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Abstract: Nighttime light observations from remote sensing provide us with a timely and spatially 
explicit measure of human activities, and therefore enable a host of applications such as tracking 
urbanization and socioeconomic dynamics, evaluating armed conflicts and disasters, investigating 
fisheries, assessing greenhouse gas emissions and energy use, and analyzing light pollution and 
health effects. The new and improved sensors, algorithms, and products for nighttime lights, in 
association with other Earth observations and ancillary data (e.g., geo-located big data), together 
offer great potential for a deep understanding of human activities and related environmental 
consequences in a changing world. This paper reviews the advances of nighttime light sensors and 
products and examines the contributions of nighttime light remote sensing to perceiving the 
changing world from two aspects (i.e., human activities and environmental changes). Based on the 
historical review of the advances in nighttime light remote sensing, we summarize the challenges 
in current nighttime light remote sensing research and propose four strategic directions, including: 
Improving nighttime light data; developing a long time series of consistent nighttime light data; 
integrating nighttime light observations with other data and knowledge; and promoting 
multidisciplinary and interdisciplinary analyses of nighttime light observations. 
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1. Introduction 

Accelerated human modifications of the landscape and human-driven climate changes are 
profoundly affecting the processes on the Earth surface, locally and globally, and creating a variety 
of challenges for scientists and policy makers to understand and address the global change and 
consequences [1,2]. At the same time, new geographical concepts, datasets, tools, and techniques are 
emerging to advance our understanding of topics such as urbanization, environmental change, 
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sustainability, and global change. The footprint of human beings is undoubtedly a salient indicator 
of the human impacts on both the environment and ecosystems [3]. Imageries of the Earth’s surface 
observed from space show great potentials in monitoring, analyzing, evaluating, and predicting the 
unprecedented changes that occur on the Earth’s surface, making it possible for us to quantify and 
track the dynamics of human activity and its environmental impacts [4]. Satellite remote sensing will 
continue to play an important role for a comprehensive understanding of changes faced by the Earth 
and human in the 21st century. 

As one of the hallmarks of human footprints on the Earth’s surface [5], the nocturnal lighting 
measured from space is not only highly correlated to human settlement and economic dynamics [6-
9], but also provides unique perspectives for revealing environmental and socioeconomic issues [10-
13], with great potential for monitoring human activities and understanding related environmental 
impacts. With a salient advantage over other satellite products from visible, near-infrared, or radar 
sensors in quantifying the intensity of human activities [14], satellite-based observations of nocturnal 
lighting have opened up a host of research and application avenues for perceiving the changing 
world (Figure 1). 

 
Figure 1. Statistics of satellite-based nighttime light (NTL) publications on (a) the published items and 
citations from 1991 to 2018, and (b) the major topics of related publications. The search was conducted 
using Web of Science with search conditions set as: (TS = (*night-time light* OR *night light* OR *nightlight* 
OR *nighttime light* OR *light at night* OR *night time light*) AND SU = (Remote Sensing)) AND 
LANGUAGE: (English) AND DOCUMENT TYPES: (Article). The irrelevant publications retrieved from 
the search conditions were removed. 

Over the past decades, the continuously updated sensors and significantly improved nighttime 
light (NTL) products and algorithms have been opening opportunities for NTL remote sensing 
research, which has led to several review papers from different aspects [15-22]. However, current 
reviews on NTL remote sensing have mainly focused on the widely used NTL products derived from 
the Defense Meteorological Satellite Program’s Operational Line-scan System (DMSP-OLS). 
Moreover, most of them have focused the applications of NTLs, especially studies on urbanization 
and socioeconomic activities. A comprehensive review of the current studies using NTL data from 
different sources, a systematic summary of limitations and challenges of current NTL studies, and 
some strategies for future NTL studies are still lacking. Meanwhile, the emerging data sources (e.g., 
geo-located social media data) and techniques (e.g., machine learning/deep learning) also provide 
additional potentials for broadening and deepening the applications of NTL remote sensing. 
Understanding and revealing the changes of nighttime lighting observations over time have also 
started receiving attentions from different fields. Therefore, it is highly needed to systematically re-
examine the advances, challenges, and perspectives of NTL remote sensing. 

In this paper, we aimed to assess how NTL remote sensing contributes to perceiving human 
activities and the related environment changes in a changing world. The objective of this paper is to 
provide a comprehensive review of satellite remote sensing of NTL observations from datasets to 
applications, and from challenges to outlooks. The remainder of this paper is organized as follows. 
In Section 2, we provide an overview of the major NTL datasets. The contribution of nighttime lights 
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(NTLs) to perceiving a changing world is summarized in Section 3, where the major applications of 
NTL remote sensing are presented. Thereafter, we discuss the challenges and limitations of current 
NTL applications in Section 4. At the end, we propose the strategic directions for NTL remote sensing 
research in Section 5. 

2. An Overview of Major Nighttime Light Datasets 

Given the advances in NTL satellite sensors and technologies, satellite-observed NTLs have 
emerged as unique geospatial data products that provide a measure of the lighting brightness 
observed at night from space. This section provides an overview of the major NTL datasets collected 
from various sensors and platforms (Table 1), including their history and characteristics. 
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Table 1. The list of major NTL datasets and key features 

Satellite/ 
Sensor 

Dataset type Accessibility Available period Spatial 
resolution 

Spectral bands Radiometric 
resolution 

DMSP-
OLS 

Time series dataset Free 
https://www.ngdc.noaa.gov/eo

g/download.html 

1992–2013 
Annual 

30 arc-
second 

Panchromatic 
400–1100 nm 

6 bit 

Radiance calibrated dataset 1996, 1999, 2000, 2003, 
2004, 2006, 2010, 2011 

Several years 
Daily and monthly dataset Not free Need specially ordered 

Suomi 
NPP-VIIRS 

Monthly VIIRS/DNB composites Free 
https://www.ngdc.noaa.gov/eo

g/download.html 

2012.04–present 
Monthly 

15 arc-
second 

Panchromatic 
505–890 nm 

14 bit 
 

Annual VIIRS/DNB composites 2015, 2016 
Several years 

Standard Black Marble product Free (VNP46A1) 
https://ladsweb.modaps.eosdis

.nasa.gov/ 

2012.01.19–present 
Daily 

500 m 

Black Marble High Definition product Under experiment N/A Expected 
<30 m 

ISS  Astronaut photos onboard ISS Uncalibrated images free 
http://eol.jsc.nasa.gov 

http://www.citiesatnight.org 

2003–present 
Photos taken irregularly 

5–200 m Red, green, and blue 
(RGB) 

8–14 bit 

EROS-B High spatial resolution NTL imagery Commercial Mid-2013 0.7 m Panchromatic 16 bit 
JL1-3B Multi-spectral (red, green, and blue) 

NTL imagery 
Commercial Launched in 2017 0.92 m 430–512 nm (blue), 489–

585 nm (green), and 580–
720 nm (red) 

8 bit 

JL1-07/08 Imagery with a panchromatic band 
and improved multispectral bands 

Commercial Launched in 2018 / Panchromatic and 
multi-spectral (blue, 

green, red, red edge, and 
near-infrared bands) 

/ 

LJ1-01 High spatial resolution imagery Free 
http://59.175.109.173:8888/app/

login.html 

Launched in 2018 
15-day revisit time 

130 m Panchromatic 
480–800 nm 

Digital 
number (DN) 

values 
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2.1. DMSP-OLS 

The earliest DMSP low light imaging system dates back to the 1970s, when DMSP Blocks 5A, B, 
and C were equipped with the Sensor Aerospace vehicle electronics Package (SAP) instrument from 
1970 to 1975. This was followed by the Operational Line System (OLS) sensors, with the first launch 
in 1976, carried on DMSP Block 5D satellites. From 1990 to 2009, a series of sun-synchronous, polar-
orbiting satellites carrying the OLS (i.e. from F10 to F18) were launched to collect NTL images. These 
data, with 6 bit quantization, were achieved in the form of digital numbers ranging from 0 to 63 in 
mid-1992, which greatly promoted the accessibility and applications of NTLs, compared to the earlier 
studies using OLS data on film strips [23]. The follow-on satellites even provided enough overlapping 
data to allow an inter-calibration between different OLS sensors to overcome the shortcoming of 
lacking on-board calibration [24]. 

DMSP-OLS is unique for the presence of a photomultiplier tube (PMT), which intensifies the 
nighttime visible band signal, allowing the detection of lights from cities, fires, fishing boats, and gas 
flares, in addition to moonlit clouds. The OLS is an oscillating scan radiometer with a swath width of 
~3000 km and consists of two broad spectral bands, a visible near-infrared (VNIR) band (0.4–1.1μm) 
that collects NTL images, and a thermal infrared (TIR) band (10.5–12.6 μm) [25]. The system has a 
“fine” spatial resolution mode of 0.56 km and produces “smoothed” data with a nominal spatial 
resolution of 2.7 km through the on-board averaging of 5 by 5 blocks. With the 14 daily orbits, each 
DMSP day-night satellite is capable of providing a global nighttime coverage every 24 hours [23]. It 
can detect the NTL radiance from 1.54 × 10-9 to 3.17 × 10-7 W·cm-2·sr-1·μm-1, and the local overpass time 
typically varies between approximately 19:30 and 21:30 [26,27].  

Currently, three major sets of DMSP-OLS-derived data ranging from daily images to annual 
composites are commonly used in NTL studies. These data include time series dataset, radiance 
calibrated dataset, and daily and monthly dataset. These data were developed using a series of 
improved automatic algorithms by NOAA’s National Geophysical Data Center (NGDC) [16,19]. 
Compared to single daily or monthly images, the annual NTL composites—which are free of charge 
to general public and less influenced by clouds, fires, lunar illumination, aurora and satellite zenith 
angle effects—have been mostly used in previous studies [19].  

As the most widely used nighttime dataset, the nighttime stable light (NSL) composites from 
version 4 time series dataset have experienced several improvements. The earliest global stable light 
dataset is a geo-referenced composite of nighttime stable light images with a spatial resolution of 1 
km, produced using the cloud-free images from 1994 to 1995. This product solely records the percent 
frequency of cloud-free light detections with no brightness information, which makes it difficult for 
further research on the intensity of human activities [26]. Subsequently, a global NTL product for the 
year 2009 was generated using the automatic algorithms for screening the quality of nighttime visible 
band observations to remove areas with undesirable properties. This product first shows the relative 
OLS visible band intensities of lit areas, with the ephemeral lighting removed and non-lit areas set to 
zero [25]. The same methods were then applied to generate the stable NTL composites for the entire 
digital archive of OLS data. Currently, the latest global annual nighttime stable light composites from 
1992 to 2013 can been downloaded from the version 4 DMSP-OLS NTL series on the website of NGDC 
(https://www.ngdc.noaa.gov/eog/download.html). The time series data include 33 annual 
composites collected from six different satellites (i.e., F10, F12, F14, F15, F16, and F18) equipped with 
OLS sensors without an onboard calibration. The annual cloud-free nighttime stable light composites 
are 30 × 30 arc-seconds gridded nocturnal luminosity spanning the globe from –65 to 75 degrees in 
latitude. Prior to release of this dataset, related studies mainly used earlier products like the 1994–
1995 global stable light dataset and the previous versions of DMSP-OLS NTL series (i.e., Version 1: 
1992, 1993, 2000 and Version 2: 1992–2003).  

According to the data documentation (https://ngdc.noaa.gov/eog/dmsp/downloadV4compo 
sites.html), in addition to the NSL annual composites, the version 4 time series dataset also includes 
the cloud-free coverages, and the average visible lights and the average lights × percentage. The 
cloud-free coverage data tally the total number of observations within each 30-arc-second grid cell. 
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This imagery can be used to identify areas with low numbers of observations where the quality is 
reduced. The average visible data contain the average of visible band digital number values without 
filtering. The average lights × percentage data is derived from the average visible band digital number 
(DN) of cloud-free light detections multiplied by the percent frequency of light detection. The 
inclusion of the percent frequency of detection term normalizes the resulting digital values for 
variations in the persistence of lighting. These composites are infrequently used in research. 

Several radiance-calibrated datasets have been developed to overcome the saturation that occurs 
in bright urban cores due to the collection of data at high-gain settings. The radiance-calibrated 
dataset was first developed by Elvidge et al. [23]. Three different fixed-gain settings (i.e., low, 
medium, and high) obtained from the cloud-free OLS data over 28 nights in 1996 and 1997 were 
combined in this dataset. This radiance-calibrated data of the United States (US) generated based on 
the preflight sensor calibration are a major advance over the previous nighttime stable light products 
[28], allowing for the detection of brightness variations across space in urban cores. However, the 
coverage of low-light areas is weakened in this dataset. Because of this limitation, a global composite 
in 2006 was created to capture low brightness levels by blending fixed-gain observations with the 
nighttime stable light data [29]. The most well-known radiance-calibrated NTL product is the global 
radiance-calibrated dataset including eight images between 1996 and 2011. This product was 
collected at varying gains with eight composites inter-calibrated for multitemporal comparison, 
providing relative radiance values [30]. Though there were no products at different fixed-gain 
settings from 1992 to 1995 and after 2011, this time series of radiance-calibrated product, with a 
limited temporal coverage, still provides a unique record of the NTL changes over time without the 
issue of saturation. 

The daily raw images and monthly composites provided by NGDC are mainly used to detect 
the unstable and short-term light observations for their high temporal resolution compared to the 
annual composites [31-34]. However, due to the high cost of data acquisition and the complexity of 
data processing, there are still limited applications using the DMSP-OLS NTL data at the sub-annual 
timescales. 

2.2. NPP-VIIRS 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the Suomi National 
Polar Partnership (NPP) satellite launched in October 2011 was designed to collect high-quality 
radiometric data [27]. VIIRS, a 22-band visible/infrared sensor, has a same swath width (i.e., 3000 km) 
as DMSP and a higher spatial resolution (i.e., 375 m and 750 m at nadir). Similar to OLS, VIIRS 
observes NTLs of the Earth every 24 hours, with the local overpass time after midnight—near 01:30 
[27]. Among the 22 bands of VIIRS instrument, the Day/Night Band (DNB) with a spectral range of 
0.5–0.9 μm shows an unprecedented capability of night observations [35]. Its three gain settings (i.e., 
low, mid, and high) allow for detection of a specific dynamic range of approximately 7 orders of 
magnitude from 3 × 10-9 to 2 × 10-2 W·cm-2·sr-1, with a noise floor at about 5 × 10-11 W·cm-2·sr-1 [36-38]. 
Flown jointly by NASA and NOAA, VIIRS/DNB provides a substantial number of improvements 
over the DMSP-OLS, including a full in-flight calibration, a higher spatial resolution, a lower 
detection limit, a wider dynamic range, and a finer radiometric quantization compared to DMSP 
[27,37,39].  

The version 1 suite of VIIRS/DNB cloud-free composites spanning 2012 to present, produced in 
15 arc-second geographic grids across the global coverage from 65°S to 75°N, are provided for free 
by NDGC (https://www.ngdc.noaa.gov/eog/download.html) in a geotiff format with six tiles. Each 
tile includes both average DNB radiance and the number of corresponding available cloud-free 
observations. First released in early 2013, the preliminary composites of the version 1 VIIRS product 
were only generated in moonless nights during two separate time periods: 18–26 April 2012 and 11–
23 October 2012 [40]. Subsequently, a series of robust algorithms were developed to exclude low-
quality data and extraneous features, followed by an averaging of the light radiance [41,42]. The 
version 1 nighttime VIIRS/DNB composites include the global monthly NTLs from April 2012 
onward. The global annual NTLs in the years of 2015 and 2016 were further processed to remove 
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biomass burning and other extraneous features [42]. Currently, two different configurations of the 
monthly VIIRS/DNB composites are provided. The “VIIRS cloud mask (vcm)” version, released since 
April 2012, excludes the data affected by stray light. The “VIIRS cloud mask with stray light (vcmsl)” 
version, available from January 2014, includes the stray light-corrected data. The second 
configuration includes the stray light correction described in Mills et al. [41], with a larger spatial 
coverage toward the poles and a reduced quality. Different from the DMS-stable NTL, the version 1 
monthly VIIRS composites record the background noises and ephemeral lights such as biomass 
burning, aurora and fires. Therefore, attempts [43-46] have been made to correct the VIIRS pixels with 
unstable NTLs. 

The annual composites, produced from the monthly NTLs of the “vcm” version, contain a set of 
radiance images processed by several filtering steps [42]. In the version 1 suite of annual VIIRS 
product, four average DNB radiance images are available in each year: (1) “vcm”, which is identical 
to the monthly "vcm" average radiance products; (2) “vcm-ntl”, which contains the "vcm" average 
with the background set to zero; (3) “vcm-orm”, which contains cloud-free average radiance values 
with fires and other ephemeral lights removed; and (4) “vcm-orm-ntl”, which contains the "vcm-orm" 
average with the background set to zero. Additionally, two files for the number of total observations 
and cloud-free observations are provided. As the latest VIIRS NTL product, the “vcm-orm-ntl” 
annual version eliminates the effects of ephemeral lights and reduces data outages due to cloud-cover 
or solar illumination, showing a great advance over the monthly composites [42]. 

The NASA’s standard Black Marble product suite (VNP46), representing the current state-of-
the-art NTL data, has been developed to fully explore the potential of the VIIRS time series record. 
The VNP46 product suite with a spatial resolution of 500 m and a daily-basis processing within 3–5 
hours after acquisition, providing cloud-free imagery with significant improvements in daily 
frequency, atmospheric correction, bidirectional reflectance distribution function (BRDF) correction, 
and seasonal correction, enables both near real-time and long-term monitoring applications [47]. 
Distributed in Level 3 format, NASA’s Black Marble NTL product is available from January 2012 to 
present using data from VIIRS/DNB aboard the Suomi-NPP satellite. The current Collection V1 
VNP46 product suite includes the daily at-sensor top of atmosphere (TOA) nighttime radiance 
product (VNP46A1), and the daily moonlight-adjusted NTL product (VNP46A2). Multi-source 
datasets and ancillary data were used to generate high-quality pixel-based estimates of NTL and 
corresponding quality flag (QF) information [48,49]. Currently, the VNP46 suite of daily operational 
products (VNP46A1) is archived and supported by NASA’s Level 1 and Atmosphere Archive and 
Distribution System Distributed Active Archive Center (LAADS DAAC) data center 
(https://ladsweb.modaps.eosdis.nasa.gov/) in the HDF5 format, whereas the VNP46A2 product is not 
yet available. The VNP46A1 product contains 26 Science Data Sets (SDS) layers, including sensor 
radiance, zenith and azimuth angles at sensor, solar, and lunar, cloud mask flag, time, shortwave IR 
radiance, brightness temperatures, VIIRS quality flags, moon phase angle, and moon illumination 
fraction, while the VNP46A2 product has six layers containing information on bidirectional 
reflectance distribution function (BRDF)-corrected NTL (500m), lunar irradiance, mandatory quality 
flag, latest high-quality retrieval (number of days), snow flag, and cloud mask flag [47]. The VIIRS 
Black Marble product, with a superior retrieval of NTLs at short time scales and a reduction in 
background noise, enables quantitative analyses of daily, seasonal, and annual variations of NTLs 
[48]. Despite a few applications in monitoring electricity supply [50,51] using the preliminary 
versions of this product, more efforts are needed to explore its great potential in monitoring short-
term abrupt changes of NTL and capturing the long-term NTL record, when the standard Black 
Marble product suite (i.e., Level 3 daily and multi-date formats) is routinely available from the NASA 
LAADS DAAC. 

A description on NASA's Black Marble website 
(https://viirsland.gsfc.nasa.gov/Products/NASA/BlackMarble.html) reports that the Black Marble 
high definition (HD) product, a future new suite of higher-level Black Marble product, is being 
developed by the NASA VIIRS DNB team through the synergistic use of the daily NASA Black 
Marble standard product with data from other Earth-observing satellites and ancillary data sources. 
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The more detailed information provided by the Black Marble HD product in the near future will 
potentially enable us to differentiate different types of human activity at the finer scale (<30 m), such 
as residential, commercial, and industrial sectors. Currently, the monthly Black Marble HD product 
is experimental. 

2.3. Other Satellites and Cubesats 

Different from coarse spatial resolution NTLs data from DMSP-OLS and NPP-VIIRS that are 
widely used for studying human activities and environment changes over large areas, the fine 
resolution NTL imageries could open up new opportunities in applications of NTL remote sensing. 
Currently, satellite sensors with a higher capability of NTL detection have already been released or 
will be released.  

One source of such NTL data with fine resolution is photographs taken by astronauts on the 
International Space Station (ISS). These photos could offer a unique view of the Earth at night in its 
true colors, and are freely accessible via Gateway to Astronaut Photography of Earth 
(http://eol.jsc.nasa.gov). To address the difficulty in finding an ISS image of a specific city among 
millions of images, the atlas of astronaut photos of Earth at night [52] was developed to allow easy 
access to the images (http://www.citiesatnight.org). Although the astronaut photos can reflect more 
details of the Earth with a spatial resolution from 5 to 200 m [53], technical challenges in radiometric 
calibration and unevenly temporal and spatial distributions of these original photos hinder the wide 
application of ISS images. Based on a collaboration between the Complutense University of Madrid, 
NASA, and ESA, the calibrated ISS images became available through paid service at NOKTOsat 
(https://www.noktosat.com/). Currently, the ISS images have been used for studies on identification 
of urban and internal lighting types [54-57], light pollution [58,59], and socioeconomic activities [60-
62]. 

The first source of high spatial resolution NTL imagery from space was from the commercial 
satellite of EROS-B, which started providing fine spatial resolution observations of NTLs (i.e., 0.7 m) 
in 2013 with a spectral band wavelength range of 0.5–0.9 μm and a dynamic range of 10 bits. It opened 
new avenues for studying the spatial pattern and light pollution of artificial lights in cities worldwide 
[63]. However, as the NTL images of EROS-B are panchromatic, the lighting type cannot be identified 
from this data [63]. 

Another commercial satellite with a high spatial resolution is JL1-3B from China. Launched in 
2017, this satellite enables multi-spectral (red, green, and blue) NTL imageries at a spatial resolution 
of 0.92 m with a capability to detect light as low as 7E–7 W·cm-2·sr-1 [64]. With advantages of the fine-
resolution details and multispectral information, as well as its on-board radiance calibration, new 
capabilities of lighting types and nightscape patterns are promising in future studies. Additionally, 
the next-generation of JL1-07/08 satellite launched in 2018 has both a panchromatic band and 
improved multispectral bands (i.e., blue, green, red, red edge, and near-infrared), and brings 
possibility for a better understanding of NTLs on environmental impacts, such as the impact of 
powerful lights on nocturnal bird migration [65]. 

Different from other commercial NTL satellites, cubesat has the potential of providing valuable 
data at a relatively lower cost [66]. An example of a recent cubesat is LJ1-01, which was launched in 
2018. This is a 20 kg-level micro-nano satellite equipped with a high-sensitivity night-light camera 
that has a spectral bandwidth of 0.319 μm. It offers a global high-precision NTL observation with a 
dynamic range up to 14 bits at night. The LJ1-01 imageries, with a spatial resolution of 130 m and a 
swath of 250 km, are free to download at the High-Resolution Earth Observation System of the Hubei 
Data and Application Center (http://59.175.109.173:8888/app/login.html). The LJ1-01 data are well-
correlated to the VIIRS images, but provide more spatial details and show better capability of change 
detection [67]. However, the current lack of multi-temporal images and the effects of clouds and 
moonlight limit its widespread application [68,69]. Differently, the existing visible wavelength 
cameras on AeroCube satellites (e.g., AC-4 and AC-5) can provide multi-color night lights [70]. 

3. Contributions of Nighttime Lights to Perceiving the Changing World 
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Through a host of novel applications, NTL remote sensing deepens our understanding of the 
influence of human activity on the increasingly-threatened environment of the Earth surface (Figure 
2). In this section, we summarize the major contributions of satellite-based NTLs to perceiving the 
changing world from two dimensions: Human activities and environmental changes. 

 
Figure 2. Applications of satellite-based NTL remote sensing for perceiving the changing world from two 
dimensions: Human activities and environmental changes. Published papers of different topics were 
derived from results in Figure 1a. 

3.1. Human Activities 

3.1.1. Urbanization 

NTL data have been extensively used in urban mapping from global to local scales (Table 1). 
More than five global products have been developed from NTL data. In the first dataset, the global 
urban area in 2000 was mapped using the DMSP-OLS NTL data and an optimized threshold method 
[71,72]. In the second dataset, NPP-VIIRS NTL data and MODIS multispectral data were combined 
to map urban areas using the enhanced urban built-up index [73]. In the third dataset, a full 
convolutional network was used to classify urban areas from 1992 to 2016 using both NPP-VIIRS and 
DMSP-OLS NTL data, as well as the normalized difference vegetation index (NDVI) and land surface 
temperature (LST) data from AVHRR and MODIS [74]. In the fourth dataset, a series of spatially and 
temporally consistent global urban maps from 1992 to 2013 were developed using a quantile-based 
approach and DMSP-OLS NTL data [75]. In the fifth dataset, the global urban areas from 2000 to 2012 
were mapped by applying a region-growing support vector machine classifier and a bidirectional 
Markov random field model [76]. There are also several datasets of urban areas at national and 
regional scales using NTL data (Table 2). The “hotspots” of mapping urban areas at the national and 
regional scales include China and USA. 
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NTL data have been used to map impervious surface area from urban areas. Originally, NTL data 
were mostly used to map urban areas, which are defined as the areas dominated by artificial surfaces 
[77]. Various terms have been used to represent urban areas, such as built-up area [78,79], urban 
extent [80,81], and urban boundary [82,83]. The extent of impervious surfaces is smaller than the 
extent of urban areas because an impervious surface is artificial surface that water cannot penetrate, 
including rooftops, paved roads, and parking lots [77]. In previous studies, regression-based methods 
have been used to capture the relationship between NTL data and impervious surface area. For 
example, Sutton et al. [84] used a multivariate linear regression method to estimate impervious 
surfaces in the US based on NTL data and population grid data. Ma et al. [85] also used a linear 
regression method to map impervious surfaces in China using NTL and NDVI data. 

The methods for mapping urban areas can be grouped into three major categories. The first 
category is the threshold-based method. This method was originally proposed by Imhoff et al. [86] to 
map urban areas in the US using a single threshold. However, the threshold can vary among regions 
and over time [82]. Therefore, researchers adopted multiple thresholds among regions [87], and used 
segmentation-based methods to identity local-optimized thresholds [71,80]. The second category is 
based on the supervised classification. Representative methods vary from the traditional K-nearest-
neighbors classification, to complex machine learning and deep learning methods, for example, 
support vector machine [88], random forest [89], and fully convolutional network [74]. In the third 
category, the statistic relationship between indices derived from NTL data, such as the enhanced 
urban built-up index [73] and the human settlement index [78,90], and observations of urban area has 
been proposed to estimate urban areas 

Ancillary data have also been widely integrated to enhance the mapping ability of NTL data. 
The datasets of NDVI and LST have commonly been used as ancillary data for this purpose. 
Specifically, NDVI can be used to differentiate bare soil and water surface from urban land, which is 
difficult to separate as NTL data have a saturation issue. LST data can be further used to separate 
urban area from vegetation cover because urban heat island effect caused by impervious surfaces 
could increase LST in urban areas, and the irrigated vegetation cover within cities in semi-arid and 
arid regions could decrease LST in non-urban areas [91]. 
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Table 2. Representative products of urban areas from NTL data. 

Object Scale Nighttime light data Ancillary data Time Method Reference 

Urban area 

(built-up 

area) 

Global 

DMSP/OLS  2000 Cluster-based method + thresholds (Zhou et al., 2014; 2015) 

VIIRS/NPP MODIS multispectral data 2014 Enhanced urban built-up index (Sharma et al., 2016) 

VIIRS/NPP + 

DMSP/OLS 
NDVI, LST 1992–2016 Fully convolutional network (He et al., 2019) 

DMSP/OLS  1992–2013 Quantile-based approach (Zhou et al., 2018) 

DMSP/OLS 
MODIS NDVI       

MODIS LST 
2000–2012 

Support vector machine classifier and 

Markov random field model 
(Chen et al., 2019) 

National 

DMSP/OLS  1992–2008 Iterative unsupervised classification method (Zhang and Seto, 2011) 

DMSP/OLS  1992–2008 Regional thresholds (Liu et al., 2012) 

DMSP/OLS  1994–1995 A global threshold (Imhoff et al., 1997) 

DMSP/OLS  2005, 2010 Object-based urban thresholding (Xie and Weng, 2016) 

VIIRS/NPP  2015 Multiple methods (Dou et al., 2017) 

Regional 

and city 

DMSP/OLS  
1994–1995 

1996–1997 
Threshold (Henderson et al., 2003) 

DMSP/OLS SPOT NDVI 2000 
Support vector machine-based region 

growing algorithm 
(Cao et al., 2009) 
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DMSP/OLS MODIS NDVI 2001–2007 Human settlement index 
(Roychowdhury and 

Maithani, 2010) 

VIIRS/NPP  2012 Regional thresholds (Shi et al., 2014) 

Impervious 

surfaces 
National 

DMSP/OLS Population distribution 2000–2001 Multivariate linear regression (Sutton et al., 2009) 

DMSP/OLS AVHRR NDVI 1992–2009 
Vegetation adjusted nighttime light urban 

index and linear regression 
(Ma et al., 2014). 
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3.1.2. Socioeconomic Activities 

Remotely-sensed anthropogenic lighting signals and their spatial variations at night provide us 
with an efficient proxy measure of the demographic and economic related activities during 
urbanization and regional development. Hence, satellite-derived NTL data, especially the long-term 
archive data collected by the DMSP-OLS and the observations of NTLs from NPP-VIIRS, have been 
widely used to estimate population [92,93], GDP [44,94], and other economic statistics such as income 
[95], copper stock [96], and freight traffic [97]. However, the quantitative relationship between NTL 
signals and statistical variables varies with both time and space. These variations make it difficult to 
further clarify the quantitative responses of NTL signals to corresponding socioeconomic activities. 
For example, Zhu et al. [98] showed that the best-fitting model could be the power function model, 
quadratic polynomial model, or the linear model, when modeling the GDP dynamics in different 
provinces/years in China. This variation of statistical relationship between NTLs and socioeconomic 
activities depends on either the real background of land surface or the local status, showing different 
responses in urbanized areas and rural areas, or in regions with diverse land use types or industry 
distributions. Therefore, the ancillary data, such as geo-spatial data, regional background, and status, 
are needed to improve the accuracy of estimation of socioeconomic parameters [99]. 

The current studies for assessing socioeconomic activities using NTL remote sensing can be 
grouped into four categories: (1) Investigating socioeconomic status at finer spatial scales [7,44,100]; 
(2) tracking socioeconomic dynamics at higher temporal frequency [101]; (3) quantifying 
socioeconomic parameters for data-missing areas [102]; and (4) evaluating development levels to 
reveal geographical phenomena and social issues, such as regional inequality [5,103,104], ghost town 
[11,105], and poverty [10,106-108]. Disaggregating the socioeconomic variables from the 
administrative unit into grids not only provides a detailed detection of demographic and economic 
dynamics at finer spatiotemporal scales than official statistics, but can also help further explain their 
changes and investigate the issues behind these changes. By use of the global radiance-calibrated 
NTL data, Henderson et al. [109] explored the distribution of economic activities using two groups 
of characteristics (i.e., agriculture and trade), indicating that the agriculture variables show a 
relatively higher explanatory power in early developed countries and that the trade variables are 
more important in lately developed countries, despite the fact that the latter group of countries are 
more dependent on agriculture. Zhao et al. [44] found that the long-term observations of economic 
differences at diverse geomorphological types is of great significance for regional sustainable 
development, considering the impact of terrain conditions (e.g., elevation and relief) on industrial 
layout and urban planning. 

New NTL data and improved methods and models open new avenues for socioeconomic studies 
using NTL remote sensing. The new generation of NTL data collected by NPP-VIIRS has proved to 
be more indicative of economic activities than DMSP-OLS at the regional and local scales [45,46,110], 
and therefore has enabled the mapping of socioeconomic parameters from coarse resolutions (5 km, 
1 km) to finer resolution (0.5 km) [44,100,111]. Moreover, the spatial connection between NTL signals 
and land surface types at fine scales [112,113], which is crucially important for further socioeconomic 
applications of NTL data, has started getting attentions. In addition to widely used official statistics 
[44,94] and remotely-sensed thematic products such as land cover data and population map 
[103,112,114], the increasingly popular geo-located big data, closely related to population dynamics, 
has started being used to explore the association between NTL signals and corresponding human 
activities, particularly at fine spatiotemporal scales [115]. 

3.1.3. Conflicts and Disasters 

While the increase of NTL brightness is always related to economic growth and urbanization, 
its decrease can be caused by conflicts and natural disasters. One pioneering study, using 159 
countries as samples, shows that the NTL fluctuation, measured by an NTL variation index, is 
correlated to armed conflicts, with higher fluctuations indicating higher probability of occurrence of
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armed conflicts [116]. The Syrian Civil War occurred in 2011. Although there are massive media 
reports, getting a whole picture of the war is challenging work. By using 38 monthly composites of 
DMSP-OLS, the spatiotemporal patterns of NTL in Syria have been revealed, showing that the 
number of refugees is positively correlated to NTL loss, suggesting that satellite-observed nighttime 
light is a good indicator of the humanitarian crisis in Syria [117]. Although DMSP-OLS is an effective 
indicator of the Syrian Civil War, NOAA stopped producing DMSP-OLS composites from February 
2014, with VIIRS monthly composites as the substitution. By inter-calibrating DMSP-OLS and VIIRS 
monthly composites, the NTL dynamics during January 2011 to January 2017 were analyzed, 
showing a slight recovery of NTL due to the peace agreement between the Syrian Government and 
the rebel groups [118]. In addition to the Syrian conflict, VIIRS images have also been applied to 
analyze the civil wars in Yemen [119] and Iraq [120,121], showing that the time series VIIRS images 
are able to reflect electricity usage during the war. 

Similar to conflicts, natural disasters, such as tsunamis, hurricanes, and earthquakes, can also 
have sudden but severe impacts on NTLs, providing an opportunity to evaluate the damage of these 
disasters. In December 2004, a tsunami that was triggered by a 9.2 magnitude earthquake attacked 
Northern Sumatra, Indonesia, killing about 160,000 persons. Time series of annual DMSP-OLS 
images were used to calculate the NTL change in this region, showing a significant drop of NTL after 
the tsunami and a partial recovery of NTL after the reconstruction, and these results are highly 
consistent to the house survey results [122]. Based on econometric models, economists were able to 
assess the economic loss after typhoons in China using time series of annual DMSP-OLS images and 
historical typhoon track data. It was found that there was a net loss of $28.34 billion in China due to 
typhoons between 1992 and 2010 [123]. As disasters are processes compressed in time [124], the fine 
temporal resolution of NTL data are of significance for a timely assessment of abrupt changes in 
power delivery caused by disasters such as storms, earthquakes, and floods. Compared to the DMSP-
OLS annual composites, which are able to measure the long-term economic change due to the 
disasters, VIIRS daily images can capture more details of disasters in temporal dimension. VIIRS 
daily images have been used to compare the light before and after two storms in Washington D.C., 
showing that the daily data have a clear response to the power outage resulted from the storms [125]. 
In addition, a more comprehensive study, focusing on earthquakes, floods, and storms, shows that 
the time series of VIIRS images are useful to detect the power outage from these disasters, but the 
cloud is a major limitation of the detection ability [126]. While the VIIRS daily product is a potentially 
good tool to monitor conflicts and natural disasters, images are affected by a number of factors 
including moonlight and atmospheric conditions, as well as the clouds. Additionally, the NASA 
Black Marble NTL data, a new type of high-quality NTL derived from NPP-VIIRS DNB, have started 
to be applied to disaster monitoring to estimate disaster-related power outages [50] and construct 
high-resolution maps of electrical grid restoration [51]. These preliminary results demonstrate that 
Black Marble NTL data can serves as good data source to detect the abrupt changes of power delivery 
caused by disasters or conflicts. 

3.2. Environmental Changes 

3.2.1. Fisheries 

NTL data are effective in detecting fishery information, because it is common to install high-
power bulbs on fishing boats to attract phototaxis species (e.g., squid and sardine). The earliest 
publication noting this capability of NTL is dated back to the late 1970s [127]. DMSP-OLS images 
have been widely used to detect the spatial and temporal variability of fishing vessel lights in the Sea 
of Japan [128,129], Southwest Atlantic [130,131], and Peru [31,132]. These studies estimated the 
illuminated area by calibrating monthly DMSP-OLS images using the ship location data from local 
surveys, so that the fishing extent, intensity, and recurrence could be quantified.  

However, the application of DMSP-OLS imagery has been limited due to the lack of an automatic 
algorithm for detecting boats using NTLs. Such an issue could be addressed by using VIIRS/DNB 
data, owning to its better capability for detecting lit fishing boat features compared to DMSP data 
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[133]. The Earth Observation Group (EOG) developed a boat detection algorithm for VIIRS data in 
2014 [133]. Currently, VIIRS boat detection (VBD), a global product with nominal 4 h temporal 
latency, is widely used by fishery agencies in Asia. The nightly VBD archive extends back to April 
2012, and monthly and annual summary grids have also been produced by EOG. This opens up the 
opportunity to use the near real-time VBD to estimate fish stocks [134,135], rate the compliance levels 
of fishery closures [136], and identify illegal fishing [137-139]. The fishery information derived from 
VBD data can aid international efforts toward sustainable fisheries and marine conversation. A recent 
study on the cross-matching of VBD with vessel monitoring system (VMS) data in Indonesia revealed 
the fishing gear types and found that VIIRS detects nine times more vessels than the VMS tracks 
[140].  

3.2.2. Energy, Greenhouse Gas, and Gas Flares 

NTL data provide an effective proxy for estimating energy consumption and green gas 
emissions [111,141,142]. With accelerated urbanization and industrialization since the Industrial 
Revolution, energy consumption such as electric power consumption (EPC) has been rapidly 
increasing, leading to a large amount of emissions of greenhouse gas, such as carbon dioxide (CO2) 
emissions [143,144]. Estimating the spatiotemporal dynamics of energy consumption and green gas 
emissions has significant implications for local authorities to guide their policies in carbon reduction 
and climate change. In the mid-1990s, Elvidge et al. [145] and Doll et al. [111] firstly found a strong 
relationship between DMSP-OLS data and EPC and total CO2 emissions, respectively. Shi et al. [146] 
revealed that the NPP-VIIRS data could be a more powerful tool for modeling EPC and other energy 
consumption-related indicators. As the spatial distribution of EPC and CO2 emissions was not 
specifically represented in early studies [145,147], more attempts were then made to map the 
spatiotemporal dynamics of EPC and CO2 emissions using NTL data [148-150]. For example, NTL 
data have been extensively used to estimate EPC and CO2 emissions at multi-scales [46,142,151,152] 
and in a long time series [153,154]. Although NTL data did a superb job in revealing the 
spatiotemporal distribution of EPC and CO2 emissions, these studies vary regarding the studied 
source of CO2 emissions using NTL data. Some studies focused on CO2 emissions from electric power 
consumption [145,155,156], while other studies investigated CO2 emissions from fossil fuel 
combustion [149,157-159] or residential energy consumption [160].  

In the last decades, studies of electric power consumption and CO2 emissions using NTL data 
can be divided into three classes: (1) Mapping the spatial distribution of EPC and CO2 emissions from 
urban to global scales [161-163]; (2) exploring spatiotemporal dynamics of EPC and CO2 emissions 
using time-series NTL data [154,164,165]; and (3) improving the accuracy of EPC and CO2 estimation 
with the consideration of saturation and unlit areas [145,157]. 

Mapping the spatial distribution of EPC and CO2 emissions at the global, national, regional, and 
even urban scales using NTL data has received increasing attention in the context of global warming. 
These efforts have improved our understanding of energy consumption and green gas emissions 
from the spatial dimension, showing a great a potential for further analysis when integrated with 
other geo-spatial data [154]. Using the cloud-free radiance-calibrated DMSP-OLS nighttime images, 
Lo [161] established the logarithmic relationship between EPC and lit area for 35 Chinese capital 
cities. Amaral et al. [142] estimated EPC in the Brazilian Amazon from extracted lit area at the 
municipal level by inter-calibrating the global NSL data via a modified invariant region (MIR) 
method. For the spatial distribution of CO2, a global l × 1 km annual CO2 emissions inventory was 
developed using NTL data [148]. By combining NTL data with statistical data at administrative levels, 
urban CO2 emissions across multiple spatial scales in China were assessed to further discuss the 
variations of CO2 emissions among different geographic regions [166]. Su et al. [167] not only 
estimated CO2 emissions data of China at the finer city scales, but also analyzed the driving factors 
and proposed corresponding mitigation recommendations. Shi et al. [168] investigated spatial 
variations of CO2 emissions and their impact factors across different levels, and offered evidences for 
CO2 emissions mitigation policy making. These studies using NTL data have promoted the spatial 
estimation of EPC and CO2 emissions because of the limitations in the statistical data, such as the 
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inconsistency in these data at different administrative levels and the lack of enough data at city or 
local levels. 

The availability of time series NTL data makes it possible to monitor the spatiotemporal 
dynamics of EPC and CO2 emissions for a better understanding of energy consumption and green 
gas emissions. These time series composites include three types: DMSP nighttime stable light data, 
DMSP radiance-calibrated NTL data, and VIIRS monthly NTL data. He et al. [164] mapped electricity 
consumption at the county level of China during 1995–2008. Shi et al. [154] detected spatiotemporal 
dynamics of global EPC from 1992 to 2013, and latterly they explored spatiotemporal patterns of EPC 
in countries along the Belt and Road. Results demonstrate that EPC growth mainly occurred in the 
developing countries, and GDP is a more important impact factor for EPC compared to population 
[169]. Lately, Shi et al. [170] evaluated the spatiotemporal patterns of urban EPC within different 
spatial boundaries (i.e., the city administrative area, city district, urban center, and urban built-up 
area) from 1992 to 2013. Despite the annual NPP-VIIRS data having a higher spatial resolution, more 
efforts are needed to remove the background noise before monitoring EPC and CO2 emissions [159]. 
Considering the short time series of NPP-VIIRS data, DMSP-OLS data are still the main NTL dataset 
for analyzing the spatiotemporal dynamics of EPC and CO2 emissions [146].  

As the inherent limitations of NTL data greatly affect the estimated EPC and CO2 emissions, 
numerous studies have been conducted to improve the accuracy of EPC and CO2 estimations. First, 
more attentions have been paid when monitoring EPC and CO2 emissions in urban areas where the 
NTL brightness is saturated. Various methods have been proposed to improve saturated pixels in the 
NTL imagery; for instance, modifying DMSP-OLS NTL data by using an Enhanced Vegetation Index 
(EVI) [163]. A delta model was proposed to restore the saturated pixels at the center of a light patch 
[171] by developing a cubic regression method [172]. In addition, the integration of NTLs with other 
data, such as population data [149,157] and the vegetable index [173], was proved to help improve 
the accuracy of spatiotemporal distributions of EPC. Second, the estimation of EPC and CO2 
emissions in unlit areas is still a challenge. The ratio of estimated emissions in unlit area to lit area 
greatly affects the accuracy of the estimation. For instance, Meng et al. [174] adopted a ratio of 0.38 
for emissions per capita in unlit area to lit area, while Ghosh et al. [149] used a ratio of 0.5 when 
spatializing the CO2 emissions using other data (e.g., LandScan population density).  

NTL data also show great potentials in capturing gas flaring activities over large areas [175], due 
to specific characteristics that are easily distinguished from city lights at night [176]. Although gas 
flaring is a widely used practice to dispose of associated gas from oil production and processing, its 
spatiotemporal pattern is difficult to obtain before the emergence of NTL data [177]. NPP-VIIRS data, 
with a unique ability in collecting near-infrared and short-wave infrared (SWIR) data at night, is 
extremely useful for detecting flares and measuring their radiant output [177]. It is worth noting that 
gas flares may introduce uncertainties in estimating CO2 emissions [178]. A study commissioned and 
funded by the World Bank's Global Gas Flaring Reduction partnership [175] estimated national and 
global gas flaring volumes using NTL data across a series of years and provided a time series of global 
gas flares maps. This work greatly contributes to reducing the impact of gas flares on mapping 
urbanization and carbon emissions.  

3.2.3. Light Pollution and Associated Effects 

NTL data have provided unique data to study the environmental and ecological effects of 
artificial lights with extensive spatial and temporal coverages. Although the wide use of artificial 
light at night has brought significant convenience to humankind, the dramatic change of the NTL 
environment inevitably affects both the ecosystem and human life, known as “light pollution” [179]. 
NTL data have brought new opportunities for light pollution studies, enabling evaluation over large 
areas with low costs compared to the traditional ground-based observations and laboratory studies 
[180,181]. Currently, studies of light pollution based on satellite-derived NTL data mainly lie in three 
aspects: (1) Characterizing and surveying the distribution of light pollution; (2) revealing the impacts 
of NTLs on ecological environment and species; and (3) estimating the impact on human health 
brought by artificial light at night. 
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Widespread studies have been conducted to characterize the distribution of light pollution from 
local [68,182-184], national [185-187], regional [188], and global scales [189,190] using various NTL 
datasets derived from different sensors. The distribution of light pollution in both developed areas, 
such as Europe [183,184,188], and fast developing areas, such as China [13,68,181,185,186] and 
Pakistan [187], have been investigated using the time series of NTL data from the DMSP-OLS. 
Necessary data preprocessing has been performed for consistent and comparable light pollution 
mapping. Quantitative indicators such as total nighttime light (TNL), night light mean (NTM), and 
night light standard deviation (NTSD) were proposed to capture trends of light pollution [186]. The 
levels of light pollution change were also used to map the changing patterns [13]. Compared to NTLs 
with coarser resolutions such as stable NTLs and calibrated NTLs, the finer resolution NTL images 
from VIIRS, EROS-B, and Luojia 1-01 and ISS, have shown great potentials for investigating spatial 
patterns of artificial light pollution [53,67,68,180,191]. 

NTL data also provide a convenient way for evaluating the impact of light pollution on the 
ecological environment and species. Trends and patterns of light pollutions were assessed for various 
ecosystems [192], vegetation [193], and habitat types [194] to investigate the degree of exposure to 
light pollutions. It was found that the threat of light pollution to the global biodiversity was emerging, 
especially in areas with high biodiversity [194]. As a good indicator, NTL data have also been used 
to measure the conservation efficiency of protected areas [13,181,195,196], because there is low or 
even no light pollution in a well-protected area. Additionally, the behavior and presence of some 
species, such as marine turtles and nocturnally-migrating birds, were also studied using NTL remote 
sensing technology, because of their sensitive responses to artificial light at night [58]. The impact of 
light pollution on marine turtles has been extensively investigated, including: (1) Examining 
temporal changes in artificial lighting at marine turtle nesting areas and identifying the nesting sites 
with the greatest threat from artificial light [12,197]; (2) investigating the relationship between the 
long-term spatial patterns of sea turtles and the corresponding NTL intensity for explaining sea turtle 
nesting activities [58]; and (3) analyzing the difference of the relationship between sea turtle activities 
and NTL intensity among different sea turtle species [191]. Similar methods have been used to study 
the impacts of light pollution on nocturnally-migrating birds [198,199], revealing that urban sources 
of artificial light at night can broadly affect the migratory behavior of nocturnally-migrating birds.  

NTL data have been also used to study the effect of light pollution on human health. These 
studies, carried out in different regions and population cohorts, provided mutually complementing 
evidence about the significant association between artificial light at night and a variety of adverse 
health phenomena, such as breast cancer [200-204] and obesity [205,206]. Moreover, a stronger 
association between artificial light at night and breast cancer incidence was found using VIIRS/DNB 
images with a finer spatial resolution compared to DMSP data [206]. Studies using images with 
higher resolution and multi-spectral bands taken from the ISS demonstrated that exposure to the 
blue-light spectrum of outdoor artificial light at night appeared to have stronger effects on hormone-
dependent cancer incidence (i.e., prostate and breast cancers) compared to the green-light and red-
light spectrums [207,208]. Using VIIRS/DNB images and ISS photos of outdoor light, a comparison 
of personal measurements with satellite-based estimates of exposure to night light found a 
discrepancy between outdoor NTL and indoor light exposure [209], indicating that the modifying 
factors should be used when using the satellite NTL to evaluate potential effects of night light on 
human health. Such findings can help make better policies for minimizing the adverse health effects 
of artificial light exposure on human health. Related studies will benefit from improvements of NTL 
images in spatial resolutions and spectral information. 

4. Challenges and Limitations of Current Nighttime Light Studies 

Despite of the widespread use of NTL images for perceiving the changing world, challenges still 
exist in current NTL applications due to limitations from both data and methods (Figure 3). These 
challenges and limitations are summarized below. 
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Figure 3. A schematic of challenges and limitations in current NTL studies. 

4.1. Inherent Deficiencies of the Long Time Series of DMSP Data 

4.1.1. Inconsistency Among Different DMSP Sensors 

The time series of DMSP NTL data cannot be directly compared for dynamics across years due 
to the lack of on-board calibration, varied atmospheric conditions, and satellite shift and sensor 
degradation [24]. The DMSP NTL time series data consists of observations from six satellites during 
the period of 1992–2013, namely, F10 (1992–1994), F12 (1994–1999), F14 (1997–2003), F15 (2000–2007), 
F16 (2004–2009), and F18 (2010–2013). Because of the systematic differences in satellite orbits (i.e., 
dawn pass versus dusk pass) and sensor degradation, the collected NTL data from different satellites 
are notably different. In addition, without on-board calibration, the NTL observations derived from 
the same satellite are different across years due to different atmospheric conditions. The temporal 
inconsistency of DMSP NTL time series data considerably limits its applications for dynamic studies 
such as urban expansion and electricity consumption. 

Existing studies on addressing the temporal inconsistency of DMSP data have focused on inter-
calibration of NTL time series data, using empirical relationships between the calibrated and referred 
images. Due to the lack of established calibration sites for DMSP-OLS [210], such relationships were 
built by manually selecting stable regions as references [87,175,188,211,212] or automatically 
identifying stable pixels as pseudo-invariant features [210,213]. Elvidge et al. [175] proposed a general 
framework for DMSP NTL inter-calibration by identifying a reference region that is relatively stable 
across years, but meanwhile contains different DN values. This calibration paradigm has been widely 
used in subsequent studies [87,188,211,212], in which different empirical models and regression 
parameters obtained from different reference regions were used for inter-calibration at the local or 
global scale. Later, improved approaches [210,213] using globally and regionally consistent bias to 
collect stable DN pixels were proposed for NTL inter-calibration, without the need of selecting 
calibration sites from one or more locations. Differently, Li and Zhou [24] developed a stepwise 
calibration strategy to adjust NTL images from different satellites in a systematic manner. The 
derived results are temporally consistent at the global scale in terms of the total lit pixels and the NTL 
luminance. There are also a few studies in which the radiance calibration of DMSP was conducted 
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using the ground-based light sources [214]. However, these approaches are more suitable for local-
area studies due to the limited data from field measurements.  

Although these studies used different approaches for inter-calibration of DMSP NTL data, the 
empirical relationship between the calibrated and referred observations is the key to addressing the 
temporal inconsistency of DMSP data. Such a relationship is sensitive to the selected reference image, 
including the selected regions/pixels and year/satellite, and the adopted models, making the derived 
result different across different studies [215]. One exception is a study by Li and Zhou [24] that is 
different from most previous studies, in which a notable modification of the TNL range was likely to 
be observed because only one reference image was used to calibrate the entire time series. Calibration 
with large modifications may affect the reliability of acquiring useful information from NTL images. 
Despite that inter-calibration methods have greatly improved the inconsistency observed in raw NTL 
time series generated from aggregating lit pixels over a region, the inconsistency in raw NTL time 
series at the pixel level is observed to be only moderately improved [215]. 

4.1.2. Saturation and Blooming Effects of DMSP Data 

The DMSP NTL data have two major deficiencies: The saturation effect of DN values in urban 
cores and the blooming effect in suburban and rural transition areas. On the one hand, due to the 
collection of DMSP data at high gain settings, regions with high luminance might show the same DN 
values (i.e., DN = 63) as areas with relatively lower luminance, making it difficult to differentiate the 
highly-lit pixels. Such a deficiency may limit applications of DMSP NTL data in studies of urban 
environment change such as light pollution. Also, the saturated DN of NTL data in urban cores would 
lead to an underestimation of socioeconomic activities, such as electricity consumption in said urban 
cores. On the other hand, because of the blooming effect in DMSP NTL data, a notable overestimation 
of luminance over suburban and surrounding rural areas has been found, which challenges 
applications of NTL data such as urban extent mapping. Also, the bloomed lit pixels with biased 
luminance have notable impacts on relevant socioeconomic studies (e.g., population and GDP) using 
DMSP NTL data. 

Incorporating land surface features and demographic information is a commonly used approach 
to mitigate the saturation effect of DMSP NTL data, resulting in modified NTL indices. NDVI is a 
widely used indicator to reduce saturation and increase variations to generate modified NTL indices 
[216]. Similarly, other indicators such as normalized difference water index (NDWI) [217] and urban 
fraction data can also be used to modify NTL indices [71]. In addition to land surface features, 
demographic information is also helpful to reduce the saturation effect of NTL pixels. Spatially-
explicit population density data has been introduced to enhance the heterogeneity of saturated NTL 
pixels [93]. In addition, socio-media data, such as volunteered data and mobile-based check-in data, 
are new data sources of human activities to address the saturation of DMSP NTL data [218]. The key 
of these approaches is to generate heterogeneous modified NTL indices in high-luminance areas, and 
these modified NTL indices show improved performances in investigating human activities in urban 
core areas compared to raw DN values. 

The threshold-based approach and classification are two widely used approaches to address the 
blooming effect in studies such as NTL-based urban extent mapping. The threshold is used to 
separate urban from surrounding suburban and rural areas. However, the thresholds vary in 
different regions due to different socioeconomic development levels. Zhou et al. [71] applied the 
estimated optimal threshold for each potential urban cluster with different sizes, using a cluster-
based approach. Ancillary information such as statistical urban areas from survey data [8] and fine-
resolution land cover data [72,219] are widely used when determining the optimal threshold. 
Recently, a quantile-based approach according to the gradient change of NTL luminance was 
developed to automatically derive the optimal threshold to delineate urban extent [75]. This approach 
can maximally separate urban from surrounding rural areas based on the DN distribution of NTL 
data, and it is extendable both in space and in time. Classification is an alternative approach to derive 
urban extents using NTL data, where other support information such as NDVI is required [88].  
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4.2. Lack of a Long Time Series of Consistent Nighttime Light Observations 

Two major NTL datasets (i.e., DMSP and VIIRS) have been widely used in previous studies. One 
is the version 4 DMSP stable NTL product (1992–2013), and the other is the version 1 suite of VIIRS 
monthly NTL composites (2012 to date). Compared to DMSP-OLS stable cloud-free composites, NPP-
VIIRS imageries have a finer spatial resolution, a wider dynamic range, and a higher radiometric 
resolution, which provide a clearer and more detailed snapshot of anthropogenic light emissions at 
night [220]. An onboard calibration was also used to enhance the quality of NPP-VIIRS data. With 
improvements in the spatial resolution, consistency, dynamic range, and radiometric quantization, 
the issues of saturation effects in urban cores and blooming issues are not significant as DMSP-OLS 
[27,221] and NPP-VIIRS data can be used directly for temporal analyses. Moreover, the difference in 
the overpass time of these two sensors also causes inconsistency of the detected lighting in the two 
datasets [27], because the nightscape dynamics are different over time from the early evening to 
midnight [53,222]. This inconsistency is obvious in large cities and in areas where the streetlights 
intentionally become dim or turn off at late hours. 

The differences between DMSP-OLS and NPP-VIIRS have led to related studies for a better 
understanding of these two datasets and their differences. In a number of studies, the capability of 
NPP-VIIRS and DMSP-OLS have been compared in analyzing urbanization [79,223], socioeconomic 
activities [43,45,146,224], greenhouse gas emissions [159,225], and light pollution and its effects [206]. 
These attempts, which have emphasized the advantages of VIIRS data in detecting human activities 
at fine scales, have promoted new and improved methods to overcome the inherent deficiencies of 
DMSP data mentioned in Section 4.1. 

The limitation in the temporal coverage of the two products currently hinders the long time 
series of applications of NTL data. Although NTL observations from VIIRS/DNB provide a greater 
potential in monitoring human activities and environmental changes, the temporal coverage of 
available observations is shorter compared to the version 4 DMSP stable NTL composites. VIIRS/DNB 
NTL imageries were not released until 2012, while the DMSP-OLS ceased operation in 2013. 
Therefore, the version 4 DMSP time series NTL composite is the currently most widely used dataset 
of NTL for the analyses of time series [16,226]. However, this advantage of DMSP data will gradually 
decrease as the continuously-updated monthly VIIRS/DNB composite starts to play a more 
significant role in time series analyses.  

Current NTL remote sensing applications still lack a long-term and consistent NTL dataset 
globally, back to 1990s. Such integrated datasets spanning 1992 to present will make it possible for 
long-term monitoring of human activities with low costs from the regional to global scales. A few 
studies have started to conduct analyses of time series using both DMSP and VIIRS. For example, a 
linear regression model was used to calibrate the raw daily DMSP images over Dome C in the 
Antarctic into VIIRS-like data by deriving the characteristic of DMSP DN and VIIRS radiance of the 
region of interest [227]. An inter-calibration model [118], designed for non-saturated urban areas, was 
proposed to calibrate the monthly VIIRS data into monthly DMSP-like data for estimating the city 
light dynamics during the war. Additionally, a power function model [98] was used to simulate the 
DMSP-like TNL from VIIRS TNL based on their quantitative relationship for investigating the 
dynamic of provincial GDP in China. Recently, with radiance-calibrated DMSP data and VIIRS data, 
a cross-sensor calibration model was proposed to generate DMSP-like VIIRS data. These attempts 
have contributed to enhancing the consistency of NTL or NTL indices between DMSP and VIIRS 
data; however, limitations still exist regarding the wide application of current methods. First, the 
datasets used are inaccessible to the general public [118,227], making these methods difficult for 
widespread applications in other regions. Second, the consistent NTL generated still has a limited 
temporal coverage [228], and the potential of the historical NTL archive has not been fully explored. 
Third, the models proposed could be robust for specific lit areas [118], meaning that cautions are 
warranted when applying them in other regions. Considering that current methods cannot be widely 
applied and promoted, it is still a challenge to generate a long time series of consistent and 
comparable nighttime light dataset from 1992 to present. 
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4.3. Limited Understanding of Nighttime Lights for Perceiving the Changing World 

Limited understanding of NTLs for perceiving the changing world hinders the in-depth analyses 
of NTLs on capturing accurate nightscape dynamics, characterizing real human activities and 
environment changes, and revealing or explaining potential social, economic, religious, and political 
issues. These limitations, mainly due to the deficiencies from current methods or data products, can 
be grouped into four aspects. 

First, the pixel-level relationship between NTLs and land features/human activities has not been 
fully explored. Although the NTL magnitude and spatial patterns show potentials in characterizing 
the patterns and dynamics of human activities from local to global scales, the lack of distinct texture 
information makes it a challenge for accurately investigating various human activities using NTL 
over space at a finer scale. Currently, the multi-source remote sensing data, such as AVHRR, MODIS, 
SPOT VEGETATION, Landsat, and Sentinel-2, with detailed information of the landscape and 
ground features, have been used in NTL studies for two purposes: (1) Validating the extracted results 
from NTL data, such as urban extents [82,88,229,230]; and (2) improving the quality of NTL data or 
derivative results [43,216,231,232]. These attempts, either focusing on studies using coarse resolution 
NTL data, or using fine resolution data but still emphasizing the regional dynamics, cannot well 
explain how NTL signals respond to various land-use/land-cover types and socioeconomic activities 
such as population distribution, energy consumption, and building density. A clear understanding 
of the relationship between lit pixels and corresponding features of land surface and human activities 
is crucially important for further applications of nighttime light data. However, such a fundamental 
issue has not been fully addressed in previous studies.  

Second, methods and algorithms for quantitatively characterizing human activities still need 
improvements. On the one hand, the under- and over-estimation of the intensity of human activities, 
such as urban extent [72,75], socioeconomic variables [111,114], fishing extent, energy use [154,233], 
and emissions [148,159], indicates that more efforts are needed to improve the accuracy and reliability 
of the results. On the other hand, the variations of thresholds, relationships, trends, and patterns of 
the extracted information from NTL imagery across different years/scales/extents[19] also suggest the 
necessity of automatic and intelligent methods in these studies. Although some robust relationships 
among the NTL signals, such as the quadratic relationship between the pixel-level NTL radiance and 
corresponding brightness gradient [234], and the quantile-based relationship between urban and 
rural NTLs [75], have been identified as effective ways for the large-scale urban mapping, these 
methods are only proven to be suitable for DMSP imagery. More efforts are needed to evaluate the 
applicability of these methods for other NTL data and to develop more effective methods.  

Additionally, compared to monitoring of human activities, studies on revealing environmental 
changes are relatively limited. NTL data provide a cost-effective way for detecting the Earth’s lights 
at night and tracking their changes over time. The quantitative monitoring of Earth at night cannot 
only be used to characterize human activities such as urbanization and conflicts, but also to provide 
a new perspective for understanding environmental changes. However, the latter is still limited, 
mainly because of the scale mismatch between current NTL data and the studied issues. The studies 
on environmental changes, which are geographic-specific issues, are mostly performed at the fine 
scale. Compared to human activity monitoring at the large scale, the early launched sensors (e.g., 
DMSP and VIIRS), which provide large scale lightscape with only single spectral band information, 
have limited capability of lighting detection, and therefore, cannot provide enough information 
required in environmental change studies. NTL data with higher spatial, temporal, and radiometric 
resolutions and multi-spectral band information are highly needed, particularly in future studies of 
environmental change. 

Finally, the inconsistency between the derived information from NTL data and the actual status 
of human activities exists. The first type of difference comes from the sensor or data products. 
Although there are high correlations between anthropogenic NTL emissions and human activities, 
NTL is only one of the indicators for human activities. For example, no lighting does not mean there 
is no human activity. Moreover, different overpass times of NTL sensors have a certain impact on the 
detection of lighting on the Earth due to the varying dynamic of night lights, especially before and 
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after the peaking lighting [27]. Especially, because of the various degrees of difference in overall sky 
brightness at night caused by this intra-night dynamic of different light sources (e.g., streetlights, lit 
windows of homes and shops, and vehicles) [53,222], it is likely to obtain a different nightscape from 
NTL images collected at different times. In addition, due to a combination of light scattering, 
instrumental effects, processing effects, and skyglow [235-237], the blooming effect is especially 
severe in DMSP-OLS data [223], and is more pervasive over areas nearby water and snow [19]. 
Besides, the lighting spectrum also affects the ability of existing sensors to quantify artificial lights 
from space. This limitation even exists in VIIRS data, which lack the capability to capture blue light 
from white-light emitting diodes (LEDs) [238]. Last, the different imaging angles could also affect the 
visibility of facade lighting and detection sensitivity of satellite sensors to different sources of 
radiation (e.g., illuminated signs and parking lot lighting) [239], especially when the spatial 
resolution of sensors is high. Some directional light sources, such as searchlights and car headlights, 
cannot be detected [53]. This effect could limit the ability of NTL sensors to capture the lighting 
changes. Therefore, due to these uncertainties caused by sensors and products, understanding how 
to maximize the usefulness of existing and future NTL observations to capture the real lighting 
change and characterize specific human activities is still a challenge. The second type of difference 
comes from the methods of investigating human activities. As responses of changes in NTL to human 
activities vary over space and time, analyses without considering sociocultural, lighting sources, 
outliers, and a sizeable portion of dark or dim areas could lead to biases of estimated human activities 
[19]. The variations of NTL response make the comparison across space and time challenging, and 
present a barrier to quantifying and understanding the dynamic of human activities. Causes of 
observed light changes across space and time, which are crucial for investigating the relationship 
between NTL observations and human activities, however, are still limitedly considered in previous 
studies. 

5. Strategic Directions for Nighttime Light Remote Sensing Research 

According to challenges and limitations of current NTL remote sensing applications, four key 
advancements are recommended (Figure 4). First, NTL observations with higher spatial resolution, 
wider radiometric detection range, and multi-spectral bands are needed from improvements in both 
the widely used, newly updated, and future released satellites/sensors/products. Second, it is of great 
significance to develop a long time series of consistent NTL dataset by integrating current NTL 
composites for monitoring spatiotemporal dynamics of human activities over a sufficiently long 
period of time and for evaluating related environmental changes. Third, it will provide great 
potentials for detecting changes and understanding driving causes by integrating NTL data with 
other data, including not only commonly used remote sensing data, but also geo-located big data, 
field data, social media data, expert knowledge, and local experience. Finally, more attention should 
be paid to multidisciplinary and interdisciplinary analyses of NTLs, including not only analyses on 
human activities, but also studies on environment changes. 
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Figure 4. Strategic directions for future NTL remote sensing research. 

5.1. Improving Nighttime Light Data 

Future applications of NTL remote sensing require improved sensors and data products for 
mining accurate and rich information from future NTL observations. With these improvements, it is 
expected that NTL observations with significant improvements in spatial, temporal, radiometric, and 
spectral resolutions will be available. The improved NTL observations, with strong capabilities for 
capturing nightscape dynamics, will open new avenues for monitoring human activities and 
environment changes at the fine spatiotemporal scales. 

First, more efforts are needed to mitigate the saturation and blooming effects that exist in the 
version 4 DMSP stable NTL composites. In addition to land surface features and demographic 
information, socio-media data, such as volunteered data or mobile-based check-in data, is expected—
as a new data source—to reveal more details in saturated NTL pixels. New methods of deburring 
DMSP-OLS data, independent of auxiliary data such as NDVI or land classification, are expected to 
mitigate the blooming effect of DMSP-OLS data. Meanwhile, further comparisons between DMSP-
OLS and VIIRS/DNB data from different perspectives, such as the response of NTL to land surface 
features or population density, could also promote a deeper understanding of differences of the 
derived information from the two products. These differences are key for improving NTL 
observations. With the improvement in NTL data and the derived information, capturing better 
capture human activities and environment changes is more promising. 

Second, NTL observations with higher spatial, temporal, and radiometric resolutions are 
needed. Currently, most studies of NTLs have not been able to characterize spatial patterns at the 
neighborhood and street level due to the lack of freely-available observations with fine spatial and 
radiometric resolution. Considering that the price of fine (e.g., submeter level) NTL images offered 
by commercial satellites (e.g., Israeli EROS-B and Chinese JL1) is high, the recent launch of the Luojia-
1 cuebsat with free data access for monitoring the fine-scale artificial light at night could promote 
more novel applications. Compared to the monthly and seasonal changes in anthropogenic light-
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emitting activities, for light-emitting activities with a short duration but potentially high social or 
environmental impact, the timely monitoring of high frequent human activities such as wars and 
disasters [48] also put new demands on the improvement of the temporal resolutions of NTL data. 
For instance, the recently released Black Marble product provides another step forward in monitoring 
light-emitting activities at daily intervals, which is of great significance for assessing the intensity and 
loss of disasters and conflicts. With the consistent emergence and improvement of sensors and 
products, NTL composites with higher spatial, temporal, and radiometric resolutions are expected to 
be used to monitor the spatiotemporal dynamics of the nightscape. 

Third, identifying different types of lighting will greatly benefit from the multi-spectral 
information of future NTL data. As the emission spectra of artificial lighting sources are different 
[240], the major types of artificial lighting sources can be separated by the use of hyperspectral data 
[241-243]. Such information will be of help for evaluating the impact of light pollution and mapping 
the spatial structure of human activities. However, the majority of current satellite NTL sensors are 
panchromatic, except for ISS photos and JL-1 satellite which offer RGB color images. As mentioned, 
the lack of sensitivity to blue light from LEDs affects the ability of existing sensors, such as 
VIIRS/DNB, to quantify artificial lights from space, which will lead to a serious missing of important 
spectral information when more cities change their street lighting technology to LEDs, especially in 
the United Kingdom [53]. Blue and other spectral bands in the range from visible to near-infrared are 
needed in future NTL sensors. New and improved sensors and algorithms with multi- or 
hyperspectral bands will play a more important role in visualizing, identifying, and quantifying 
changes in light emissions and pollution. 

5.2. Developing a Long Time Series of Consistent Nighttime Light Data 

A continuous and consistent monitoring of global nightscape from space will provide precious 
records of human activities from past to future. With the spatially-explicit observations of artificial 
lighting sources across human settlements at night, the intensity of human activities can be 
quantified, providing the basic knowledge needed for understanding the environment changes and 
impacts of light emissions related to human activities worldwide [186]. The quantification and 
characterization of human activities and environment changes using NTL data provide us a cost-
effective way for perceiving the changing world from different aspects. These aspects include—but 
are not limited to—urbanization, socioeconomic activities, conflicts and disasters, fisheries, energy 
use and greenhouse gas emissions, human health, and the ecosystem. Therefore, a long-term record 
of the global nightscape is of great significance for perceiving our changing world. 

Long-term and consistent NTL data, from past to present, even the future, is a pressing need for 
the continuous and consistent monitoring of human activities from regional to global scales. The 
version 4 annual stable NTL dataset from DMSP and the version 1 suite of monthly and annual NTL 
composites from VIIRS will play a key role in the generation of the new time series product. Although 
a few studies have contributed to enhancing the consistency of NTL signals from different datasets, 
the integration of DMSP and VIIRS datasets at the pixel level is still challenging and the related 
product is still lacking. Therefore, more efforts are needed in developing a long time series of 
consistent NTL data from the 1990s onwards. 

Addressing the inconsistency problem between DMSP-OLS and NPP-VIIRS is the key for 
developing a long time series of consistent NTL data. This inconsistency of NTL data between DMSP-
OLS and NPP-VIIRS could be partly reduced by calibrating VIIRS into DMSP-like data, or improving 
DMSP into VIIRS-like data. Future efforts to mitigate the saturation and blooming effects of DMSP 
stable NTL data will greatly promote the comparability of the two datasets. Similarly, the 
comparability of the two datasets can also be achieved by aggregating VIIRS into DMSP-like data. 
With these efforts, the spatial pattern of the processed NTL from DMSP and VIIRS will become more 
consistent. In addition to reducing the inconsistency caused by sensor performance for spatial and 
radiometric resolutions, the NTL differences of DMSP and VIIRS caused by their different overpass 
time should be paid more attention when developing a long time series of consistent DMSP-like or 
VIIRS-like NTL data. 
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5.3. Integrating Nighttime Light Observations with Other Data and Knowledge 

Integrating NTL observations with geo-located big data, multi-spectral/sourced remote sensing 
data, and field data will provide more opportunities for NTL remote sensing studies. The added 
information from these data will contribute to perceiving human activities and related environment 
changes from different perspectives. In addition to validating extracted information from NTL 
observations, the responses of light signals to ground features and different human activities, such 
as population dynamics derived from socio-media data, can be better understood by integrating 
other relevant data. Moreover, field data, acquired through site-specific analyses, is another way to 
investigate the unusual dynamics of lightscape and help reveal their drivers. Therefore, more 
attention in the use of these multi-source datasets and knowledge is needed for monitoring NTL 
dynamics, identifying human activities, and exploring their potential causes. 

The integration of NTL observations with daytime satellite imageries can serve as useful training 
inputs of deep learning algorithms for characterizing and predicting human activities. Daytime 
satellite imageries, with abundant information about landscape features, provide great potentials for 
characterizing the structure of human activities. NTL data record the light brightness of the Earth at 
night, and are considered as a rough proxy of the intensity of human activities. A combination of 
these two types of observations to label and train deep learning models is of great potential to capture 
both the structure and intensity information of human activities. For example, with a novel machine 
learning approach [108,244], the combined information from NTL and high-resolution daytime 
images have been demonstrated to be helpful for estimating socioeconomic activities (e.g., household 
consumption and assets), and make it possible for tracking poverty status in developing countries. 
The transfer learning strategy used here provides a new insight for NTL studies. More efforts are 
needed to broaden NTL applications in deep learning by integrating NTL data and daytime images, 
especially when more fine NTL images become available. 

Integrating expert knowledge and local experiences into analyses on NTL data is promising for 
understanding the detected dynamics of lightscape at night and revealing the causes of their changes. 
The nighttime lightscape, related to economic activities, urbanization, and lighting types, always 
varies between countries, regions, and cities over time. These variations of NTL across space and time 
could present a barrier to the understanding of responses of light signals to human activities. For 
instance, NTL images may not be able to capture urban dynamics in some regions with weak 
luminosity at night due to the limited capacity of power supplies [34] or the policy of streetlights [53]. 
Expert knowledge and local experiences may help reveal the underlying mechanisms of the 
variations and provide more insights into the dynamics of human activities. For example, factors 
such as the history of development were used to explain the rapid increases of NTL intensities in 
some geographic clusters in China [245]. Therefore, caution is needed when analyzing geographic 
and socioeconomic phenomena using NTL data, and the integration of social, economic, cultural, 
political, historical, and even religious background of study areas, as well as special expertise in 
related fields with NTL remote sensing, could be of great help.  

5.4. Promoting Multidisciplinary and Interdisciplinary Analyses of Nighttime Lights 

Promoting multidisciplinary and interdisciplinary analyses of NTLs is of great significance for 
exploring the potential of NTL remote sensing. First, it broadens applications of NTL from human 
dimensions to environmental change. Second, it improves the understanding of NTL changes by 
revealing potential socioeconomic or environmental issues and tracking possible causes. 
Multidisciplinary and interdisciplinary analyses of NTL are needed from different disciplines, such 
as environmental science, social science, and human health, to further explore the potential of NTL. 

First, more efforts are needed to reveal the impacts of NTL on environment and species ecology. 
In previous studies, quantitative indicators such as TNL, NTM, and NTSD have been used to reflect 
trends of light pollution. However, these indicators cannot capture the details of complex 
environmental issues such as climate changes or ecological processes. Therefore, analysis of NTL 
research from a broader range of disciplines, including biology and ecology, could benefit researchers 
with a thorough understanding of ecological impacts of NTL. For example, multidisciplinary and 
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interdisciplinary analyses can help identify intensity thresholds, which have significant ecological 
implications, and investigate impacts of light at population and ecosystem levels such as mortality 
and fecundity rates, species composition, and trophic structure. 

Second, disciplinary knowledge of social science, such as regional politics, economics, and 
religion, are needed for analyzing the phenomena revealed by the lightscape dynamic. NTL only 
provides the measurement of night light emissions, while further exploration of the relationships 
between NTL and social science indicators could better demonstrate how social and economic 
variables interact and respond to lights. The most significant progress from previous studies is that 
GDP and its growth rate have been estimated using socioeconomic and NTL data and econometric 
models. It is highly needed, in future research, to integrate more social science indicators into NTL 
for understanding the factors of observed lights and their changes, which could be of great 
importance for light pollution mitigation. 

Third, more attention and investigation are needed for human health effects of NTL. Most 
previous studies have investigated the interactions between indoor artificial light exposure at night 
and human health, by measuring indoor lighting habits at individual exposure levels. Results showed 
that indoor artificial light increased the risks in cancer and circadian disruption, while studies 
regarding health effects of the outdoor illumination levels are still limited. Some experimental studies 
have reported that brighter outdoor lighting induces greater health effects. However, further studies 
are still highly needed. For example, the thresholds of outdoor light intensity and exposure time that 
cause human health effects remain unknown. Therefore, further studies, such as the association 
between NTL and health consequences, are of crucial significance to develop strategies to protect 
human beings from artificial light-induced diseases. 

6. Conclusions 

This review aimed at summarizing applications of NTL satellite remote sensing and how NTL 
data, at the current stage and in future, contribute to perceiving, characterizing, and quantifying 
changes of the Earth. Owing to continuously updated and improved sensors and data products of 
NTL, various applications of satellite-based NTL remote sensing have been emerging since the late 
1990s. These studies greatly promote and deepen our understanding of urbanization and 
socioeconomic dynamics, armed conflicts and disasters, fishery activities, greenhouse gas emissions 
and energy use consumption, and light pollution and health effects. However, due to the limitations 
of the capability of sensors for detecting low lighting at night, and the unsolved issues of algorithms 
and technologies in data generation and processing, challenges and difficulties still exist in the access 
to long-term consistent NTL data with a high quality. These challenges hinder the further 
applications of NTL remote sensing for perceiving the changing world. Future research on satellite 
remote sensing of NTL requires improved sensors and data products for acquiring accurate and rich 
information, especially when the era of white LEDs is coming. A consistent and continuous NTL 
dataset is also of pressing need for long-term monitoring of human activities from regional to global 
scales, which is of significance for revealing potential socioeconomic, human, and environmental 
issues. In addition to the improvement of data products, the combination of NTL observations with 
other data, either remote sensing data, social media data, field data, or expert knowledge and local 
experiences, is promising for comprehensively characterizing and understanding the changes of 
human activities. Finally, the in-depth analyses from a multidisciplinary or interdisciplinary 
perspective are of great importance for revealing the possible causes and potential impacts behind 
the lighting changes. 
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