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Abstract: Spectral-spatial classification of hyperspectral images (HSIs) has recently attracted great
attention in the research domain of remote sensing. It is well-known that, in remote sensing
applications, spectral features are the fundamental information and spatial patterns provide the
complementary information. With both spectral features and spatial patterns, hyperspectral image
(HSI) applications can be fully explored and the classification performance can be greatly improved.
In reality, spatial patterns can be extracted to represent a line, a clustering of points or image
texture, which denote the local or global spatial characteristic of HSIs. In this paper, we propose
a spectral-spatial HSI classification model based on superpixel pattern (SP) and kernel based extreme
learning machine (KELM), called SP-KELM, to identify the land covers of pixels in HSIs. In the
proposed SP-KELM model, superpixel pattern features are extracted by an advanced principal
component analysis (PCA), which is based on superpixel segmentation in HSIs and used to denote
spatial information. The KELM method is then employed to be a classifier in the proposed
spectral-spatial model with both the original spectral features and the extracted spatial pattern
features. Experimental results on three publicly available HSI datasets verify the effectiveness of the
proposed SP-KELM model, with the performance improvement of 10% over the spectral approaches.

Keywords: hyperspectral image; spectral-spatial classification; superpixel segmentation;
feature extraction; extreme learning machine

1. Introduction

Hyperspectral images (HSIs) are acquired from different spaceborne or airborne sensors,
where each pixel contains hundreds of spectral channels from ultraviolet to infrared [1,2] and have
been an important tool in many HSI applications [2,3]. In remote sensing applications, hyperspectral
data provide abundant spectral information of the materials to differentiate the subtle differences in
various ground covers (i.e., land covers). Apart from the spectral information, hyperspectral data also
contain the rich spatial information, in which adjacent pixels have similar spectral characteristics and
mostly share the same ground cover with a high probability [4,5]. However, the conventional HSI
classification models, e.g., support vector machine (SVM) [6] and extreme leaning machine (ELM) [7],
differentiate diverse ground covers only considering the spectral information while ignoring the
potential spatial information. Therefore, in HSI analysis, the performance of these classification models
may be compromised.

In the last decades, there has been great interest and enthusiasm in exploiting spatial features
to enhance the HSI classification performance [8–10]. For instance, in [11], composite kernel (CK)
machine, called SVM-CK, combines both the spectral and spatial information of HSIs into SVM by
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using multiple kernels. Afterwards, this framework is extended to ELM and kernel based ELM
(KELM), named ELM-CK and KELM-CK, respectively [12]. In [13], local binary pattern (LBP) and
KELM are incorporated into a spectral-spatial framework, called LBP-KELM, to exploit the texture
spatial information (i.e., edges, corners and spots) for the classification of HSIs, which fully extract
local image features. Gabor filtering [14] and multihypothesis (MH) prediction preprocessing [15]
are utilized to characterize spatial features due to the homogeneous regions of HSIs, which can take
full advantage of the spatial piecewise-continuous characteristic. In [16], Gabor filtering and MH
processing are both integrated into KELM, where the proposed frameworks are named as Gabor-KELM
and MH-KELM, respectively. In [17], Markov random field (MRF) is adopted as a postprocessing
to capture the spatial contextual information, which refines the performance of a pixelwise based
probabilistic SVM and is denoted as SVM-MRF. Similarly, MRF can be used to integrated with other
machine learning method, e.g., Gaussian mixture model (GMM) and subspace multinomial logistic
regression (SubMLR). The integrated models are called GMM-MRF [18] and SubMLR-MRF [19],
respectively. Additionally, researchers also work with other spatial features in other manners.

Recently, superpixel segmentation gains its popularity in remote sensing applications [20–22].
For an HSI, multiple homogeneous regions are partitioned by superpixel segmentation, which can
also be regarded as superpixels [23,24]. According to the characteristic of HSIs, pixels in an individual
superpixel are mostly associated with the same ground cover. Therefore, the spatial information of
HSIs can be exploited by using superpixel segmentation. In [25], the superpixel-based classification
via multiple kernels (SC-MK) utilizes a superpixel segmentation algorithm to divide an HSI into many
homogenous regions and adopts three kernels to employ both the spectral and spatial information
of inter-superpixel and intra-superpixel. In [26], the superpixel-based discriminative sparse model
(SBDSM) is presented to classify HSIs with the spectral-spatial information, where pixels among
an individual superpixel are jointly learned by sparse representation. In [27], a superpixel-based
Markov random field (MRF) model is a supervised superpixel-level classification method, where the
well-designed weight coefficient is determined for the contextual relationship between superpixels.
In [28], the multiscale superpixel-based sparse representation (MSSR) model utilizes a segmentation
strategy to obtain different scale segmentations for an HSI, in which majority voting is used to
jointly decide the labels of pixels under different scale superpixels. In [29], superpixel-level principal
component analysis (SuperPCA) is presented as a spectral-spatial dimensionality reduction approach
to extract the reduced features for HSIs, in which the spatial information are taken into consideration
by superpixel segmentation. The approach of Jiang et al. [30] incorporates the superpixel based spatial
information to remove the samples with noisy labels. The above-mentioned approaches demonstrate
that superpixel segmentation is a useful method to refine the spatial information for HSI analysis.

In general, despite the difference in learning diverse spatial features, a basic classification
approach is required in the HSI classification models. Being a simple and effective machine learning
approach, ELM is used to train “generalized” single-hidden layer feedforward neural networks
(SLFNs) [31,32]. Unlike traditional neural networks which adjust the network parameters iteratively,
ELM is a tuning-free algorithm which learns much more effectively and efficiently than traditional
gradient-based approaches such as the Back-Propagation algorithm and Levenberg–Marquardt
algorithm. It has shown great potential for modeling the nonlinear relationship between features
and their labels in complicated real-world applications [33]. In remote sensing applications, ELM is
also well explored for various learning tasks. For synthetic aperture radar (SAR) image change
detection, a unified framework is presented by integrating a difference correlation kernel (DCK) and
a multistage ELM (MS-ELM), where any changes can be measured by the distance between pair-wise
pixels [34]. For ship detection, the proposed model consists of compressed domain, a deep neural
network (DNN) and an ELM, in which the ELM is employed to act as efficient feature pooling and
decision making [35]. For transfer learning task, an advanced ELM with weighted least square is
presented for the classification of HSIs, which utilizes different weighting strategies to determine
historical and target training data [36]. For land-use scene classification, the multi-scale completed
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LBP descriptor is advocated to extract the spatial texture features, where KELM is equipped to predict
the ground covers of the HSI datasets [37]. The existing literature presents the superior performance of
ELM for the applications of HSI.

Motivated by these observations, in this paper, we present a simple and effective spectral-spatial
HSI classification model with superpixel pattern (SP) and kernel based extreme learning machine
(KELM), named SP-KELM. In the proposed model, superpixel pattern features (i.e., spatial features)
are firstly learned by a superpixel based PCA, where a fast superpixel segmentation algorithm is
adopted to generate homogeneous regions for HSI and a basic PCA model is performed on each
homogeneous region. Then, spectral and spatial features are jointly investigated via KELM, and the
ground covers can be effectively predicted to achieve a higher accuracy. In SP-KELM, the spatial
information is fully exploited by superpixel segmentation and encoded into the learned spatial
features. By doing so, the performance of the proposed spectral-spatial HSI classification model can
be improved. Experiments on three publicly available HSI datasets demonstrated the superiority
of the proposed SP-KELM model over the conventional spectral methods and other state-of-the-art
spectral-spatial models. In addition, we also investigated the influence of different numbers of
superpixel segmentations and different dimensions of spatial features to the classification of HSI for
in-depth research.

The rest of this paper is structured as follows. Section 2 briefly surveys related work on superpixel
segmentation method, principal component analysis and extreme learning machine. Section 3
introduces the proposed spectral-spatial HSI classification model. The experiments and comparisons
are presented in Section 4. Finally, we conclude the paper in Section 5.

2. Related Work

2.1. Superpixel Segmentation Method

Superpixel segmentation is defined as the problem of localizing homogeneous regions of
an image (e.g., image homogeneity). It is a powerful tool for image applications, which can
accurately localize the boundaries of the potential objects in different complicated scenarios [38,39].
Recently, the concept of superpixel has also been introduced in the classification of HSIs. For an HSI,
each superpixel is a homogeneous region adaptively segmented according to the intrinsic spatial
structure. Therefore, the spatial information of HSIs can be effectively exploited and used to improve
the performance of remote sensing applications. In reality, there are many effective superpixel
segmentation methods fulfilled by different techniques [40]. Graph based segmentation methods
are well-accepted in image processing [41–43]. A typical graph based segmentation technique is the
normalized cuts (NCuts) [44], which needs to construct a large-scale connected graph and requires
eigenvalue decomposition as solution. However, it is very time-consuming to perform eigenvalue
decomposition for partitioning the segmentations. Another effective segmentation approach to achieve
a similar regularity is TurboPixel [45], which sacrifices the detailed image information and leads to
a low-level boundary recall.

Being a preprocessing process, superpixel segmentation should cling tightly to the object
boundaries and be of low computational complexity. In remote sensing applications, the entropy
rate superpixel (ERS) segmentation approach [46] is frequently adopted to preprocess HSIs for the
flexibility and efficiency. Given a graph G = (V, E) for an HSI, vertices (V) are pixels that needed to
be partitioned and the edge set (E) records the similarities between pairwise pixels. ERS picks a subset
of edges A ⊂ E to partition the graph into smaller connected subgraphs, which forms the partitioned
graph G ′ = (V, A). To generate the most suitable superpixel segmentation, the objective function of
ERS is represented as:

A∗ = argmax
A

Tr{H(A) + λB(A)}, s.t. A ⊂ E. (1)
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In Equation (1), H(A) is the entropy rate term for generating homogeneous and compact clusters,
while B(A) is the balancing term for encouraging the clusters with similar sizes. λ is a trade-off
parameter to balance the contributions of H(A) and B(A), and Tr(·) denotes the trace operation.
To solve Equation (1), a greedy heuristic algorithm is adopted as solution. ERS has been proven to be
a powerful superpixel segmentation method, which is also widely applied in other image applications.

2.2. Principal Component Analysis

Unsupervised dimensionality reduction techniques are of great significance to extract
low-dimensional features for HSI analysis. To some extent, dimensionality reduction has become
a fundamental step for HSI analysis. Recently, some manifold learning based methods nonlinearly
determine the essential reduced features from original high-dimensional data, which may conquer the
curse of dimensionality problem in the applications of HSI [47,48]. The representative methods are
locally linear embedding (LLE) [49], locality preserving projection (LPP) [50], neighborhood preserving
embedding (NPE) [51], etc. For these dimensionality reduction methods, their performance mainly
relies on the construction of the similarity graph. Therefore, it is vital to design an appropriate similarity
graph for the manifold learning based dimensionality reduction methods. However, for an HSI, the
construction of the similarity graph is very time-consuming.

Being a simple yet effective preprocessing method, principal component analysis (PCA) [52] is
one of the most widely used dimensionality reduction technique for the application of HSIs. PCA
converts original possibly correlated variables into linearly uncorrelated variables (i.e., principal
components) by using an orthogonal transformation. Given the input matrix X ∈ Rd×N with N input
samples and d input features, PCA aims at finding a linear transformation relationship between the
original d-dimensional space X and a low e-dimensional space X′ ∈ Re×N by maximizing data variance
in X′. Denote the transformation matrix as W ∈ Rd×e, the linear transformation between X and X′

is represented as X′ = WTX. An example of principal projection direction of PCA can be found
in Figure 1a. Mathematically, the transformation matrix W can be determined by solving the following
objective function,

W∗ = argmax
WTW=I

Tr(WTCov(X)W), (2)

where Cov(·) measures the covariance matrix. Due to the effectiveness and efficiency, there are
a variety of PCA variants proposed to address the dimensionality reduction problem for HSIs. In [53],
a nonparametric mutual information (MI) measure is employed on the components obtained via
PCA to form a new dimensionality reduction method (called MI-PCA) for HSI analysis. In [54],
a fast iterative kernel principal component analysis (FIKPCA) centers on solving eigenvectors during
iterative learning instead of performing eigen decomposition, which greatly reduces both the space
and time complexities. In [55], a novel dimensionality reduction method via regression (DRR for short)
is introduced to generalize PCA with curvilinear features, which falls into the family of invertible
transforms. The above-mentioned approaches are typically proposed to overcome the limitations of
PCA in HSI analysis. More detailed information of limitations of principal components analysis for
HSI analysis can be found in the work of Prasad and Bruce [56].
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Figure 1. Graphical illustrations for the methodologies in the related work: (a) principal projection
direction of principal component analysis; and (b) network structure of extreme learning machine.

2.3. Extreme Learning Machine

Extreme learning machine (ELM) is an emerging learning model for training “generalized”
single hidden layer feedforward neural networks (SLFNs), which can achieve superior generalization
performance with fast learning speed on complicated application problems [32,57]. ELM is composed
of an input layer, a hidden layer and an output layer, where the input and hidden layers are
connected by the input weights, while the output and hidden layers are connected by the output
weights. The network structure of ELM is shown in Figure 1b. As opposed to conventional neural
networks with iterative parameter tuning, ELM need not to iteratively adjust its network parameters.
In general, the basic ELM is usually partitioned into two main steps: ELM feature mapping and
ELM parameter solving [58]. In the first step, a latent representation is obtained from original input
data via nonlinear feature mapping. According to ELM theory, various activation functions can be
adopted in ELM feature mapping stage. Activation functions commonly used in the literature involve
sigmoid function, Gaussian function, sine function, cosine function, etc. All activation functions
adopted in ELM are infinitely differentiable [59]. In the second step, output weight parameters are
then analytically solved by the Moore–Penrose (MP) generalized inverse and the minimum norm
least-squares solution of a general linear system without any learning iteration. Given N distinct
training samples, {X, Y} = {(xi, yi)}N

i=1, where xi∈Rd is a d-dimensional input vector and yi∈Rc

is a c-dimensional target vector. The ELM network with Q hidden nodes is represented as the
following equation:

yi =
Q

∑
j=1

β jhj(vj · xi + bj), i = 1, 2, ..., N; (3)

where vj∈Rd is the input weight vector, bj is the hidden layer bias, and β j∈Rc is the output weight
vector for the jth hidden node. hj(·) is the output value of the jth hidden node. For simplification,
Equation (3) can be compactly represented as

Hβ = Y, (4)

where H is the hidden layer output matrix and β is the output weight matrix.
Due to the remarkable advantages of ELM, numerous effective ELM variants are proposed to

address the applications of remote sensing. The satisfactory performance of ELM on HSIs are supported
by theoretical studies. In ELM theories, universal approximation capability [58] and classification
capability [59] attract great attention and become research focuses. In [7], an ELM based method
for HSI anlaysis is presented to automatically determine model parameters with the differential
evolution (DE) optimization. In [60], a novel spatiotemporal fusion method using ELM is advocated
to provide useful information in high resolution earth observation. In [61], two ensemble ELM
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methods with the idea of Bagging and AdaBoost are proposed to overcome the weakness of randomly
generated parameters for HSI classfication. In [62], an advanced active learning ELM approach is
presented as a query-by-Bagging algorithm, which selects the most informative pixels in a voting
manner. In the literature, there are a good deal of ELM based methods to address the remote sensing
application problems.

3. Proposed Spectral-Spatial Classification Model

In this section, we elaborate the details of the proposed spectral-spatial classification model for
HSI analysis. Figure 2 shows the schematic of the proposed model. The section begins by learning
superpixel-based spatial features. The kernel based ELM used to be the classifier follows. Algorithm 1
presents the pseudocode of the proposed method.

First Principal 
Component

Segmentation Map 

PCA ERS

PCA

PCA

Original Spectral 
Features

learned spatial 
features

The Classification 
Results

Reuse

Spectral-Spatial 
Features classified 

by KELM

Combined

Figure 2. Schematic of the proposed SP-KELM method for HSIs.

Algorithm 1 Pseudocode. for SP-KELM

Input:
HSI cube X∈ RM×N×L; Number of hidden nodes Q; Coefficient C; Number of superpixel

segmentation Ss; Dimension of spatial features S f ;
Output:

The predicted labels for each tesing pixel in HSI cube;

1: Reshape 3D HSI cube X to a 2D spectral matrix Xspec ∈ RL×P (P = MN);
2: Perform PCA on Xspec to obtain the first principal component I f ;
3: Perform ERS on I f to get the superpixel segmentation map and the segmented spectral matrices

Xspec = ∪Ss
k Xspec

k ;
4: Apply PCA on each segmented spectral matrice Xspec

k to obtain the reduced spatial features Xspat
k

with the dimension of S f ;
5: Combine the reduced spatial features for HSI by Xspat = ∪Ss

k Xspat
k ;

6: Combine Xspec
k and Xspat to get the spectral-spatial features Xss = [Xspec; Xspat] for HSI;

7: Apply the KELM on the spectral-spatial features Xss by dividing it into the training and

testing dataset;
8: Return the predicted labels for each testing pixel for HSI.

3.1. Superpixel Based Spatial Features

For HSIs, spatial features are learned from various perspectives in diverse studies. Dimensionality
reduction approaches can be also employed to extract informative spatial features from HSIs.
For example, in [63], a hierarchical PCA approach is presented to reduce the dimensionality of
hyperspectral data, where an HSI is partitioned into different spatial domains (i.e., 2× 2 or 4× 4
parts of the image). The hierarchical PCA can exploit certain spatial information into the reduced
feature space. However, the fixed size of each partitioned region cannot accurately reflect the spatial
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domains of HSIs. To effectively exploit the spatial information into the reduced feature space, in [29],
the superpixel-based PCA approach is introduced for spatial feature extraction, which employs a
superpixel segmentation method to obtain homogeneous regions instead of simply generating the
same size of spatial regions. Motivated by this, we attempt to generate spatial features in this manner.

Superpixel segmentation approaches partition HSIs according to the intrinsic characteristics,
which efficiently capture the spatial information. As in many superpixel segmentation-based
approaches, ERS is adopted to generate homogeneous regions from HSIs for its efficiency and efficacy.
Other effective and efficient superpixel segmentation method can be also employed to replace the
ERS. Given an HSI cube X∈ RM×N×L, M and N represent the length and width of an image and
L denotes the number of sampled wavelengths. The 3D HSI cube can be reshaped to a 2D spectral
matrix Xspec ∈ RL×P (P = MN), where a single column denotes one pixel in the HSI. Initially, the first
principal component of the HSI, I f ∈ RP (i.e., I f ∈ RM×N), is obtained by PCA to capture the primary
knowledge hidden in the image. This operator lessens the computational burden in the process of
superpixel segmentation. During the superpixel segmentation process, we then perform ERS on the
first principal component I f to generate superpixel segmentations,

I f =
Ss∪
k
Hk, s.t. Hk ∩Hg = ∅, (k 6= g), (5)

whereHk is the kth segmentation, and Ss represents the number of segmentations.
By partitioning an HSI to superpixels, the abundant spatial information of land covers can be

exploited. We then incorporate the spatial information into the reduced feature space with PCA.
Specifically, according to the segmentation {Hk}Ss

k=1, the 2D HSI matrix is partitioned into multiple
matrices Xspec = ∪Ss

k Xspec
k . PCA is then applied on the segmented matrices (i.e., superpixels) to obtain

the reduced spatial features. These reduced spatial features can be combined to form a spatial HSI
matrix, which is denoted as Xspat. When the traditional PCA algorithm is applied on an entire image,
the principal projection direction shows the uniqueness. For the superpixel based PCA method, it can
find the intrinsic projection directions for all superpixel segmentations. Compared to the traditional
PCA method, the superpixel based PCA method flexibly takes full advantage of the spatial information
to extract spatial features.

3.2. Kernel Based Extreme Learning Machine

Kernel learning approaches are a type of machine learning algorithms to identify general
relationships between features and labels. Compared to the general approaches, kernel learning
methods do better in simulating the nonlinear relationships between features and labels. In general,
nonlinear relationships between pixels and ground covers are prevalent in HSIs. Therefore, we adopt
a kernel based ELM (KELM) method as the classifier in the proposed spectral-spatial classification
model. The KELM method integrates kernel learning into ELM and extends the explicit activation
function to an implicit mapping function, which avoids the randomly generated parameter issue and
demonstrates the superior generalization capability. In diverse HSI learning models, KELM is widely
used as the classifier to predict the ground covers for all pixels [13,34].

By combining the original spectral features Xspec and the learned spatial features Xspat, we get
the spectral-spatial features Xss = [Xspec; Xspat]. To effectively solve Equation (4) for ELM, the output
weight matrix can be calculated as

β = H+Y, (6)

where H+ is the Moore–Penrose generalized inverse for H. Actually, matrix H+ can be determined as
H+ = HT(HHT)−1 [31], where HT is the transpose of H. To achieve better generalization, a positive
value C is added to the diagonal elements of HHT . Therefore, Equation (6) can be represented as
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β = HT( I
C + HHT)−1Y, which can achieve by the least squares estimation cost function to solve β.

Given input spectral-spatial data xss
i , the ELM classifier is then mathematically formulated as

f (xss
i ) = h(xss

i )β = h(xss
i )H

T
( I

C
+ HHT

)−1
Y. (7)

In ELM, a feature mapping h(xss
i ) is unknown to users. Therefore, we apply Mercer’s condition

and define a kernel matrix for ELM as
ΩELM = HHT , (8)

where the ith row and rth column element is ΩELMi,r = h(xss
i ) · h(xss

r ) = K(xss
i , xss

r ). For the ith row
vector in ΩELM, ΩELMi = h(xss

i )H
T = [K(xss

i , xss
1 ); · · · ; K(xss

i , xss
N)]. Thus, the formulation of KELM is

denoted as

f (xss
i ) = h(xss

i )H
T
( I

C
+ HHT

)−1
Y =

 K(xss
i , xss

1 )
...

K(xss
i , xss

N)


T ( I

C
+ ΩELM

)−1
Y. (9)

To further enhance the performance of the proposed spectral-spatial classification model,
the cross-validation is used to determine suitable parameter C for KELM.

4. Experiments

We conducted experiments to verify the effectiveness and efficiency of the proposed SP-KELM
method in hyperspectral image classification application.

4.1. Hyperspectral Datasets

To verify the performance of the proposed SP-KELM method, three publicly available HSI datasets
(http://alweb.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes), including
Indian Pine, University of Pavia and Salinas Scene, were used in the experiments.

The Indian Pine dataset was captured by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor in 1992, and is a scene of Northwest Indiana. In this scene, there are 145× 145 pixels
and 220 spectral bands with 20 m spatial resolution in the 0.4–2.45 m region. After removing 20 bands
with low signal noise ratio, 200 bands were used for classification. The Indian Pine dataset records 16
different land covers of the agricultural fields with regular geometry. There are 10,249 labeled pixels
contained in the ground-truth map, details of which are shown in Table 1. The false color composition
of the Indian Pine data is shown in Figure 3a.

The University of Pavia dataset was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor in 2002, recording a scene from the University of Pavia, Italy. In this
scene, there are 610× 340 pixels to present the spatial coverage, of which the spectral coverage is
0.43–0.86 µm and the geometric resolution is 1.3 m. The scene contains 115 spectral bands, of which
12 noisy and uninformative bands were removed. There are 42,776 labeled pixels with 9 diverse land
covers. For the University of Pavia data, the details of labeled pixels are represented in Table 1, and the
false color composition is demonstrated in Figure 3b.

The Salinas Scene dataset was acquired by the AVIRIS sensor over Salinas Valley, California,
USA in 1998. The scene contains 512× 217 pixels over 0.4–2.5 µm with the geometric resolution
of 3.7 m. It involves 204 spectral bands by removing 20 water absorption and atmospheric effects
bands. There are 54,129 labeled pixels related to 16 different land covers in the documented dataset,
the details of which are demonstrated in Table 1. The false color composition of the Salinas Scene data
is represented in Figure 3c.

http://alweb.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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(a) (b) (c)

Figure 3. The false color composition of three HSI datasets. (a) Indian Pines; (b) University of Pavia;
and (c) Salinas Scene.

Table 1. Statistics of the hyperspectral image datasets.

Indian Pines University of Pavia Salinas Scene

Class Names Numbers Class Names Numbers Class Names Numbers

1. Alfalfa 46 1. Asphalt 6631 1. Broccoli green weeds 1 2009
2. Corn-notill 1428 2. Bare soil 18,649 2. Broccoli green weeds 2 3726
3. Corn-mintill 830 3. Bitumen 2099 3. Fallow 1976
4. Corn 237 4. Bricks 3064 4. Fallow rough plow 1394
5. Grass-pasture 483 5. Gravel 1345 5. Fallow smooth 2678
6. Grass-trees 730 6. Meadows 5029 6. Stubble 3959
7. Grass-pasture-mowed 28 7. Metal sheets 1330 7. Celery 3579
8. Hay-windrowed 478 8. Shadows 3682 8. Grapes untrained 11,271
9. Oats 20 9. Trees 947 9. Soil vineyard develop 6203
10. Soybean-notill 972 10. Corn senesced green weeds 3278
11. Soybean-mintill 2455 11. Lettuce romaine 4 wk 1068
12. Soybean-clean 593 12. Lettuce romaine 5 wk 1927
13. Wheat 205 13. Lettuce romaine 6 wk 916
14. Woods 1265 14. Lettuce romaine 7 wk 1070
15. Buildings-Grass-Trees-Drives 286 15. Vineyard untrained 7268
16. Stone-Steel-Towers 93 16. Vineyard vertical trellis 1807

Total Number 10,249 Total Number 42,776 Total Number 54,129

4.2. Competing Methods and Experimental Setting

In the experiments, we compared the proposed SP-KELM model with different competing
methods. These compared methods can be divided into two parts: spectral approaches and
spectral-spatial approaches. The spectral approaches are SVM [6], ELM [7] and KELM [12], which only
use the spectral bands as input data. Another spectral approach used in the experiments is
PCA-KELM, where the original spectral features and the low-dimensional spectral features extracted
by the conventional PCA are combined to form a new feature space for the classification of KELM.
The spectral-spatial approaches are KELM with composite kernels (CK-KELM) [12] and KELM with
local binary patterns (LBP-KELM) [13]. Three widely used evaluation metrics, including overall
accuracy (OA), average accuracy (AA) and kappa coefficient, were adopted to assess the testing
classification performance of all compared methods on the three HSI datasets. The overall accuracy
measures the percentage of correctly predicted testing pixels. The average accuracy averages the
predicted classification accuracies of all pixels with different land covers. The kappa coefficient
is a statistical measure to represent the degree of classification agreement. All experiments were
performed on a computer with an Intel(R) Core(TM) 2.70 GHZ CPU and 8 GB RAM with Matlab
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R2016a. To avoid any bias, the presented experimental results were averaged from repeating the
experiments 10 times.

The radial basis function (RBF) kernel parameter σ and penalty parameter C involved in SVM
were varied in the range of {2−4, 2−3, ..., 24} and {2−6, 2−4, ..., 212}. In ELM, the sigmoid function
was taken as the activation function and the number of hidden nodes defaulted to 1000 as in
[12]. The parameter C ranged {2−6, 2−4, ..., 212} and the input parameters in ELM were randomly
selected from the uniform distribution of [−1, 1]. For all methods related to KELM, the RBF
kernel was adopted and the kernel parameter σ ranged {2−4, 2−3, ..., 24}. Besides, parameter C
was varied in {2−6, 2−4, ..., 212}. For PCA-KELM and SP-KELM, the dimension of the reduced spatial
features was set as 30. In SP-KELM, the number of segmented superpixels defaulted as 100. The
parameters in CK-KELM and LBP-KELM were tuned for specific HSI datasets. In the above methods,
threefold cross-validation with a grid-search strategy was used to determine the optimal values for
parameters σ or C. Specifically, the original training set was divided into three equally-sized subsets at
random. Two subsets were employed for model training and the remaining subset was utilized for
validation. This process was repeated until each subset was consecutively used for validation. Finally,
the parameters with the optimal performance were adopted for the subsequent testing process.

4.3. Experimental Comparison

We begin our discussion on comparison results between the proposed SP-KELM method
and the competing methods. The discussions of the three HSI datasets are presented in the
following descriptions.

(1) Experiments on the Indian Pine Dataset: For the Indian Pines dataset, the number of pixels with
labeled land covers ranges from 20 to 2455. The classification on such unbalanced distribution dataset
is a challenging problem. To study the performance of different algorithms on this challenging dataset,
we randomly selected a fixed number of the labeled pixels from each land cover as training data.
Specifically, 30 training pixels were arbitrarily chosen when the total number of the pixels for land
covers was more than 60. Otherwise, half of the training pixels were selected at random. The remaining
labeled pixels were employed for testing. By doing so, the unbalanced problem in exploring the Indian
Pine data could be alleviated. The comparison results of the Indian Pines dataset are shown in Table 2.

Table 2. Performance comparison of all compared methods on the Indian Pines dataset.

Class #Samples Spectral Approaches Spectral-Spatial Approaches

Train Test SVM ELM KELM PCA-KELM CK-KELM LBP-KELM SP-KELM

1 23 23 93.04 86.52 92.61 93.04 99.57 100.00 100.00
2 30 1398 52.63 45.89 56.09 54.59 85.94 83.63 89.11
3 30 800 62.99 39.05 60.40 60.16 89.11 93.51 92.42
4 30 207 77.05 63.62 78.84 80.19 99.37 99.52 95.56
5 30 453 87.99 83.91 87.81 85.87 90.49 97.68 97.09
6 30 700 91.19 92.27 91.76 91.97 99.34 99.40 98.30
7 14 14 88.57 90.71 91.43 90.71 100.00 100.00 97.14
8 30 448 93.24 83.39 94.33 92.28 99.78 99.98 99.64
9 10 10 82.00 66.00 95.00 87.00 100.00 100.00 100.00
10 30 942 63.54 57.01 64.10 63.66 87.98 84.58 89.82
11 30 2425 52.88 46.29 54.41 53.30 82.39 82.29 90.18
12 30 563 61.51 60.02 73.11 69.57 93.02 84.30 92.50
13 30 175 97.43 99.26 98.40 98.46 99.89 100.00 99.43
14 30 1235 85.96 80.08 85.21 80.13 93.45 99.70 98.95
15 30 356 57.39 57.78 66.07 62.53 99.47 98.79 98.82
16 30 63 95.87 91.90 91.90 92.70 99.84 100.00 99.05

OA (%) 67.46 60.62 69.19 67.53 89.84 90.14 93.43
AA (%) 77.70 71.48 80.09 78.51 94.98 95.21 96.13
Kappa 0.6335 0.5576 0.6531 0.6353 0.8844 0.8878 0.9250
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In Table 2, among the spectral approaches, ELM demonstrates the worst results especially for some
specific land covers (e.g., corn-mintill and oats) for the absence of the kernel, which is more capable of
exploring the nonlinear relationship between features and land covers. The land covers of corn-mintill
and oats are very close to other similar land covers, which may result in difficulty of identifying these
land covers. Compared to KELM, PCA-KELM cannot extract additional informative spectral features
to improve the classification performance of the Indian Pine data. This is because the conventional
PCA cannot always extract discriminative features from original data. When introducing extra spatial
features, the performance of HSI approaches can be dramatically improved. This can be found
from the experimental results of the spectral-spatial approaches in Table 2. For the spectral-spatial
approaches, they adopt different manners to extract spatial features from spectral features. CK-KELM
generates spatial features based on the spatial neighboring pixels of a general pixel, while LBP-KELM
adopts local binary pattern to exploit texture information into spatial features. According to the
results in Table 2, SP-KELM shows its superiority to CK-KELM and LBP-KELM. It demonstrates
that SP-KELM can extract more discriminative spatial features than the other two spectral-spatial
approaches. The classification maps of all compared approaches on the Indian Pines dataset are
depicted in Figure 4, where overall accuracies of different compared methods are in accordance with
our observation. More detailed experimental results can be found in Table 2 and Figure 4.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 4. Classification maps of different models on the Indian Pines dataset: (a) ground truth;
(b) SVM: OA = 68.43%; (c) ELM: OA = 61.12%; (d) KELM: OA = 70.15%; (e) PCA-KELM: OA = 70.25%;
(f) CK-KELM: OA = 91.87%; (g) LBP-KELM: OA = 90.14%; (h) SP-KELM: OA = 94.50%; and (i) color
bars for land covers.

(2) Experiments on the University of Pavia Dataset: For comparison purpose, 30 pixels from each
land cover were randomly chosen to form training data, and the remaining pixels were all regarded as
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testing data. For the University of Pavia dataset, the comparison results are represented in Table 3,
and the classification maps of the competing methods are given in Figure 5.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 5. Classification maps of different models on the University of Pavia dataset: (a) ground truth;
(b) SVM: OA = 70.66%; (c) ELM: OA = 65.37%; (d) KELM: OA = 74.43%; (e) PCA-KELM: OA = 79.11%;
(f) CK-KELM: OA = 91.28%; (g) LBP-KELM: OA = 90.31%; (h) SP-KELM: OA = 91.87%; and (i) color
bars for land covers.

From the classification maps, we can find that the spectral approaches (e.g., SVM, ELM, KELM and
PCA-KELM) exhibit lower classification accuracy than the spectral-spatial approaches (e.g., CK-KELM,
LBP-KELM and SP-KELM), which is attributed to the missing spatial features. According to Table 3,
ELM and PCA-KELM demonstrate the worst and best performance among the spectral approaches,
respectively. Compared to ELM and PCA-KELM, the improvement of SP-KELM is high, at 38.8%
and 16.8% for overall accuracy, 27.3% and 11.1% for average accuracy, and 55.4% and 22.9% for
Kappa coefficient. Compared to KELM, PCA-KELM can learn informative spectral features with
better classification performance from the University of Pavia data. For spectral-spatial approaches,
CK-KELM and LBP-KELM show comparative classification performance compared to SP-KELM.
For CK-KELM and LBP-KELM, the overall accuracy is 91.33% and 89.94%, the average accuracy is
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91.80% and 94.52%, and the kappa coefficient is 0.8865 and 0.8704, respectively, which is slightly
inferior to SP-KELM. The limited improvement of SP-KELM over CK-KELM and LBP-KELM is mainly
due to two potential reasons. The land covers on the University of Pavia dataset mostly distribute
with dispersiveness and constitute different special geometrical shapes. It is very hard to capture the
useful spatial knowledge on such a complicated dataset. Besides, superpixel segmentation algorithms
cannot commendably partition superpixels in accordance with the intrinsic texture information of
such a dataset. Therefore, SP-KELM can only acquire slightly superior classification results than
other methods. In summary, compared with spectral approaches, it is obvious that spectral-spatial
approaches always achieve better classification performance because of introducing the underlying
spatial information of the University of Pavia data.

Table 3. Performance comparison of all compared methods on the University of Pavia dataset.

Class #Samples Spectral Approaches Spectral-Spatial Approaches

Train Test SVM ELM KELM PCA-KELM CK-KELM LBP-KELM SP-KELM

1 30 6601 69.47 37.37 62.56 68.94 83.83 81.39 83.29
2 30 18,619 72.76 71.24 71.67 76.07 93.31 86.43 90.12
3 30 2069 69.68 91.00 79.42 78.62 85.05 91.47 98.66
4 30 3034 93.19 94.11 92.99 93.88 95.85 97.25 92.27
5 30 1315 99.04 99.95 99.26 99.48 99.97 99.79 99.58
6 30 4999 69.21 64.50 71.59 76.02 93.35 96.03 94.11
7 30 1300 88.94 91.35 91.12 93.68 97.66 99.96 98.58
8 30 3652 78.00 26.69 67.90 77.95 86.69 98.41 99.00
9 30 917 98.66 90.84 96.04 99.81 90.46 99.95 93.82

OA (%) 75.46 65.88 73.79 78.29 91.33 89.94 91.49
AA (%) 82.11 74.12 81.40 84.94 91.80 94.52 94.38
Kappa 0.6879 0.5719 0.6685 0.7234 0.8865 0.8704 0.8892

(3) Experiments on the Salinas Scene Dataset: To evaluate the performance of all baselines,
we randomly picked 30 pixels from each land cover to form training data, and the remaining pixels
were used as testing data. For the Salinas Scene dataset, the comparison results are recorded in Table 4,
and the classification maps of all baseline methods are demonstrated in Figure 6.

Table 4. Performance comparison of all compared methods on the Salinas Scene dataset.

Class #Samples Spectral Approaches Spectral-Spatial Approaches

Train Test SVM ELM KELM PCA-KELM CK-KELM LBP-KELM SP-KELM

1 30 1979 98.71 99.68 99.52 99.69 99.45 100.00 100.00
2 30 3696 98.70 99.31 99.46 99.72 99.77 99.82 99.98
3 30 1946 94.29 91.96 92.02 99.18 98.75 99.92 99.67
4 30 1364 99.52 98.93 99.00 99.13 98.64 97.55 99.59
5 30 2648 96.36 98.65 97.67 97.16 99.23 98.49 99.24
6 30 3929 99.47 99.87 99.39 99.34 99.53 99.47 98.47
7 30 3549 99.33 99.43 99.49 99.39 98.14 99.83 98.11
8 30 11,241 67.03 75.70 75.68 73.27 84.93 89.25 94.70
9 30 6173 95.59 99.70 98.67 99.07 99.73 99.36 97.28
10 30 3248 91.74 90.90 92.76 92.16 96.15 98.24 97.67
11 30 1038 97.62 95.75 96.52 95.33 99.93 99.11 98.06
12 30 1897 99.86 83.11 99.98 100.00 99.98 97.64 97.75
13 30 886 98.01 97.96 97.98 97.78 99.50 96.65 98.21
14 30 1040 95.61 94.79 97.13 95.88 98.22 98.90 97.94
15 30 7238 72.67 56.44 68.19 71.18 84.10 86.97 99.43
16 30 1777 97.02 97.84 97.60 96.81 97.41 99.82 99.33

OA (%) 87.51 87.07 89.22 89.30 93.99 95.42 97.85
AA (%) 93.84 92.50 94.44 94.69 97.09 97.56 98.46
Kappa 0.8613 0.8559 0.8801 0.8811 0.9331 0.9490 0.9761
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 6. Classification maps of different models on the Salinas Scene dataset: (a) ground truth;
(b) SVM: OA = 90.51%; (c) ELM: OA = 86.87%; (d) KELM: OA = 89.74%; (e) PCA-KELM: OA = 89.62%;
(f) CK-KELM: OA = 94.46%; (g) LBP-KELM: OA = 95.40%; and (h) SP-KELM: OA = 96.90%; (i) Color
bars for land covers.

Similar to the Indian Pine dataset, the Salinas Scene dataset has the relatively regular spatial
coverage for land covers. From the classification maps in Figure 6, among the spectral-spatial
approaches, SP-KELM exhibits higher classification accuracy than CK-KELM and LBP-KELM for
the effective spatial feature extraction. For spectral approaches, KELM and PCA-KELM demonstrate
comparative performance and outperform SVM and ELM, which reveals the superiority of KELM.
As shown in Table 4, we can observe that spectral-spatial approaches all gain better classification
performance than spectral approaches. In details, for spectral approaches, SVM exhibits lower accuracy
(67.03%) for the class of grapes untrained, and ELM achieves inferior accuracy (56.44%) for the
class of vineyard untrained. For spectral-spatial approaches, they can obtain superior classification
performance on all land covers. The overall accuracy of SP-KELM on the Salinas Scene dataset is
97.85%. Compared to CK-KELM and LBP-KELM, the enhancement of SP-KELM is more than 4.1% and
2.5%, respectively. Similar improvements for average accuracy and kappa coefficient can also be found
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in Table 4. Therefore, we can conclude that SP-KELM can learn more informative spatial features to
boost the classification performance of the Salinas Scene dataset.

To further investigate the performance of the SP-KELM method for HSI analysis, we conducted
experiments with different numbers of training pixels from each land cover. The overall accuracies for
the experiments are represented in Table 5. We successively selected {10, 15, 20, 25, 30} pixels from each
land cover at random to form training data, and the remaining pixels for testing. For simplification,
the number of training pixels for each land cover is denoted as “T.P.s/L.C” in the table. With the
increasing number of training pixels, the overall accuracies of all compared method become much better.
This can be explained as these HSI classification methods benefit more discriminative information
from the increase of labeled training pixels. From the results in Table 5, SP-KELM exhibits better
performance than the other methods in most cases. Among the spectral approaches, ELM still exhibits
the worst performance on all HSI datasets. By introducing the kernel learning, SVM and KELM show
superior performance to ELM, as they are more capable of simulating the nonlinear relationships
between features and land covers of HSI data. By introducing spatial information, spectral-spatial
approaches are all superior to spectral approaches. The conventional PCA in PCA-KELM performs
dimension reduction on the whole HSI, which can extract discriminative features from the original
data. However, the spatial information hidden in HSIs cannot be extracted by means of such operation.
By simultaneously using ERS and PCA on HSI, the spatial information is introduced into SP-KELM.
This is the major difference between the PCA in PCA-KELM and the one in the proposed SP-KELM,
which can achieve different algorithmic performance. For spectral-spatial approaches, with small
size of training pixels on the Salinas Scene datasets, CK-KELM and LBP-KELM achieve better results,
while SP-KELM demonstrates inferior performance. On the contrary, SP-KELM gains better results
than CK-KELM and LBP-KELM with large sizes of training pixels on the Salinas Scene dataset. For the
Indian Pines and University of Pavia datasets, SP-KELM always outperforms other two spectral-spatial
approaches. According to the results in Tables 5 and 6, SP-KELM shows its superiority to CK-KELM
and LBP-KELM with fewer dimensions of the learned spatial features. Specifically, the dimensions of
spatial features learned by SP-KELM and LBP-KELM are 30 and 1770 on all HSI datasets. For CK-KELM,
the dimension of the learned spatial features is the size of the spectral features for the three HSI datasets
(i.e., 200, 103 and 204, respectively). Therefore, we can conclude that SP-KELM is better than others in
most instances. The superiority of SP-KELM is mainly attributed to the informative spatial features
learned by superpixel-wise PCA.

Table 5. Overall accuracies of all baselines with different numbers of training pixels.

Dataset T.P.s/L.C
Spectral Approaches Spectral-Spatial Approaches

SVM ELM KELM PCA-KELM CK-KELM LBP-KELM SP-KELM

Indian
Pines

10 54.38 46.71 55.24 54.73 77.62 74.85 78.84
15 59.76 52.13 62.32 60.20 84.56 81.73 87.18
20 63.00 54.45 64.81 63.11 86.15 86.09 90.53
25 65.13 58.81 66.87 65.93 88.16 88.41 91.97
30 67.46 60.62 69.19 67.53 89.84 90.14 93.43

University
of Pavia

10 64.38 61.53 66.06 71.79 77.02 72.24 80.26
15 66.71 63.45 68.46 74.37 81.71 79.39 84.94
20 70.34 63.27 70.34 76.98 88.16 87.54 88.21
25 75.16 63.33 72.34 78.48 88.83 88.66 89.99
30 75.46 65.88 73.79 78.29 91.33 89.94 91.49

Salinas
Scene

10 84.33 84.78 85.82 85.62 90.73 89.29 88.58
15 85.56 86.04 87.96 86.75 92.32 91.56 92.81
20 86.34 85.85 87.35 87.14 92.79 93.67 95.90
25 87.97 87.56 89.23 89.30 93.81 94.66 97.49
30 87.51 87.07 89.22 89.30 93.99 95.42 97.61
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Table 6. Dimension of spatial features learned by the spectral-spatial approaches on HSI datasets.

Dataset CK-KELM LBP-KELM SP-KELM

Indian Pines 200 1770 30
University of Pavia 103 1770 30
Salinas Scene 204 1770 30

4.4. Investigation on the Number of Superpixels

In SP-KELM, superpixels are segmented for PCA to extract superpixel-specific spatial features.
The number of superpixel segmentations is unchangeable during the learning process. However,
it is very difficult to identify suitable number of superpixel segmentations for HSIs. Therefore,
we conducted an experimental to investigate the influence of different numbers of superpixels
segmented from HSIs. For the three HSI datasets, the number of superpixels was varied in {5, 100} in
units of 5. Experimental results with different numbers of superpixels are demonstrated in Figure 7.
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Figure 7. Overall accuracy of the proposed method with different numbers of superpixels:
(a) Indian Pines; (b) University of Pavia; and (c) Salinas Scene.

For the Indian Pines and Salinas Scene datasets, pixels with the same land cover are
spatially distributed together, which can be generally regarded as regular geometrical shapes.
Therefore, the overall accuracies with different number of superpixels on these two HSI datasets
are similar, which are shown in Figure 7a,c. Specifically, with the increase of superpixel number,
the performance of SP-KELM first tends to increase and then keeps stable or even degrades. The highest
overall accuracy is 93.94% for the Indian Pines dataset, where the optimal number of superpixel
segmentations is 80. For the Salinas Scene dataset, the highest overall accuracy with 30 superpixel
segmentations is 93.70%. Compared to the worst performance with a small number of superpixels,
the improvement of SP-KELM with the optimal number of superpixels is 20.7% and 14.4% for the
Indian Pines and Salinas Scene datasets, respectively. Different from the agricultural landscape in the
above two HSI datasets, the University of Pavia dataset shows the city landscape to accord with the
city function, which exhibits the unique spatial distribution for land covers. The overall accuracies
with different numbers of superpixels on the University of Pavia dataset are shown in Figure 7b. There
is no need to partition too many superpixel segmentations for the University of Pavia dataset. When
the number of superpixels is set to 30, the optimal overall accuracy of SP-KELM can be achieved.
According to the above experimental results, we can find that the optimal numbers of superpixels
for different HSI datasets are not equal. This is because setting the optimal number of superpixels
for a specific dataset mainly relies on the unique data characteristic. It is very hard to determine the
optimal number of superpixels for different HSI datasets without any priori knowledge. Therefore, we
can determine suitable numbers of superpixel segmentations according to the experiments.
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4.5. Investigation on the Dimension of Superpixel Patterns

For the spectral-spatial HSI classification, the dimension of spatial features (i.e., superpixel
patterns) in SP-KELM is a parameter that needs to be determined in advance. This is also a data-specific
problem, where the parameter setting relies on the characteristic of dataset. To investigate the influence
of different dimensions of spatial features, we report the experimental results in Figure 8. For the three
HSI datasets, the dimension of spatial features ranges {5, 10, 15, 20, ..., 100}.

According to Figure 8a, the lowest and highest overall accuracies of SP-KELM are 92.98% and
93.48% for the Indian Pines dataset, which are obtained by setting 5 and 40 for the dimension of
spatial patterns, respectively. For the University of Pavia dataset, the worst overall accuracy with
five-dimensional spatial features is 90.63%, and the best one with 85-dimensional spatial features is
91.78%, which can be found in Figure 8b. For the Salinas Scene dataset in Figure 8c, when setting
the dimension of spatial features as 5 and 30, the worst and best overall accuracies are 96.26% and
97.85%, respectively. It is clear that the difference between the worst and best performance of SP-KELM
on the three HSI datasets is less than 2%. This means that the setting for the dimension of spatial
features slightly influences the performance of SP-KELM in HSI analysis. Besides, according to the
experimental results in Figure 8, setting the dimension of spatial features as 30 for the three HSI
datasets as in the previous experiments is an advisable and acceptable choice.

20 40 60 80 100

Number of Superpixel Pattern

92

92.5

93

93.5

94

O
ve

ra
ll 

ac
cu

ra
cy

 (
%

)

(a)

20 40 60 80 100

Number of Superpixel Pattern

90

90.5

91

91.5

92

O
ve

ra
ll 

ac
cu

ra
cy

 (
%

)

(b)

20 40 60 80 100

Number of Superpixel Pattern

96

96.5

97

97.5

98

O
ve

ra
ll 

ac
cu

ra
cy

 (
%

)

(c)

Figure 8. Overall accuracy of the proposed method with different dimensions of superpixel patterns:
(a) Indian Pines; (b) University of Pavia; and (c) Salinas Scene.

5. Conclusions

In this paper, we propose a new spectral-spatial HSI classification model with superpixel pattern
(SP) and kernel based extreme learning machine (KELM), called SP-KELM. In SP-KELM, superpixels
are partitioned by the entropy rate segmentation (ERS) algorithm. The principal component analysis
(PCA) method is then applied on these superpixels to extract superpixel-specific reduced features.
The spatial features are obtained by combining superpixel-specific reduced features, which consists of
the rich spatial information. By using both the original spectral features and extracted spatial features,
KELM is adopted to perform the classification task for HSI datasets, which can greatly improve
the classification performance. Experiments and comparisons on three HSI datasets confirmed the
attractive properties of the proposed SP-KELM model compared to some baseline methods, which
demonstrated that the potential spatial information benefits the HSI classification tasks. For future
works, we will introduce various promising spectral-spatial HSI classification models to exploit the
spatial information from different perspectives.
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