with all of the above activities that requires a better understanding of
its atmospheric aerosol characteristics considering its high aerosol loading, as well as recently more
frequent emerging aerosol events occurring at all seasons, which is different from past years [1,3].
On the other hand, the rural and suburban parts of the Nile Delta have higher ventilation due to the
mass of agricultural land together with higher wind speeds [5]. As it is similar to other developing
countries, there are diverse sources of air pollution in Egypt; however, comparing to industrialized
countries, the formation and levels of coal ash, mineral dust, and other small particles in Egypt is more
pronounced [6]. The key variables for air quality are nitrogen dioxide (NO2), carbon monoxide (CO),
sulfur dioxide (SO2), suspended particulate matter (SPM), lead (Pb), and ozone (O3) [7]. Such levels
of dust, fine particles, and soot are reported to be more characteristic in Egypt than those found in
industrialized countries [4], which is due to the industries and traffic within downtown Cairo and
its surrounding regions emitting particles incessantly throughout the year [8]. It is worth noting
that over the past two decades, there has been a seasonal air pollution episode locally known as the
“black cloud”. The black cloud is a dark smoke and haze that covers the Greater Cairo and the Nile
Delta [9,10]. This episode has been associated with commonly known illegal local practices of burning
rice husk leftovers after the growing season together with other contributing factors [1,2,6,9,11,12].

In 2007, the World Bank characterized the air quality in Cairo as the “worst” in the world with
regard to particulate matter concentration [13]. Much higher and frequent air pollution episodes
were recorded recently in Cairo, threatening the public health of its over 20 million population [3],
since human lungs can be severely damaged by the dust, the tiny soot fragments, and pollutant
particulates [14]. Besides the emission of air pollutants, naturally, Cairo is at the apex of the Nile
Delta that is bounded by the Mokattam Hills and the western heights. During the strong spring wind
events, the Mokattam Hills produce large concentrations of airborne sand [6,15]. A study of aerosol
profiles in Cairo and Alexandria found that it includes “pollution-like”, “background pollution”, and
“dust-like” components [10,12]. For further understanding of the aerosol profile, it is necessary to
analyze the chemical composition of aerosols, which is found to be highly dominated by mineral dust
over 100 µgm−3 in winter and spring, comparing to over 50 µgm−3 in summer and autumn [16]. Natural
dust storms also play a role in the level of the aerosols particularly in the “Khamsin” period [17–19].
Moreover, dust deposition over water bodies, while traveling across continents, affects different marine
habitats such as those of the Red Sea, the Mediterranean Sea, and the Atlantic Ocean [20–23].
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From the above, it is evident that the frequent aerosol activities in Cairo and the Greater Delta
region require detailed investigation of their characteristics, optical properties, and dynamics. For that
purpose, we are expanding the usage of the well-established and the most influential aerosol observation
network, the AErosol RObotic NETwork (AERONET) [24]. AERONET is a ground-based aerosol
network set up by National Aeronautics and Space Administration (NASA) and LOA-PHOTONS
Centre National de la Researche Scientifique (CNRS) and is significantly extended by associates from
national offices, foundations, colleges, singular researchers, and accomplices. The system comprises
an excess of 500 globally distributed sun and sky-scanning automated radiometers. AEROENT data
is characterized by its high frequency (every 15 min) and low uncertainty observations. It provides
long-term and continuous spectral properties of aerosols derived by the Sun photometer; its data
products have three available levels (Level-1.0 (unscreened), Level-1.5 (cloud-screened and quality
controlled), and Level-2.0 (quality-assured)) based on their different processing of cloud screening and
quality control. Both cloud-screened and quality control have been applied to the Level-2.0 dataset,
whereas the Level-1.5 dataset is only processed with cloud-screened but without quality assurance.
Level-1.0 has neither cloud screening nor quality control. Therefore, Level-2.0 is regarded as the most
accurate dataset, and thus is used in this research.

On October 2004, Cairo University hosted an AERONET sun photometer for air quality assessment
followed by another campaign conducted by the Egyptian Meteorological Authority (EMA) from
April 2005 until March 2006. Since April 2010, EMA has been routinely maintaining the third
AERONET site, which was named EMA2 until now. As mentioned before, AERONET measurements
occur several times a day and provide various products that are used for air quality assessment.
However, the AERONET datasets in Cairo are relatively lacking (only since 2004), also considering
the four-year missing observations between 2006–2010. To overcome this limitation, various remotely
sensed data collected on board satellites are used and have been proven to be effective tools to achieve
a regional/global and temporal characterization of aerosols, playing a key role in studying the horizontal
variation of aerosols in the Greater Delta region [2]. Several algorithms have been developed using: for
example, POLarization and Directionality of the Earth’s Reflectances (POLDER), Moderate Resolution
Imaging Spectroradiometer (MODIS) (both on board the Terra and Aqua satellites), Ozone Monitoring
Instrument (OMI) (on board the Aura satellite), Multi-angle Imaging Spectroradiometer (MISR) (on
board the Terra satellite), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (on board the SeaStar
satellite) [25–29], to retrieve the global aerosol optical depth (AOD). For example, MODIS and the MISR
are the most commonly used sensors to observe AOD. Using these satellite data and ground-based
observations, many studies have been investigated to reveal the mechanism of the increased pollution
and dust activities in Cairo [2,8–11,15,16,30–33]. Additionally, the remotely sensed AOD products
have been developed and applied to estimate the concentration of fine particulate matters (such as
PM10 and PM2.5) for the air quality research [34–37].

However, the accuracy of satellite aerosol products is challenged by diverse uncertainties,
including cloud contamination, complex surfaces in different regions, and the different retrieving
process among aerosol models [25,26,38–41]. Therefore, satellite measurements need to be validated
using ground-based observations, such as the AERONET dataset, to make the best use of their
aerosol-related products for the Cairo region [42–44]. Hence, this paper focuses on the classification of
different aerosol microphysical and optical properties using AERONET data while evaluating the best
remotely sensed aerosol datasets through cross-validation against the in situ measurements from the
AERONENT observations. We also investigate and compare the typical aerosol emerging episodes
in each season to describe their different origins and composition, as well as their impacts on the
human health.
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2. Materials and Methods

2.1. Study Area

The area of study geographically covers the Nile Delta, which is bounded by the Mediterranean
Sea to the north, the Western Desert to the west, the Eastern Desert and Sinai to the east, and the
Nile Valley to the south. The area is approximately 35,000 km2 and includes major urbanized cities
such as Cairo, Alexandria, and Tanta. However, the majority is rural areas and agricultural land.
The Nile Delta is a typical arcuate delta with Cairo City in the apex. It accommodates about 55% of the
population and it secures the food for the population via agriculture (Figure 1).
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Delta corner and center (background remotely sensed image from Google Earth).

2.2. AERONET and Satellite Aerosol Products

The ground-based AERONET aerosol-related products were collected from the sites in Cairo
area, including: Cairo University (30.026167◦N, 31.207317◦E), Egyptian Meteorological Authority
(EMA) (30.080767◦N, 31.290067◦E), and EMA2 (30.080767◦N, 31.290067◦E). Here, we used some of
the AERONET products addressing aerosol characteristics, namely, spectral-based values of aerosol
optical depth (AOD), single scattering albedo (SSA), aerosol size distribution, and Ångström exponent
(AE) with a temporal variability component. The spectral deconvolution algorithm (SDA) [45] applied
to the AOD analysis calculates the fine mode fractions to the total aerosols (FMF) by yielding fine and
coarse aerosols at a standard wavelength of 500 nm. This parameter proves to be a quite effective
indicator of the size distribution of the observed aerosols. It is known that high AE values present
a higher abundance of finer aerosol particles, while a set of low AE values corresponds to aerosols
with coarser particle sizes [12]. The aerosols in fine mode are mostly generated from gas-to-particle
conversion [46], while carbonaceous and sulfate aerosols are generated from biomass burning and
urban/industrial activities. On the other hand, aerosols in coarse mode are mainly from mineral dust or
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sea salt [12]. Therefore, either a decrease in the number of larger particles or an increase in the number
of smaller particles can cause an increase in the value of AE and FMF. All the products are accessed
from the AERONET Data Synergy Tool (https://aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactive).

Monthly AOD Version 3 Level-2.0 data [47] collected at EMA was used to validate the AOD
retrievals from the multiple satellite sensors using the Multi-sensor Aerosol Products Sampling System
(MAPSS) [48]. The MAPSS provides a direct cross-validation between the aerosol products from
multiple spaceborne sensors and well-characterized co-located AERONET ground-based data through
generating spatial statistics such as linear regression analysis (number of observations, outliers, the
coefficient of determination denoted as R2, root mean square deviation as RMSE), with flexible options
(including/excluding outliers, quality control). The sensors used in the validation process are listed in
the Table 1.

Table 1. The spaceborne sensors validated against observations of the Egyptian Meteorological
Authority (EMA) station. MODIS: Moderate Resolution Imaging Spectroradiometer, MISR: Multi-angle
Imaging Spectroradiometer, POLDER3: POLarization and Directionality of the Earth’s Reflectances,
SeaWiFS: Sea-viewing Wide Field-of-view Sensor, OMI: Ozone Monitoring Instrument.

Stations Period of Available Data Number of Observation Outliers

Aqua MODIS 13 April 2005–21 March 2006 66 2
MISR 1 May 2005–19 January 2006 23 0

Terra MODIS 13 April 2005–22 March 2006 68 2
POLDER3 14 April 2005–21 March 2006 57 4
SeaWiFS 14 May 2005–6 February 2006 11 0

OMI 13 April 2005–22 March 2006 118 1

Here, we used the data provided from the stations of EMA (April 2005–March 2006) and Cairo
University (October 2004–March 2005) for cross-validation purposes and the time series analysis,
although with a shorter record, while not using observations from the EMA2 station for cross-validation
but only for time series analysis. This is because the EMA2 station, although with a longer record
(April 2010 until now), is not included in the MAPSS system that is used for the evaluation of satellite
products. The validation result will be presented in Section 3.1 as the scatter plots of AERONET AOD
against satellite AOD with key linear regression parameters, filtering outlier values with the quality
control option. Additionally, we also demonstrate the advantage of using the satellite-derived aerosol
plumes analysis from the MISR Interactive eXplorer (MINX) tool [49,50] to obtain AERONET-like
aerosol products such as spectral-based AOD, AE, and SSA.

EMA2 daily spectral based AOD observations at multiple bands (340 nm, 380 nm, 440 nm, 500 nm,
675 nm, 870 nm, and 1020 nm) as well as FMF and AE at band 550 nm are used to determine typical
aerosol patterns in Cairo through the K-means classification method. The aerosol information collected
at EMA2 is also used to analyze the aerosol properties of the four typical AOD episodes for each season
(DJF = Dec–Feb, MAM = Mar–May, JJA = Jun–Aug, SON = Sep–Nov). The episodes are selected based
on the AERONET aerosol Level-2.0 data during the available observation periods: Cairo University
(October 2004–March 2005), EMA (April 2005–March 2006), and EMA2 (April 2010–March 2017).
For each episode, NASA’s Goddard Space Flight Center (GSFC) seven days Back-kinematic trajectory
analysis product [51,52] generated twice a day (00:00 UTC and 12:00 UTC), is used to compute simple
air parcel backward trajectories to analyze the aerosol tracking for origin attribution. Following their
traveling path, the aerosols’ vertical structure and subtypes are observed and measured by CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization) [53,54] on board the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) mission. The CALIOP profile ranged from
the Earth’s surface to 40 km with a high spatial resolution of 30–60 m in the vertical and 333 m in
the horizontal. CALIPSO data has shown potential application for the human health assessment.
For example, the synergy usage of MODIS, CALIPSO, and AERONENT observations demonstrated the

https://aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactive
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evidence of the transport mechanisms of Candida fungus, which causes the annual spike of Kawasaki
disease in Japan [55].

2.3. Environemntal Indicators Related to Public Health

2.3.1. UV Aerosol Index

Ultraviolet (UV) rays form a type of electromagnetic radiation spectrum with wavelengths from
10 nm to 400 nm, which are longer than X-rays but shorter than visible light. The studies revealed
that a long exposure to the UV rays causes serious public health problems, such as cataracts and other
damage to the eye [56]. About 65% to 90% of melanoma of the skin, which accounts for three-fourths of
all skin cancer deaths, was also reported to be caused by UV rays [57,58]. On the other hand, UV rays
also impacts the circulation of vitamin D, which has been reported as a protective factor against rectum
and colon cancer [59].

In this study, the Ultra Violet Aerosol Index (UVAI) is accessed from the Level-3 daily global Total
Ozone Mapping Spectrometer (TOMS)-Like Total Column Ozone gridded product OMTO3d [60] at
1-degree spatial resolution. The UVAI is an index that detects the presence of UV-absorbing aerosols,
which are calculated as the difference between the observations and model calculations of absorbing and
non-absorbing spectral radiance ratios. The negative or small values of UVAI represent non-absorbing
aerosols or clouds, while larger positive values represent absorbing aerosols such as dust or smoke.
Here, we analyze the UVAI variations during the selected aerosol episodes to demonstrate the impact
of aerosols on UV exposure.

2.3.2. Solar Spectral Radiation and Modeling Datasets

As we know, the incoming shortwave solar radiation together with the radiation reflected,
absorbed, and emitted by the Earth system make up the Earth’s radiation budget. Larger atmospheric
aerosol particles scatter and absorb some of the shortwave radiation, leading to atmospheric warming.
The heated atmosphere in turn emits longwave infrared radiation, some of which reaches the Earth
surface, which can increase the land surface temperature and change the surface air humidity. Besides
the previously mentioned urbanization impacts (e.g., land surface modification), a portion of the
outgoing longwave radiation (OLR) from the Earth’s surface is absorbed by greenhouse gases (e.g., water
vapor), which in turn contributes to the “Urban Heat Island” effects, posing more impact on the public
health of the inhabitants in the greater Cairo region [61–65].

To investigate the aerosols’ impact on the solar radiation and air temperature, we used the Global
Land Data Assimilation System (GLDAS) version 2.1 dataset [66] for the radiation analysis. GLDAS
uses advanced land surface modeling to generate optimal fields of land surface fluxes and states
through assimilating both satellite and ground-based observational data products. In this research,
we used the Google Earth Engine [67] tool to obtain and process GLDAS products, including specific
humidity (Qair_f_inst in the unit of kg/kg) (the ratio of water vapor mass to total moist air parcel mass),
air temperature (Tair_f_inst in the unit of Kelvin), downward longwave radiation flux (LWdown_f_tavg
in the unit of W/m2), downward shortwave radiation flux (SWdown_f_tavg in the unit of W/m2), wind
speed (Wind_f_inst in the unit of m/s), average surface skin temperature (AvgSurfT_inst in the unit of
K), net longwave radiation flux (Lwnet_tavg in the unit of W/m2), pressure (Psurf_f_inst in the unit of
Pa), and net shortwave radiation flux (Swnet_tavg in the unit of W/m2). Google Earth Engine proved to
be an effective cloud online computing and analysis tool for the environmental research in Egypt and
the Middle East and North Africa regions [20,21,68].

In order to assess the role of aerosol-related impacts and their connection to air pollution in the
study region, the gridded data of the Modern-Era Retrospective analysis for Research and Applications
version 2 (MERRA-2) is used in this research. The MERRA-2 dataset is an atmospheric reanalysis dataset
produced by the National Aeronautics and Space Administration (NASA) and released by NASA
Global Modeling and Assimilation Office (GMAO) in 2017. The monthly means of the “Dust Extinction



Remote Sens. 2019, 11, 1998 7 of 24

AOT 550 nm—PM2.5”, “Sea Salt Extinction AOT 550 nm”, “Surface Air Temperature”, and “Surface
Wind Speed”, as well as daily mean of “Total Aerosol Extinction AOT 550 nm” at 0.5◦ × 0.625◦ resolution
covering the period from the year 1998 to 2016 are obtained and processed [69,70].

2.3.3. PM10 and PM2.5 Datasets

The PM10 dataset is provided by the Egyptian Environmental Affairs Agency (EEAA),
including the hourly observations in eight locations (Abuzabal, Shubra, Qualaly, AlainyPH,
Abasseya, NasrCity, NewEgypt, and Helwan) of the Greater Cairo region during 2018. In addition,
to show the annually PM2.5 variability in Egypt, satellite-based geographically weighted regression
(GWR) PM2.5 product [71] is used and obtained from the Socioeconomic Data and Applications
Center (SEDAC) (https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-
misr-seawifs-aod/data-download).

3. Results

3.1. Validation of Satellite Sensors for Aerosol Analysis in Cairo

Here, the fitness of various satellite aerosol products in measuring Cairo’s regional aerosol
conditions is investigated as compared with AERONET measurements during 2004–2006. The AOD
products of POLDER3 (Figure 2d), SeaWiFS (Figure 2e), and OMI (Figure 2f) are less dependent
on AERONET measurements (R2 <0.5). This inconsistency may result from the lower efficiency of
AOD retrieval algorithms, or limited observations (e.g., only 13 observations for SeaWiFS). However,
the updated products (e.g., merged Dark Target and Deep Blue MODIS Collection 6.1) of Aqua MODIS
(Figure 2a) and Terra MODIS (Figure 2c) [72–76], as well as MISR (Figure 2b) have achieved a high
consistency with AERONET measurements (R2 >0.6). Therefore, these products are validated to study
the aerosol variability along with AERONET products, especially over the Mediterranean region [77,78].
Moreover, the MISR could provide an analysis of aerosols plumes microphysics. Aerosol products
such as AE, SSA, and AOD fraction by particle can disclose the particle properties of the plumes during
their moving over the region. For example, Figure 2g–j show aerosol-related histograms of a plume
over Egypt on 14 September 2008. Optical depth bars (Figure 2g) contain different spectral bands,
as exhibited by the different colors, which represent the composition of different pollution sources.
This aerosol plume has high SSA (>0.95) (Figure 2i), which indicates generally a cooling effect to the
land surface [79]. A high AE value (>1.7) validates the sources from industrial pollution and biomass
burning (Figure 2h). Over industrial regions, such as North America and Europe, or urban centers
(our case), the SSA is identified to be about 0.98, which is caused by large supplements of black carbon
and sulfate from biomass burning (Figure 2i) [80], whereas SSA is lower over the dusty regions, such
as Sahara Desert. The histogram in Figure 2j illustrates the fraction of the green-band optical depth
values by different particle sizes: small (blue bar at 0.7), medium (green bar near 0), and large (red
bar at 0.3), which shows that this plume is mainly composed of small aerosol particles. Figure 2j also
indicates the non-existence of spherical particles, as no purple bar appears in this figure. It is worth
noting that the data samples for MISR are also relatively small, but given the high consistency shown
by the MISR, and the effective application of MISR in the Cairo region for aerosol analysis [1,2], we still
employ MISR in the research.

3.2. Time-Series Analysis of Observations of AERONET and Multi Sensors

Figure 3 shows the monthly AOD values over the Cairo area, as displayed from a time series
analysis of Terra MODIS (Figure 3a), Aqua MODIS (Figure 3b), MISR (Figure 3c), and AERONET
(Figure 3d) from 2000 until 2018. The obvious periodic characteristics are indicated in Figure 3—high
AOD values occur in summer and low in winter, which also could be found from the ARONET
measurements. The AOD variability as depicted from the time series of Terra MODIS and Aqua MODIS
is more coherent, since both datasets are retrieved with same retrieval algorithms. Some emerging

https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod/data-download
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod/data-download
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AOD events recorded by MISR (such as March 2003, which is located by a black circle) are not found in
the Terra MODIS and Aqua MODIS series. Therefore, to choose the typical seasonal emerging AOD
events, months with high AOD values agreed by all three datasets are selected for analysis, including
June 2013 (summer), January 2014 (winter), March 2014 (spring), and September 2015 (fall), which are
marked by the red arrows.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 25 
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Figure 2. Scatter plots of Cairo AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD)
observations as to AOD data from (a) Aqua MODIS, (b) MISR, (c) Terra MODIS, (d) POLDER3,
(e) SeaWiFS, and (f) OMI in EMA and Cairo University stations. Aerosol histograms with no cloud
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scattering albedo (SSA), and (j) Tau (AOD) fraction by particle over Egypt on 14 September 2008.
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(c) MISR, and (d) AERONET, respectively. Red arrows point to the high AOD anomalies indicated
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In Figure 4, the red arrows show the dates of the aerosol emerging events for the selected months,
which are 8 June 2013, 2 January 2014, 3 March 2014, and 9 September 2015. They are either the highest
AOD values observed during the month (such as 9 September), or the date of one of the highest record
of the month (such as 3 March), which could be considered as the main contributor to the emerging
monthly AOD value for the month. Detailed analysis for each event will be discussed in Section 3.3.
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3.3. Analysis of Seasonal Aerosol Emerging Episodes

In Figure 5, the SDA time series show the starting times for seasonal aerosol soaring are: 14 UTC
at 8 June 2013, 09 UTC at 2 January 2014, 11 UTC at 3 March 2014, and 12 UTC at 9 September 2015.
Both fine and coarse aerosols were contributors to the total aerosol amount, as indicated by the aerosol
composition analysis. However, the total aerosols at 2 January 2014 is mainly composed of fine aerosols,
whereas coarse aerosols (mainly dust from sandstorms) are the dominant aerosol component for the
other three events.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 25 
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Figure 5. Time series of AERONET Daily 500-nm AOD spectral deconvolution algorithm (SDA)
retrievals during (a) 8 June 2013, (b) 2 January 2014, (c) 3 March 2014, and (d) 9 September 2015,
respectively. Black/blue/red lines represent total/coarse/find aerosols, respectively.

In Figure 6, most of the aerosol particles measured during the 2 January 2014 event fall in the
radius range of 0.1 to 1 µm (fine aerosols), and some fell into the radius range of 1 to 10 µm (coarse
aerosols). This result indicates that the Cairo region is affected by aerosols with a complex mixture
of air pollution types during autumn, when biomass burning contributes to a background of urban
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pollution and desert dust [1]. In addition, the aerosol particles in the other three emerging events are
sized in the range of 1 to 10 µm, which is close to the size of dust. It’s worth noting that the aerosol size
distribution of 10 September 2015 is used to substitute the missing observations during 9 September
2015, considering that the aerosol particles measured in both dates have similar properties.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 25 
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the day.

Figure 7 demonstrates the aerosols’ transportation path (GSFC back trajectory maps in Figure 7a–d)
and their composition (CALIPSO aerosol subtypes in Figure 7e–h) for each of the seasonal aerosol
episodes. The subtypes product was not available for 3 March 2014; therefore, both Figure 7g,h are
presenting the 9 September 2015 case, since the two origins are clear. Figure 7a shows that the aerosols
episode during 8 June 2013 originated from Libya and Algeria, extending to the Western Desert (blue
700 hPa and light purple 850 hPa paths), while the other aerosols extend from regions in southern
and western Europe traveling across the Mediterranean Sea (dark purple 950 hPa). This is confirmed
in the highlighted region of Figure 7e, showing that aerosols were mainly composed of mineral dust
and partially polluted dust and dusty marine particulates. Figure 7b also illustrates the aerosols
during 2 January 2014 originating from the same regions, while the dark purple path (950 hPa) shows
some aerosols crossing closely to the water surface of the Mediterranean Sea, potentially transporting
water vapor and other marine aerosols. This is also confirmed in the highlighted region of Figure 7f,
showing that aerosols mostly were classified as marine, dusty marine, and polluted continental/smoke,
with a small portion of dust in higher altitudes. Figure 7c clearly shows that aerosols originated and
were even “stirred up” in the western deserts; therefore, it is valid to speculate that these aerosols
are mostly composed of mineral dusts. It is worth noting that the CALIPSO data is not available to
access during the 3 March 2014. Figure 7d demonstrates the two components of dust east and west
origins for the 9 September 2015 episode: one from the western desert (light purple path) and another
from the Mesopotamia and Mediterranean region (dark purple and blue paths). Figure 7g,h show
that both sides were dominated mainly by mineral dust, while the marine and polluted dust might
come from the Mediterranean and nearby regions. It is plausible to conclude that the western deserts
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of North Africa are the main origins for the selected seasonal aerosol events, while the existence of
contributors from the Mediterranean and eastern regions cannot be ignored for their characteristic
types and properties.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 25 
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In order to investigate the aerosols’ impact on the human living environment, such as air
temperature, UV exposure, solar radiation, and humidity, Figure 8 illustrates the variation of listed
parameters for the selected seasonal aerosols episodes. The higher values of UVAI during the events in
Figure 8a,g,j show the increased UV absorption, indicating the dusts’ protective ability to excessive
skin UV exposure. Figure 8d shows the lower UVAI values throughout the whole periods, indicating
the limited capability of marine-dominated aerosols to the UV absorption. A pronounced negative
relationship between air temperature and humidity is suggested by Figure 8b,h,k. This is because dust
storms are drying the air and warming the temperature. However, it is noticeable that in Figure 8b, the
humidity bounced back to regular values. This may resulted from the effects of the marine aerosols
depicted in Figure 7e. The negative relationship is also clear between longwave and shortwave
radiations, especially in Figure 8i,l showing rise of longwave radiation and fall of the shortwave
radiation values. In contrast to the marine aerosols, the dust aerosols are suggested to absorb or scatter
the shortwave radiation and then emit the longwave radiation to warm up the land surface, while
fortunately decreasing the humidity and thus not making the warming effect even worse. Figure 8
also demonstrates the seasonal differences among the listed parameters, highlighting the relatively
moderate environment during the winter season with lower temperature, humidity, and solar radiation.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 25 
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Figure 8. The Ultra Violet Aerosol Index (UVAI) (a,d,g,j), air temperature, and specific humidity
(b,e,h,k), shortwave (SW) and longwave (LW) radiation (c,f,i,l) values recorded before and after
five days for each aerosol episode: 8 June 2013 (a–c); 2 January 2014 (d–f); 3 March 2014 (g–i); and
9 September 2015 (j–l).

3.4. Aerosol Patterns In Cairo

As shown in Section 3.3, aerosol patterns, namely types and sources, are different in the Greater
Cairo region, posing divergent impacts on the UVAI and air temperature that indirectly relate to human
health. The dataset of AOD in multiple spectral bands is calibrated from Cairo EMA2 from 2010 to
2017 with as many as 2219 observations. The unsupervised K-means algorithm is used to classify
AOD measurements with different bands (340–1640 nm), FMF, and AE, since the aerosol types can be
conjectured from their different optical properties [10,12]. The result shows five different patterns of
aerosols, represented by the five kinds of clusters summarized in Table 2, in which Cluster 1 indicates
a clear, low AOD atmospheric environment. Its values for each band are low but its AE value is high,
representing fine aerosols. Cluster 2 represents less severe aerosol events composed of fine aerosols
such as industrial pollution and sea salt. Cluster 3 also represents less severe aerosol events, but mainly
consists of coarse aerosols. This could be known by its low FMF and AE values, indicating rich dust
composition. Cluster 4 represents severe aerosol events induced mainly by fine aerosols (such as the
event during 2 January 2014), because of its high values in the 340–500 nm bands, and high values
of both FMF and AE to show that the aerosols are mainly composed of finer particles. This pattern
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is indicating the “pollution-like” mechanisms of aerosols both from air pollution and mixtures with
other type of small size aerosols, as previously discussed [10,12]. Finally, Cluster 5 represents the
severe events caused by the coarse aerosols (mainly dust storms), which is characterized by a high
value in each of the bands, and both low FMF and AE values. This pattern is matching the “dust-like”
mechanisms of aerosol released by wind erosion in the Sahara [10,12].

Table 2. AERONET AOD bands, fine mode fraction (FMF), Ångström exponent (AE), and number of
instances values for five clusters.

K-Means
Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Classified
Aerosol Types

Clear
Day

Light Fine
Aerosol

Light Mixed
Aerosol

Heavy
Pollution-Like

Heavy
Dust-Like

AOD_340 nm 0.42 0.75 0.59 1.31 1.58
AOD_380 nm 0.37 0.68 0.55 1.23 1.55
AOD_440 nm 0.31 0.57 0.51 1.10 1.50
AOD_500 nm 0.27 0.49 0.48 1.00 1.48
AOD_675 nm 0.19 0.33 0.42 0.75 1.43
AOD_870 nm 0.15 0.25 0.39 0.59 1.40
AOD_1020 nm 0.14 0.21 0.37 0.51 1.36
AOD_1640 nm 0.10 0.14 0.29 0.33 1.16
FMF_500 nm 0.57 0.70 0.32 0.68 0.19
AE_500 nm 1.18 1.27 0.51 0.90 0.16

# of Instances 1115 729 285 80 10

3.5. Connection between Particulate Matters, Aerosol’s Optical Charactareristcs, and
Meteorological Paramaters

Figure 9a–c exhibits the relationships between PM10 and aerosol’s optical characteristics, using
MODIS Aqua and Terra AOD daily observations and MERRA-2 model outputs, during the periods
from 1 January 2018 to 31 December 2018. Eight PM10 stations, with hourly data, were included
to generate the daily PM10 averages used here. The difference in the data acquisition frequency
of satellite-based AOD observations against the hourly PM10 data collection accounts for lack of
a direct relationship. Hence, using MODIS-based AOD values to represent daily PM10 might be
problematic, since PM10 values vary greatly during the day, while the MODIS sensors can only capture
AODs in limited time periods. On the other hand, a weak positive relationship was found between
the modeled MERRA-2 AOD and PM10. This connection indicates that the PM10 value could be
converted based on MERRA-2 outputs along with other meteorological parameters. Additionally,
the AERONET observations provide more reliable evaluation for the relationship between the aerosol
optical characteristics and PM10. Therefore, the AOD and Ångström exponent (AE) daily values are
collected from the AERONET EMA2 Station in different spectral bands (1020 nm, 870 nm, 675 nm,
500 nm, 440 nm, 380 nm, and 340 nm) for the same period. Figure 9d demonstrates the positive
relationship between PM10 and AOD at 1020 nm, which is the AOD that is mostly related to PM10
among all the bands. In contrast, Figure 9e shows the negative relationship between AE at 340/440 nm
and PM10, showing the strong linkage between PM10 and coarse aerosols. It suggests that the AOD
and AE observations can be used to estimate the extent of PM10 pollutions.

To be able to model PM10 data, machine learning methods are applied here to achieve better
accuracy estimation of PM10 values from the MERRA-2 AOD along with multiple meteorological
parameters obtained from the GLDAS model. The dataset has total 364 observations, where each
observation has 10 input parameters namely: (MERRA-2_AOD, month, AvgSurfT_inst, LWdown_f_tavg,
Lwnet_tavg, Psurf_f_inst, SWdown_f_tavg, Swnet_tavg, Tair_f_inst, and Wind_f_inst). These fields were
used to generate the modeled PM10, which was then validated against the objective field (ground-based
daily PM10). The dataset is randomly split by the ratio (9:1) into a training dataset (327 observations)
and testing dataset (37 observations), respectively. We built various supervised machine learning
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models, each assigned different parameters, including 97 random decision forests, one decision tree,
one linear regression, and two artificial neural networks. The models use R2 values and MAE (mean
absolute error) as the training metrics and cross-validation for the evaluation process. The selected best
models of each model category are listed in Table 3. Among them, the best Random Decision Forest
achieves the best performance with highest R2 value (0.58825) and lowest MAE (27.37317). Therefore,
this model was selected to predict the PM10 values based on the aforementioned input parameters
using the testing dataset. The comparison between the predicted PM10 and actual PM10 values is
illustrated in Figure 9f. The result demonstrates the higher R2 value (0.43) than all of the R2 values
in Figure 9a–e, which shows the improvement of the predictability using AOD with meteorological
parameters. Since this approach only deploys lower temporal (daily) and spatial resolution (MERRA-2
of 0.5◦ × 0.625◦ and GLDAS of 0.25◦ × 0.25◦), it promotes potential further optimizations by using finer
spatial and temporal resolution inputs.
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Figure 9. The relationship between the daily average of PM10 and multiple products: (a) MODIS Aqua
AOD; (b) MODIS Terra AOD; (c) Modern-Era Retrospective analysis for Research and Applications
version 2 (MERRA-2) AOD; (d) AERONET AOD at 1020 nm; (e) AERONET Ångström exponent (AE)
at 340 nm/440 nm; (f) predicted PM10 values from the Random Decision Forest model output.

Table 3. The selected model per category. MAE: mean absolute error.

Ranking Algorithm Name R2 MAE

1 Random Decision Forest 0.58825 27.37317
2 Artificial Neural Network 0.37955 29.91710
3 Linear Regression 0.28848 28.41857
4 Decision Tree 0.25115 37.64001

Figure 10 shows the average annual PM2.5 for all of Egypt using GWR datasets to compare with
monthly MERRA-2 datasets (min, max, and mean values) of PM2.5 dust AOD and sea salt AOD, as well
as surface air temperature and wind speed during the period from the year 1998 to 2016. Since the
majority of Egypt is covered with depopulated desert regions, the population weighted PM2.5 is



Remote Sens. 2019, 11, 1998 17 of 24

apparently lower than the geographic mean PM2.5 for all the types of PM2.5 components. However,
with dust and sea salt excluded, the population-weighted PM2.5 is higher than that of the geographic
mean due to the PM2.5 particles mainly coming from civilization, such as industrial and transport
emissions and burnt agriculture waste. The black arrows point to the 2010 PM2.5 including dust and
sea salt, showing the impact of anomalous high temperature, particularly during cool months, on the
rising of PM2.5 dust aerosols. The black circles suggest the relationship between both record-breaking
hot months and emergently increased PM2.5, regardless of the dust and sea salt components. The red
arrows show the severely high PM2.5 in 2006, which is explained by the excessively numerous fire
events during the “black cloud” season [2,3].
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Figure 10. Egypt’s average annual population weighted and geographic mean PM2.5 using
geographically weighted regression (GWR) datasets to compare with monthly MERRA-2 datasets
(min, max, and mean values) of PM2.5 dust AOD and sea salt AOD, as well as surface air temperature
and wind speed during the period from 1998 to 2016.

4. Discussion

The consequence of the accelerated economic growth of Egypt in the past decades makes Cairo
the largest city of Africa with more than 20 million people, as well as one of the most air-polluted
mega cities globally [81], which puts people living in urban areas into a more vulnerable situation of
environment-related and public health issues. Additionally, the pollution over such a dense population
severely impacts not only the residents but also tourists from many countries. The factors deteriorating
air quality include natural sources from the surrounding deserts and anthropogenic sources such as
vehicles, industries, agriculture waste burning, and even the formation of secondary aerosols [15].
The complexity of identifying the pollution types, sources, and trajectories is even enhanced by
Cairo’s special geographical and meteorological characteristics, which introduces complications in the
managerial strategies. However, the period of the worst air quality condition over Cairo is identified
in the fall season, when the wind currents are weak [9,15]. The warmer and lighter air mass stays
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over the colder air to make the bowl-like Cairo even more stagnant without air movement, trapping
the air pollutant close to the ground. This high ambient concentration of air pollutants is known as
the “black cloud”. The rare appearance of rainstorms in this season makes the situation even more
severe. It also brings public debates around the major contributors to the locally known “black cloud”
episode—urban pollutants (industries and vehicles) or agriculture waste burning, which is banned
by the government. The study [2] found that smoke from the agriculture waste contributed to the
urban air pollution as well as from the open fires generated at sunset (when it is less likely to get
observed), which is the worst time for Cairo’s air quality. Besides, it is reported that Cairo’s increased
ozone during summer is transported from Europe [82], and the CO increases as a result of the Khamsin
events and industrial pollution [14]. A study also showed that the anticyclone flow of the Asian
summer monsoon can transport the pollution from Asia toward Africa [83]. These studies suggest that
the urban air quality control needs efforts from urban, rural, and even international collaborations.
Moreover, other significant effects of aerosols (e.g., effects on the visibility, the nutrient balance, and
acidity of soil) have also been reported [84,85].

As it is illustrated in Figure 10, the rapid increase of air temperatures, possibly driven by climate
changes, can intensify both the AOD and PM2.5 in Egypt. The usage of machine learning to improve
the estimation and prediction of meteorological parameters, such as precipitation, has been validated
in the previous research [86]. On the other hand, the tropospheric aerosols can both alter the direct and
indirect radiative forcing to the Earth’s surface as the feedback to impact the warming process [87].
However, the knowledge of the aerosols’ characteristics and sources is critical not only for human health,
but also for the understanding of their interaction with regional and global climate change, particularly
the radiation balance of the Earth’s system. For instance, the direct global dust–climate feedback is
calculated as approximate range of−0.04 to +0.02 Wm−2 K−1, which can potentially shape the major dust
sources of the future climate, as has likely occurred in the past [88,89]. The absorption of SW and LW
radiation, as well as scattering LW radiation back to the Earth’s surface, causes a dust-warming effect,
which results from the coarse dust and is intensified by the bright surfaces, such as the desert region
of the Middle East [90,91]. In contrast, the scattering of SW radiation induces a cooling effect, which
results from the fine dust and is enhanced over the dark surfaces [91]. However, past investigations
of the responses of the dust cycle to the climate changes yielded divergent results, because of many
uncertainties regarding parameters in quantifying the dust–climate feedback [90,92–96]. Therefore,
there is no solid consensus on whether the dust activities will enhance or weaken future climate
changes [95–98]. Recently, a study investigated the annual patterns and episodes of the Cairo’s air
pollution using satellite-based measurements from the tropospheric emission spectrometer (TES) on
board the Aura [3] to demonstrate multiple pollutants’ seasonal variation.

5. Conclusions

This study extends the work with more accurate ground-based AERONET observations focusing
on the atmospheric aerosols. In this research, the combination of AERONET ground-based and satellite
observations (e.g., MISR and Aqua and Terra MODIS) are used to study different compositions of
aerosol loadings over Cairo and Nile Delta during a near 20-year period from 1999 to 2018. Our analysis
validated the better performance of MISR and MODIS sensors in observing local aerosol events in
Cairo. Aerosol products from the AERONET portal (such as SDA and the GSFC model) as well as
CALIPSO aerosol subtypes tool are used to study the emerging aerosol episodes for each season.
The result indicates that during the spring, fall, and summer, the selected aerosols events are caused by
dust-related storms, whereas during winter, pollution and marine-related finer aerosols could also lead
to severe aerosol conditions. The seasonal episodes also revealed the unassociated impacts on human
health through altering the UV exposure, air temperature, humidity, and solar radiation intensities.
Aerosols in different conditions (clear, fine, coarse, and mixed aerosols) are well distinguished using
a multi-band AOD spectrum, as well as derived AE and FMF products using the K-means method over
AERONET observations. The PM2.5 is indicated to be connected with air temperature and aerosol
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activities over the Egypt region. The Random Decision Forest model has been proved to improve the
accuracy of estimating PM10 based on AOD and meteorological parameters, while future work is
suggested to develop advanced algorithms to optimize the air quality predictions that are critical to
human health.
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