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Abstract: Hyperspectral and light detection and ranging (LiDAR) data fusion and classification
has been an active research topic, and intensive studies have been made based on mathematical
morphology. However, matrix-based concatenation of morphological features may not be so
distinctive, compact, and optimal for classification. In this work, we propose a novel Coupled
Higher-Order Tensor Factorization (CHOTF) model for hyperspectral and LiDAR data classification.
The innovative contributions of our work are that we model different features as multiple third-order
tensors, and we formulate a CHOTF model to jointly factorize those tensors. Firstly, third-order
tensors are built based on spectral-spatial features extracted via attribute profiles (APs). Secondly,
the CHOTF model is defined to jointly factorize the multiple higher-order tensors. Then, the latent
features are generated by mode-n tensor-matrix product based on the shared and unshared
factors. Lastly, classification is conducted by using sparse multinomial logistic regression (SMLR).
Experimental results, conducted with two popular hyperspectral and LiDAR data sets collected over
the University of Houston and the city of Trento, respectively, indicate that the proposed framework
outperforms the other methods, i.e., different dimensionality-reduction-based methods, independent
third-order tensor factorization based methods, and some recently proposed hyperspectral and
LiDAR data fusion and classification methods.

Keywords: hyperspectral remote sensing image (HSI); light detection and ranging (LiDAR);
attribute profiles; coupled tensor factorization; data fusion; classification

1. Introduction

Remote sensing technologies are vital for Earth observation since they can provide a variety
information about the structure (optical or radar), elevation (light detection and ranging, LiDAR),
and material content (multispectral or hyperspectral) of the Earth’s surface objects [1]. Typically,
individual remote sensing technology is exhausted when dealing with incomplete, inconsistent,
or vague image sources, preventing a better understanding of the observed site [2]. Remotely
sensed data fusion can be used to achieve a richer description of the scene since it considers the
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complementarity embedded in multi-source information. Hyperspectral remote sensing image (HSI)
is effective in discriminating objects composed of different materials, whereas LiDAR can be used
to separate objects with different elevation. However, in the scenario of differentiating objects with
the same material or elevation, single technology is usually insufficient for producing reliable results.
In this context, hyperspectral and LiDAR data fusion has been exploited to address this issue, which is
a hot topic and has been attracted great attention by geoscience and remote sensing society in recent
years [3].

New emergent methodological avenues for remotely sensed data fusion have been observed in
the last decade, during which period advanced methods drawn from machine learning and signal
processing have been gradually advocated by researchers [2]. We will focus on reviewing those
methods proposed for hyperspectral and LiDAR data fusion from the following perspectives:

• Mathematical morphology generates multisource spatial features from remotely sensed images,
and fuses those features in feature level for image classification by using an independent classifier.
For example, attribute profiles (APs) [4–9], morphological profiles (MPs) [10–12], extinction
profiles (EPs) [7,13–16] were computed on both optical and LiDAR data to extract the multisource
features, leading to a fusion of spectral, spatial and elevation information.

• Markov modeling formalizes spatial information and data fusion through global minimum energy
concepts, which has been used for remotely sensed data fusion. For example, the work in [17]
proposed an edge-constrained Markov random field method for accurate land cover classification
over urban areas using hyperspectral and LiDAR data.

• Sparse representation conducts data fusion by minimizing the signal-to-reconstruction error with a
predefined dictionary and a sparse-inducing constraint. For example, in [18], a method of fusing
hyperspectral and LiDAR data for landscape visual quality assessment was presented, where the
relationship between physical features and human landscape preferences was learned using least
absolute shrinkage and selection operator regression. Further, joint sparse representation [19] and
sparse low-rank [20] techniques were exploited for the fusion and classification of hyperspectral
and LiDAR data.

• Ensemble learning conducts data fusion in decision level by combining results from many weak
learners based on multisource features. For example, multiple fuzzy classifier system was studied
for hyperspectral and LiDAR data fusion [21,22]. In addition, the work in [12] used a random
forest classifier to produce multiple classification results based on multiple features, and majority
voting was then used to fuse the results.

• Multiple kernel learning performs data fusion in implicit high-dimensional feature representations.
For example, multiple kernel learning [23,24] and composite kernel [16,25] were used to extract
heterogeneous information from hyperspectral and LiDAR data.

• Manifold learning serves as a framework for low-dimensional feature extraction through graph
embedding, where data fusion coupled with dimensionality reduction can be conducted by fusing
the Laplacian matrices computed for multisource data. For example, generalized graph-based
method [10], kernel local Fisher discriminant analysis [25], discriminative graph-based
method [11], and orthogonal total variation component analysis [14] were used to extract
low-dimensional features for hyperspectral and LiDAR data fusion.

• Image segmentation is used to generate image objects which are then used for classification based
on hyperspectral and LiDAR data [26,27].

• Hash learning is used to extract compact binary features which are then used for HSI
classification [28].

• Deep Learning is used to extract the informative features from hyperspectral and LiDAR data in a
hierarchical feature learning manner [7,8,13,15,29,30].

Although elegant fusion and classification performances have been obtained by using these
methods, none of the current subpixel, pixel, feature, or decision level fusion methods are capable of
breaking the limitations of standard flat-view matrix based models. On the one hand, formulating



Remote Sens. 2019, 11, 1959 3 of 27

the multisource features as a long vector or high-dimensional matrix will inevitably cause the curse
of dimensionality issue since the available training samples are very limited. On the other hand,
the matrix-based concatenation of multisource features may not be so distinctive, compact, and optimal
for the classification purpose.

Tensor is a generalization of vector or matrix to higher dimension, and the order of a tensor is the
number of its dimension. Usually, the first-order array is a vector, the second-order array is a matrix,
and the third-order array is a tensor. Higher-order tensors possess properties that are not present on
the matrix level. In terms of HSI, vector- or matrix-based representation destroys the inherent spatial
and spectral structure which can offer a physical interpretation of how spatial information and spectral
bands contribute to the classification outcome [31]. Benefiting from the power of tensorization, data
analysis techniques using tensor decompositions are shown to have great flexibility in the choice of
constraints which match data properties and extract more general latent components than vector- or
matrix-based methods.

Tensor decomposition opens up new possibilities for remote sensing image processing, as it can
alleviate or even break the curse of dimensionality that occurs when working with high-dimensional
features [32]. In addition, natural images are usually generated by the interaction of multiple
factors related to scene structure, illumination and imaging [33]. Recently, tensor decomposition
has shown great potentials for HSI classification [34–36], denosing [37], dimensionality reduction [38],
hyperspectral and multispectral image fusion [39], target detection [40,41], spectral unmixing [42], etc.
However, previous tensor factorization related studies rarely exploited hyperspectral and LiDAR data
fusion and classification.

Data fusion concerns the joint analysis of an ensemble of data sets, such as multiple views of a
particular phenomenon, where some parts of the scene may be visible in only one or a few data sets [43].
Tensor decomposition, e.g., canonical polyadic decomposition, can represent any Nth-order tensor as a
linear combination of rank-one tensors, which is related to data fusion since the multiple data sources
are often heterogeneous in the form of higher-order tensors [44]. In this context, tensor decomposition
can extract the shared components between data sources with those rank-one tensors, and the revealed
structures of tensor decomposition may further contribute to interpretability, separability, robustness,
and uniqueness in feature representation [45].

In addition, this decomposition can be enhanced by coupled tensor factorization, where the
different factorizations are coupled with each other by indicating which factors should be shared and
unshared between data sources. In general, the advantages of using the coupled tensor factorization
are [46]: (1) Coupled analysis can enhance knowledge discovery in terms of missing data; (2) Coupled
analysis can preserve uniqueness properties in multiple data sets; (3) Coupled analysis provides
robustness in the case of noisy data sets. In this context, a structured data fusion (SDF) framework
was presented recently serving as a general prototype of knowledge discovery between multiple data
sources [47]. SDF framework can fit many applications including social network mining, documents
classification, link prediction, signal processing, etc.

In this work, we propose a novel coupled high-order tensor factorization (CHOTF) model for
hyperspectral and LiDAR data fusion and classification based on morphological features. Firstly,
third-order tensors are generated based on the spectral-spatial features extracted via attribute profiles
(APs). Secondly, a CHOTF model is defined to obtain the shared and unshared factors. Then, the latent
features are generated by mode-n tensor-matrix product based on the shared factors, which are then
used to yield the latent features. Finally, a sparse multinomial logistic regression (SMLR) classifier
is used for classification with the extracted features. The proposed framework is a fundamental
paradigm that can well match data properties and extract more latent features than conventional
matrix-based methods.

It should be noted that recent study in [34] is related to our work. There are, however, three major
conceptual differences. First, we focus on hyperspectral and LiDAR data fusion by using third-order
tensor factorization based on morphological features, whereas in [34], morphological feature extraction
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and tensor discriminant analysis were integrated for HSI classification. Second, our work models
the extracted spectral-spatial features as third-order tensors, whereas the work [34] rearranged the
features into second-order tensors, which actually is still in flat-view matrix style. Third, we conduct
coupled tensor factorization based on multiple tensors, whereas the work [34] actually belongs to
matrix factorization. In this context, the main contributions of this paper to the literature are as follows:

• We propose a novel coupled high-order tensor factorization model for hyperspectral and LiDAR
data fusion and classification, which is unique compared with regard to previously proposed
approaches in this area. Note that, this is the first time of exploiting tensor factorization for
hyperspectral and LiDAR data fusion.

• We propose to represent HSI, HSI-derived EMAPs, and LiDAR-derived APs as third-order tensors,
and the shared and unshared factors are produced by using coupled tensor factorization.

• Last but not least, only training samples are fed into the model for factorizing, and feature
projection is achieved by using model-n tensor-matrix product based on shared factors and the
test samples.

2. Materials and Methods

2.1. Validation Test Sites

The first University of Houston data sets used in the experiments were distributed by the 2013
IEEE GRSS Data Fusion Contest (Available online: http://hyperspectral.ee.uh.edu/?page_id=459).
The data sets include a HSI and a LiDAR-derived digital surface model (DSM), both at the same spatial
resolution (2.5 m). The HSI has 144 bands in the 380–1050 nm spectral region. The corresponding
co-registered DSM represents the elevation in meters above sea level (per the Geoid 2012A model).
The data sets were acquired by the National Science Foundation (NSF)-funded Center for Airborne
Laser Mapping (NCALM) over the University of Houston campus and its neighboring area. The HSI
was acquired on 23 June 2012 between 17:37:10 and 17:39:50 UTC. The average height of the sensor
above ground was 5500 feet. The LiDAR data was acquired on 22 June 2012, between 14:37:55 and
15:38:10 UTC. The average height of the sensor above ground was 2000 feet. For illustrative purpose,
Figure 1a shows a false color composition of the HSI. Figure 1b exhibits the LiDAR-derived DSM.
Figure 1c plots the ground truth available for the Houston data, which comprises 15 mutually exclusive
classes and is used for validation. Finally, Figure 1d gives the training set used in our experiments.
Table 1 details the classes and the number of available samples for training and test.

Table 1. Ground-truth classes and corresponding train- and test-set sizes for University of Houston
data sets.

Class #Samples

Train Test

Healthy grass 198 1053
Stressed grass 190 1064
Synthetic grass 192 505

Trees 188 1056
Soil 186 1056

Water 182 143
Residential 196 1072
Commercial 191 1053

Road 193 1059
Highway 191 1036
Railway 181 1054

Parking lot 1 192 1041
Parking lot 2 184 285
Tennis court 181 247

Running track 187 473

Total 2832 12197

http://hyperspectral.ee.uh.edu/?page_id=459
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Figure 1. University of Houston data sets. (a) False color composite image (R: 59, G: 40, B: 23).
(b) LiDAR-derived DSM. (c) Test set. (d) Training set.

The second Trento data sets used in the experiments were captured over a rural area south of the
city of Trento, Italy. The hyperspectral data was captured by the AISA Eagle sensor, with 63 bands
ranging from 402.89 to 989.09 nm, and the spectral resolution is 9.2 nm. The LiDAR DSM data was
acquired by the Optech ALTM 3100EA sensor. This data sets have 600 × 166 pixels, with the spatial
resolution of 1 m. Six classes of interests were extracted, including building, woods, apple trees, roads,
vineyard, and ground. For illustrative purpose, Figure 2a shows a false color composition of the HSI.
Figure 2b exhibits the LiDAR-derived DSM. Figure 2c plots the ground truth available for this data
sets, which comprises 6 mutually exclusive classes and is used for validation. Finally, Figure 2d gives
the training set used in our experiments. Note that the reported coordinates in this figure have been
offset for privacy. Table 2 reports the classes and the number of available samples for training and test.
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Figure 2. Trento data sets. (a) False color composite image (R: 40, G: 20, B: 10). (b) LiDAR-derived
DSM. (c) Test set. (d) Training set.

Table 2. Ground-truth classes and corresponding train- and test-set sizes for Trento data sets.

Class #Samples

Train Test

Apple trees 129 4034
Buildings 125 2903
Ground 105 479
Woods 154 9123

Vineyard 184 10501
Roads 122 3174

Total 819 30214
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2.2. Proposed Methodology

First of all, we introduce the notations that will be adopted throughout this paper.
Let X = [x1, ..., xN ] ∈ RB×N be a remote sensing data set with a B-dimensional signal for each pixel
xi = [x1, ..., xB]

T, i ∈ 1, ..., N. Let T ∈ RI1×I2×...×Im be a m-order tensor. Let Y = [y1, ..., yN ] ∈ RM×N

(M � B) be the latent features extracted from X. We denote by XH and XL the HSI and the LiDAR
data, respectively.

The proposed framework consists of four major steps: (1) extract spectral-spatial features via
APs and generate higher-order tensors based on the features; (2) define a coupled higher-order tensor
factorization model; (3) generate more latent features via mode-n tensor-matrix product; (4) conduct
classification by using SMLR. The flowchart is shown in Figure 3 with more details given as follows.

Higher-Order TensorizationEMAP(XH) AP(XL)HSI (XH) LiDAR-derived DSM (XL)
Yi

I1×I2×R
iT 3 2 T)i(U

Y = {Yi}, i =1,2,3Latent Feature Extraction

Principal Component Analysis
(PCA) (preserving more than 99.9% information) Attribute Profiles (Aps)

area {50, 100, ..., 500};
length of the diagonal {50, 100, ..., 500};

moment of inertia {0.1, 0.2, ..., 1};
standard deviation {2.5, 5, ..., 25}.3 2CPD1min || ||2 ii

i F
i

M T

TI

I

I3 11u

21u

31u

+ ... + 1
Ru

2
Ru

3
Ru

Coupled Higher-Order Tensor Factorization (CHOTF)

Spectral-Spatial Feature Extraction

Classification by using SMLR

HSI H L

I1×I2×I3
Figure 3. Flowchart of the proposed framework for hyperspectral and LiDAR data classification.

2.2.1. Spectral-Spatial Features Extraction via APs

Morphological profiles (MPs) [48] concatenates multi-scale decompositions of an image carried out
with a series of opening and closing transformations based on the geodesic reconstruction. Extended
morphological profile (EMP) [49] is the concatenation of the MPs computed on each of the principal
components (PCs) extracted from the data. Whereas, extended multi-morphological profile (EMMP) is
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the concatenation of the EMPs in terms of different structure element (SE). MPs, EMP, and EMMP can
be formulated as

MP(X) = {φ1(X), ..., φλ(X), ..., φl(X), X, γ1(X), ..., γλ(X), ..., γl(X)}
EMP(X) = {MP(PC1), MP(PC2), ..., MP(PCc)}
EMMP(X) = {EMP1, EMP2, ..., EMPa},

(1)

where φ is closing operator, γ is opening operator, λ = 1, ..., l denotes the size of a specific SE, c is the
number of PCs, and a is the number of different SEs, i.e., disk, diamond, and square.

To overcome the drawbacks of MPs, APs [50] was proposed. Analogously to the definitions of
EMPs and EMMPs, extended attribute profile (EAP) and extended multi-attribute profile (EMAP) take
the forms [51]

EAP(X) = {AP(PC1), AP(PC2), ..., AP(PCc)}
EMAP(X) = {EAP1, EAP2, ..., EAPa}.

(2)

Here a denotes the number of different attributes.
In this paper, we chose to use APs to extract the spectral-spatial features based on HSI and LiDAR

data, where the attributes are area, length of the diagonal, moment of inertia, and standard deviation. Before
applying those filters, APs adopts a Max-tree structure to represent the connected components of
the image, where each node reports the values of different attributes [50]. In this context, a total of
ac(2l + 1) images are concatenated in EMAPs derived from HSI, and the number is a(2l + 1) for LiDAR
since it only has one band.

2.2.2. Higher-Order Tensor Representation

As we mentioned before, mathematical morphology has some limitations for hyperspectral and
LiDAR data classification. However, tensor factorization has great flexibility in the choice of constraints
which can preserve data structures and extract more latent features [43], which inspires us to conduct
tensorization for APs, with the aim of producing more powerful features for classification.

To this end, we model the extracted spectral-spatial features as third-order tensors in a very
natural way, i.e., T ∈ RI1×I2×I3 , where I1 is image height, I2 is image width, and I3 is image or
feature dimension. Take the tensorization of HSI-derived EMAPs as an example, we first obtain c
PCs by preserving more than 99.9% information. Then, we choose to use four types of attributes
with predefined parameters to model the spatial information for each PC. Finally, we rearrange
the obtained features into third-order tensors as aforementioned. In this context, we can obtain
a tensor with I1 × I2 × 4c(2l + 1) [the number of parameters for each attribute is equally set to l,
see Equation (2)]. Traditional methods treat the features as matrices, which may lose the structural
correlations between pixels.

Similar tensorization can be applied to the original HSI and LiDAR-derived APs. We denote
by T1 (I1 × I2 × B), T2 [I1 × I2 × 4c(2l + 1)], and T3 [I1 × I2 × 4(2l + 1)] the tensors for original
HSI, HSI-derived EMAPs, and LiDAR-derived APs, respectively. Parts of Figure 3 visually depicts
this tensorization.

2.2.3. Coupled Higher-Order Tensor Factorization

Generally, a third-order tensor T ∈ RI1×I2×I3 building from image or features can be factorized by
a canonical polyadic decomposition (CPD) model taking the form [52]

T ≈ MCPD(U1, U2, U3) =
R

∑
r=1

u1
r ⊗ u2

r ⊗ u3
r , (3)
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where Un ∈ RIn×R is the factor matrix, un
r is the column of Un, and R is the rank-one term. Parts of

Figure 3 graphically illustrates this decomposition.
Inspired by the SDF framework, we propose to fuse hyperspectral and LiDAR data by formulating

a CHOTF model, which takes the form

min
U1,U2,U3,U4,U5

λ1

2

∥∥∥M1
CPD(U

1, U2, U3)− T1

∥∥∥2

F

+
λ2

2

∥∥∥M2
CPD(U

1, U2, U4)− T2

∥∥∥2

F

+
λ3

2

∥∥∥M3
CPD(U

1, U2, U5)− T3

∥∥∥2

F

+
λ4

2

(∥∥∥U1
∥∥∥2

F
+

∥∥∥U2
∥∥∥2

F
+

∥∥∥U3
∥∥∥2

F
+

∥∥∥U4
∥∥∥2

F
+

∥∥∥U5
∥∥∥2

F

)
,

(4)

where ‖·‖2
F stands for the Frobenius norm of the input, and the shared factors are height factor

U1 ∈ RI1×R (i.e., the first dimension of T1) and width factor U2 ∈ RI2×R (i.e., the second dimension
of T1), whereas U3 ∈ RB×R denotes the band factor (i.e., the third dimension of T1). In addition,
U4 ∈ R4c(2l+1)×R and U5 ∈ R4(2l+1)×R denote the spectral-spatial factors (i.e., the third dimension
of T2 and T3), respectively, for HSI-derived EMAPs and LiDAR-derived APs. We also add a L2

regularization term to the objective function to prevent overfitting. In the equation, λ1, λ2, and λ3 are
the weight parameters controlling the tradeoff between coupled factorization of HSI (the first part),
HSI-derived EMAPs (the second part), and LiDAR-derived APs (the third part). Whereas, the last
term weighted by λ4 imposes some sparsity on the decomposition. It’s worth noting that different
dimensions I1, I2, and I3 may affect the relative weights of different term. The above Equation (4) is
solved by using a nonlinear least squares (NLS) algorithm.

2.2.4. Latent Feature Extraction

We then move our focus to extract the latent features based on the factorizations of CHOTF.
The latent features can be obtained by mode-n tensor-matrix product

Y1 = T1 ×3 (U3)T

Y2 = T2 ×3 (U4)T

Y3 = T3 ×3 (U5)T,

(5)

where symbol “×3” denotes the 3-mode product of tensor Ti (i = 1, 2, 3) with the corresponding
fraction matrix Ui+2 along the mode-3.

Finally, the extracted latent features Y are rearranged back into matrix representations with
dimension R × N, where N = I1 × I2 denotes the total number of pixels in the image. It’s worth
noting that the latent features can be extracted based on T1, T2, and T3, which respectively resulting
in Y1, Y2, and Y3. These features are then fused by matrix-concatenation, i.e., Y = {Y1, Y2, Y3},
for further classification.

2.2.5. Classification By Using SMLR

In the last stage, the fused features are then embedded into a sparse multinomial logistic regression
(SMLR) [53] model for training and prediction. We adopt the Multinomial Logistic Regression via
a Variable Splitting and Augmented Lagrangian (LORSAL) algorithm to optimize the model since
LORSAL [54] has yielded efficient and powerful performances for HSI classification in recent years [55–60].
In addition, LORSAL has high flexibility in conjunction with other disciplines, such as the Markov Random
Field (MRF) that models spatial information; the Gaussian radial basis function (RBF) kernel that maps
the input features into more separable space. However, we only conduct a linear SMLR without using
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MRF for the sake of evaluating the discriminant performance of the derived features without any other
disturbances. Algorithm 1 summarizes the proposed framework.

Algorithm 1 Coupled higher-order tensor factorization for hyperspectral and LiDAR data fusion and
classification.

1: Input: XH and XL

2: Output: Y
3: Spectral-spatial feature extraction via APs as Equation (2): EMAP(XH) and AP(XL)
4: Tensorization for APs:

T1 = M1
CPD(U

1, U2, U3) for original HSI

T2 = M2
CPD(U

1, U2, U4) for HSI-derived EMAPs

T3 = M3
CPD(U

1, U2, U5) for LiDAR-derived APs
5: Coupled higher-order tensor factorization using Equation (4):

U1, U2, U3, U4, U5

6: Latent feature extraction using Equation (5):

Yi = Ti ×3 (Ui+2)T, i = 1, 2, 3
7: Feature fusion via matrix-concatenation:

Y = {Y1, Y2, Y3}
8: Classification using SMLR optimized by LORSAL based on the fused features Y.

3. Results

3.1. Experimental Settings

The corresponding parameter settings and notations adopted in our experiments are:

• For building EMAP(XH) and AP(XL), the four types of attributes are set as area∈{50, 100, ..., 500};
length of the diagonal ∈{50, 100, ..., 500}; moment of inertia ∈{0.1, 0.2, ..., 1}; standard deviation
∈{2.5, 5, ..., 25}. Especially, when using Principal Component Analysis (PCA) to build EMAP(XH),
the features extracted by PCA preserving more than 99.9% information according to the
cumulative variance, i.e., 6 PCs for University of Houston data sets, and 8 PCs for Trento data sets.

• For the proposed method, we experimentally set λ1 = λ2 = λ3 = 1, and λ4 = 0.01. Although this
parameter setting may not be optimal, it has produced good results in our experiments. As for
the rank-one term R, we carefully optimized it in the experiments for different data sets.

• The individual features considered in this work include: the original HSI (XH), the EMAP built
on XH [EMAP(XH)], and the AP built on XL [AP(XL)]. We denote by “A⊗B” the proposed
CHOTF-based fusion based on different features A and B.

• In the comparison with different dimensionality reduction (DR) methods, we include PCA, Linear
Graph Embedding (LGE), Locality Preserving Projections (LPP), Linear Discriminant Analysis
(LDA), and Marginal Fisher Analysis (MFA). Different DR methods are applied on each individual
features, and each extracted features preserving more than 99.9% information, then the extracted
features are stacked together for classification.

• In the comparison with independent third-order tensor factorization methods, we include
canonical polyadic decomposition (CPD) [52], decomposition in multilinear rank-(LR, LR, 1)
terms (LL1) [61], multilinear singular value decomposition (MLSVD) [62], low multilinear rank
approximation (LMLRA) [52], and block term decomposition (BTD) [52]. Note that we fixed the
variables instead of random initialization for different tensor-based methods.

• In the comparison with other hyperspectral and LiDAR data fusion methods, we include
generalized graph-based fusion (GGF) [10], EPs based on CNN (EP+CNN) [13], deep fusion [7],
two-branch CNN [29], three-stream CNN [15], hyperspectral multisensor composite kernels
(HyMCKs) [16], higher order discriminant analysis (HODA) [63], local tensor discriminant
analysis (LTDA) [34]. Note that, we fed our extracted APs into GGF, HODA, and LTDA for feature
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extraction, whereas for other methods, we directly reported their accuracies. This comparison is
fair since the same training and test samples were used in those considered methods.

• In the comparison with different classifiers, we include random forest (RF) [64], support
vector machine (SVM) implemented by LIBSVM [65], subspace projection based multinomial
logistic regression (MLR) algorithm (MLRsub) [66], MLR optimized via a variable splitting
and augmented Lagrangian algorithm and on a multilevel logistic prior (LORSAL-MLL) [54],
and generalized composite kernel framework using multinomial logistic regression
(MLR-GCK) [67]. In our paper, we adopt a SMLR classifier to produce the final classification
map. SMLR model is optimized by using LORSAL, where the regularization parameter is set to
1× 10−5 and the number of iterations is set to 100.

• The classification results are quantitatively evaluated by measuring the overall accuracy (OA),
the average accuracy (AA), the individual class accuracy, and the Kappa statistic (κ). Note that
we were neither intend to select the training samples from ground-truth nor try to split the
ground-truth into training and test sets. Whereas, we directly used the training set to train our
classifier which was then directly applied to the test set for validation.

• Finally, it should be noted that all the implementations were carried out using Matlab R2017b in a
desktop PC equipped with an Intel Xeon E3 CPU (at 3.4 GHz) and 32 GB of RAM.

3.2. Experiments With University of Houston Data Sets

3.2.1. Experiment 1—Parameter Sensitiveness Analysis

In the first experiment, we evaluate the impacts of rank-one term (R) on classification accuracy of
different CHOTF-based fusion methods. As shown in Figure 4, the OAs increase as R also increase
in different cases. When R ≥ 80, the OAs for XH ⊗ AP(XL) and XH ⊗ EMAP(XH) ⊗ AP(XL) remains
stable. Whereas for the other two methods, the OAs gradually increase with the increase of R.
Therefore, R is experimentally set to 100 in this scene. Another observation is that XH ⊗ EMAP(XH) ⊗
AP(XL) always produces the highest accuracy in different cases.
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Figure 4. Overall accuracies as a function of the number of rank-one terms (R) for the University of
Houston Data Sets. R is experimentally set to 100.
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3.2.2. Experiment 2—Comparison with DR-Based Methods

In the third experiment, we compare the proposed CHOTF-based fusion method [based on
XH ⊗ EMAP(XH) ⊗ AP(XL)] with different dimensionality reduction methods, i.e., PCA, LGE, LPP,
LDA, and MFA. As reported in Table 3, CHOTF also outperforms the other DR-based methods with
3–6% improvements of OA. For AA and κ, the improvements of CHOTF are 1–2% and 0.03–0.06%,
respectively, compared to other DR-based methods. Classification results can also be visually inspected
according to Figure 5. The cloud-shadow region is classified very different due to the fact that the
training samples are not available in this region [see Figure 1d] and the spectral radiance of objects is
distorted due to darkening effects. We should note that the reported accuracies are only related to the
ground-truth pixels, which may be not in accordance with the visual inspection of classification maps
since we also provide the labels for the remaining pixels in the whole image scene. For example, most
of the pixels in the cloud-shadow region are misclassified to Highway by LDA as shown in Figure 5d,
but the OA did not reduce too much. Although the accuracy may be overestimated since most of
the training and test samples are came from homogeneous regions, the data provider intended to
guarantee the reliability when releasing those important training and test sets.

Table 3. Overall (OA), average (AA) and individual class accuracies (%), and kappa statistic (κ)
obtained by SMLR based on DR-derived features and CHOTF-derived features for the University of
Houston data sets.

Class PCA LGE LPP LDA MFA CHOTF

Healthy grass 83.10 82.81 83.10 83.00 83.10 83.00
Stressed grass 97.18 84.40 85.06 98.68 84.87 95.68
Synthetic grass 100.00 100.00 100.00 100.00 100.00 100.00

Trees 93.37 95.45 84.09 90.06 88.54 95.83
Soil 99.91 100.00 100.00 99.91 100.00 99.91

Water 100.00 99.30 99.30 95.10 98.60 95.10
Residential 95.62 88.06 82.93 83.40 87.87 89.93
Commercial 55.94 75.69 57.64 54.13 60.21 82.43

Road 95.47 94.05 93.96 94.33 97.26 94.43
Highway 57.24 59.07 67.76 90.54 68.15 68.24
Railway 99.05 93.93 98.96 85.96 99.72 99.15

Parking lot 1 93.28 97.89 85.49 91.45 85.98 96.06
Parking lot 2 80.00 83.16 78.25 78.60 74.74 80.70
Tennis court 100.00 100.00 100.00 99.60 100.00 99.60

Running track 100.00 100.00 100.00 100.00 100.00 98.94

Average accuracy 90.01 90.25 87.77 89.65 88.60 91.93
Overall accuracy 88.37 88.51 85.59 88.32 86.96 91.24

κ statistic 0.874 0.875 0.844 0.873 0.858 0.905

3.2.3. Experiment 3—Comparison with Independent Third-Order Tensor Factorization

In this experiment, we include five independent third-order tensor factorization methods (i.e.,
CPD, LL1, MLSVD, LMLRA, and BTD) to evaluate the benefits of coupled tensor factorization.
As reported in Table 4, CHOTF obtains the highest OA, AA, and κ, with the performance improvements
of 3–21%, 2–17%, and 0.04–0.3, respectively. As for individual class, CHOTF obtains the highest OAs
for most of the 8 classes in this scene, illustrating the good performance of the proposed method.
In addition, significant classification accuracies for the class “Railway” can also be easily appreciated
by visually inspecting the classification maps shown in Figure 6.
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Table 4. Overall (OA), average (AA) and individual class accuracies (%), and kappa statistic (κ) obtained
by SMLR based on independent third-order tensor factorization based features for the University of
Houston data sets.

Class CPD LL1 MLSVD LMLRA BTD CHOTF

Healthy grass 83.00 83.00 82.91 83.00 82.91 83.00
Stressed grass 81.67 80.36 84.30 84.12 83.93 95.68
Synthetic grass 100.00 100.00 100.00 100.00 100.00 100.00

Trees 90.63 97.54 91.38 93.37 92.42 95.83
Soil 100.00 97.06 99.81 99.91 99.91 99.91

Water 97.20 95.80 99.30 95.80 95.10 95.10
Residential 92.91 81.62 85.91 84.79 87.59 89.93
Commercial 77.68 38.18 65.91 59.16 69.42 82.43

Road 81.02 49.48 95.18 94.43 93.58 94.43
Highway 67.86 31.27 73.65 69.69 70.46 68.24
Railway 93.26 81.02 92.69 87.38 93.74 99.15

Parking lot 1 71.28 40.73 94.91 90.49 87.80 96.06
Parking lot 2 68.77 37.89 77.54 80.00 79.30 80.70
Tennis court 100.00 100.00 100.00 99.60 100.00 99.60

Running track 98.94 97.04 99.58 99.79 98.94 98.94

Average accuracy 86.95 74.07 89.54 88.10 89.01 91.93
Overall accuracy 85.36 70.86 87.94 86.21 87.50 91.24

κ statistic 0.842 0.685 0.869 0.850 0.864 0.905

3.2.4. Experiment 4—Comparison with Different Classifiers Based on CHOTF-Derived Features

In this experiment, we analyze the classification performance obtained by other standard classifiers
based on the CHOTF-derived features. The classification accuracies are reported in Table 5, and the
classification maps are shown in Figure 7. SMLR reveals the best performance among other classifiers.
Interestingly, LORSAL-MLL failed to obtain higher accuracy over SMLR even if it integrates MRF
for spatial smoothing. In addition, MLRsub and MLR-GCK obtained very similar results. However,
RF and SVM performed not very well in this experiment.

Table 5. Overall (OA), average (AA) and individual class accuracies (%), and kappa statistic (κ) obtained
by different classifiers based on CHOTF-derived features for the University of Houston data sets.

Class RF SVM MLRsub LORSAL-MLL MLR-GCK SMLR

Healthy grass 82.62 82.62 83.00 83.10 82.91 83.00
Stressed grass 81.48 82.71 92.86 86.18 84.96 95.68
Synthetic grass 99.60 100.00 100.00 100.00 100.00 100.00

Trees 93.75 95.36 98.96 94.51 88.45 95.83
Soil 96.88 98.48 100.00 100.00 99.91 99.91

Water 99.30 99.30 94.41 100.00 99.30 95.10
Residential 74.16 78.17 79.66 76.68 93.47 89.93
Commercial 68.09 69.33 90.22 82.15 68.85 82.43

Road 81.21 81.78 93.96 96.69 97.07 94.43
Highway 36.78 58.69 48.46 80.89 67.66 68.24
Railway 81.59 83.78 99.91 95.54 99.05 99.15

Parking lot 1 64.36 81.08 98.75 98.66 99.42 96.06
Parking lot 2 66.67 65.26 74.04 74.04 80.35 80.70
Tennis court 100.00 100.00 100.00 100.00 100.00 99.60

Running track 97.46 98.94 100.00 100.00 99.79 98.94

Average accuracy 81.60 85.03 90.28 91.23 90.75 91.93
Overall accuracy 78.51 82.92 89.50 90.25 89.33 91.24

κ statistic 0.768 0.815 0.886 0.894 0.884 0.905



Remote Sens. 2019, 11, 1959 14 of 27

0 0.5 10.25

Kilometers

Legend

Healthy grass

Stressed grass

Synthetic grass

Trees

Soil

Water

Residential

Commercial

Road

Highway

Railway

Parking lot 1

Parking lot 2

Tennis court

Running track

95°19’30"W

95°19’30"W

95°20’0"W

95°20’0"W

95°20’30"W

95°20’30"W

95°21’0"W

95°21’0"W

95°21’30"W

95°21’30"W

95°22’0"W

95°22’0"W

2
9

°4
3

’3
0
"N

2
9

°4
3

’3
0
"N

95°19’30"W

95°19’30"W

95°20’0"W

95°20’0"W

95°20’30"W

95°20’30"W

95°21’0"W

95°21’0"W

95°21’30"W

95°21’30"W

95°22’0"W

95°22’0"W

2
9

°4
3

’3
0
"N

2
9

°4
3

’3
0
"N

(a)

(b)

95°19’30"W

95°19’30"W

95°20’0"W

95°20’0"W

95°20’30"W

95°20’30"W

95°21’0"W

95°21’0"W

95°21’30"W

95°21’30"W

95°22’0"W

95°22’0"W

2
9

°4
3

’3
0
"N

2
9

°4
3

’3
0
"N

(c)

95°19’30"W

95°19’30"W

95°20’0"W

95°20’0"W

95°20’30"W

95°20’30"W

95°21’0"W

95°21’0"W

95°21’30"W

95°21’30"W

95°22’0"W

95°22’0"W

2
9

°4
3

’3
0
"N

2
9

°4
3

’3
0
"N

(d)

95°19’30"W

95°19’30"W

95°20’0"W

95°20’0"W

95°20’30"W

95°20’30"W

95°21’0"W

95°21’0"W

95°21’30"W

95°21’30"W

95°22’0"W

95°22’0"W

2
9

°4
3

’3
0
"N

2
9

°4
3

’3
0
"N

95°19’30"W

95°19’30"W

95°20’0"W

95°20’0"W

95°20’30"W

95°20’30"W

95°21’0"W

95°21’0"W

95°21’30"W

95°21’30"W

95°22’0"W

95°22’0"W

2
9

°4
3

’3
0
"N

2
9

°4
3

’3
0
"N

(e)

(f)

Figure 5. Classification maps obtained by SMLR based on DR-derived features and CHOTF-derived
features for the University of Houston data sets. (a) PCA (OA = 88.37%), (b) LGE (OA = 88.51%),
(c) LPP (OA = 85.59%), (d) LDA (OA = 88.32%), (e) MFA (OA = 86.96%), (f) CHOTF (OA = 91.24%).
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Figure 6. Classification maps obtained by SMLR based on independent third-order factorization based
features for the University of Houston data sets. (a) CPD (OA = 85.36%), (b) LL1 (OA = 70.86%),
(c) MLSVD (OA = 87.94%), (d) LMLRA (OA = 86.21%), (e) BTD (OA = 87.50%), (f) CHOTF
(OA = 91.24%).
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Figure 7. Classification maps obtained by different classifiers based on CHOTF-derived features for
the University of Houston data sets. (a) RF (OA = 78.51%), (b) SVM (OA = 82.92%), (c) MLRsub
(OA = 89.50%), (d) LORSALL-MLL (OA = 90.25%), (e) MLR-GCK (OA = 89.33%), (f) SMLR
(OA = 91.24%).
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3.3. Experiments With Trento Data Sets

3.3.1. Experiment 1—Parameter Sensitiveness Analysis

As shown in Figure 8, the OAs increase as R also increase when R ≤ 40, then the OAs remains
stable for different CHOTF-based methods. We experimentally set R = 100 in the following experiments.
We also observe that XH ⊗ EMAP(XH) ⊗ AP(XL) stably produces the highest accuracies in different
cases. In the contrary, XH ⊗ AP(XL) produces the lowest and unstable accuracies, which is in
accordance with the former experiment of Houston data sets.
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Figure 8. Overall accuracies as a function of the number of rank-one terms (R) for the Trento data sets.
R is experimentally set to 100.

3.3.2. Experiment 2—Comparison with DR-Based Methods

Table 6 reports the classification accuracies obtained by different dimensionality reduction
methods. CHOTF outperforms the other DR-based methods with an OA of 98.76%, which is 0.03–1.3%
higher than other methods. As for AA and κ statistic, the improvements of CHOTF are 0.2–5% and
0–0.02%, respectively, compared to other DR-based methods. Figure 9 shows the classification maps,
where significant differences can be found when classifying the class “Buildings” and “Roads”. It is
interesting to note that LPP obtains a competitive classification performance with an OA of 98.73%.
Another observation is that the classification results in region A (the large patch at the lower part and
right next to the Woods) and region B (the lower-left corner) are quite different, which is due to the
fact that the training samples are not available in these two regions [see Figure 2d]. Suspiciously, these
two misclassified regions seem to have no effects on OAs. This is due to the fact that there are also no
test samples in these two regions [see Figure 2c].

Table 6. Overall (OA), average (AA) and individual class accuracies (%), and kappa statistic (κ)
obtained by SMLR based on DR-derived features and CHOTF-derived features for the Trento data sets.

Class PCA LGE LPP LDA MFA CHOTF

Apple trees 100.00 100.00 100.00 100.00 100.00 100.00
Buildings 98.00 93.39 97.31 98.79 82.78 98.62
Ground 96.45 94.36 93.53 95.82 73.70 95.62
Woods 99.95 99.99 99.97 99.70 99.97 99.91

Vineyard 99.80 99.80 99.63 98.40 99.70 99.75
Roads 89.48 94.27 92.66 91.34 96.22 91.15

Average accuracy 97.28 96.97 97.18 97.34 92.06 97.51
Overall accuracy 98.56 98.60 98.73 98.26 97.42 98.76

κ statistic 0.981 0.981 0.983 0.977 0.965 0.983
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Figure 9. Classification maps obtained by SMLR based on DR-derived features and CHOTF-derived
features for the Trento data sets. (a) PCA (OA = 98.56%), (b) LGE (OA = 98.60%), (c) LPP (OA = 98.73%),
(d) LDA (OA = 98.26%), (e) MFA (OA = 97.42%), (f) CHOTF (OA = 98.76%).

3.3.3. Experiment 3—Comparison with Independent Third-Order Tensor Factorization

Table 7 reports the accuracies obtained by different third-order tensor factorization methods.
CHOTF obtains the highest accuracies with significant performance improvements, e.g., around
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0.5–4%, 1–8%, and 0.01–0.15 for OA, AA, and κ, respectively. Again, significant classification accuracies
for the class “Buildings” and “Roads” can also be easily appreciated by visually inspecting the
classification maps shown in Figure 10.

Table 7. Overall (OA), average (AA) and individual class accuracies (%), and kappa statistic (κ)
obtained by SMLR based on independent third-order tensor factorization based features for the Trento
data sets.

Class CPD LL1 MLSVD LMLRA BTD CHOTF

Apple trees 99.43 85.32 100.00 100.00 100.00 100.00
Buildings 95.83 93.63 97.97 89.29 94.94 98.62
Ground 96.45 97.49 95.82 95.62 95.82 95.62
Woods 99.19 98.41 99.90 99.84 99.93 99.91

Vineyard 91.07 77.28 96.21 94.61 99.78 99.75
Roads 89.22 87.52 88.15 90.04 89.48 91.15

Average accuracy 95.20 89.94 96.34 94.90 96.66 97.51
Overall accuracy 94.99 87.70 97.15 95.93 98.25 98.76

κ statistic 0.934 0.839 0.962 0.946 0.977 0.983

3.3.4. Experiment 4—Comparison with Different Classifiers Based on CHOTF-Derived Features

Table 8 reports the classification accuracies obtained by various classifiers based on the
CHOTF-derived features. In this scene, LORSAL-MLL followed by MLR-GCK and SMLR reveals the
best performance among other classifiers, which is not in accordance with the former experiments.
This may due to the fact that the Trento scene contains may large homogeneous regions, which is
beneficial for MRF-based spatial smoothing methods, i.e., the graph cuts method used in LORSAL-MLL.
In addition, MLR-GCK obtained competitive results.

Table 8. Overall (OA), average (AA) and individual class accuracies (%), and kappa statistic (κ)
obtained by different classifiers based on CHOTF-derived features for the Trento data sets.

Class RF SVM MLRsub LORSAL-MLL MLR-GCK SMLR

Apple trees 89.86 99.85 100.00 100.00 100.00 100.00
Buildings 97.28 97.52 98.83 98.28 97.73 98.62
Ground 95.20 96.24 94.99 96.24 95.20 95.62
Woods 99.32 99.18 99.65 99.87 99.98 99.91

Vineyard 85.02 95.67 98.00 100.00 99.96 99.75
Roads 91.34 89.51 88.59 92.75 91.75 91.15

Average accuracy 93.00 96.33 96.68 97.86 97.44 97.51
Overall accuracy 91.99 96.83 97.81 98.97 98.82 98.76

κ statistic 0.894 0.958 0.971 0.986 0.984 0.983

Figure 11 visually figures the classification maps, where the Vineyard and Apple trees regions
illustrate significant differences between different maps. We observe that MLR-GCK and SMLR
produce more accurate and smooth results in the Vineyard region. Even if LORSALL-MLL provides a
higher OA and more smooth map, some regions are clearly misclassified, e.g., the Vineyard region.
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Figure 10. Classification maps obtained by SMLR based on independent third-order tensor factorization
based features for the Trento data sets. (a) CPD (OA = 94.99%), (b) LL1 (OA = 87.70%), (c) MLSVD
(OA = 97.15%), (d) LMLRA (OA = 95.93%), (e) BTD (OA = 98.25%), (f) CHOTF (OA = 98.76%).
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Figure 11. Classification maps obtained by different classifiers based on CHOTF-derived features
for the Trento data sets. (a) RF (OA = 91.99%), (b) SVM (OA = 96.83%), (c) MLRsub (OA = 97.81%),
(d) LORSAL-MLL (OA = 98.97%), (e) MLR-GCK (OA = 98.82%), (f) SMLR (OA = 98.76%).
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4. Discussion

To have a more convincing validation, we compare the classification accuracies of the proposed
method with some existing methods introduced in the literature recently. This comparison is fair since
different methods were applied on the same and standard training and test samples.

4.1. For the University of Houston Data Sets

As reported in Table 9, the proposed method outperforms the other methods. Compared to
GGF [10], the accuracy increase in terms of OA is around 10%, which is not in accordance with the
performance reported in [10]. This may due to the fact that we didn’t adopt the sampling and feature
extraction methods used in GGF, whereas we only using the feature fusion scheme of GGF. Therefore,
we apply GGF on our APs features as that of CHOTF, and we use a standard training and test samples
to produce the accuracies via a SMLR classifier.

Table 9. Overall (OA), average (AA), kappa statistic (κ), and elapsed time (s: seconds) obtained by
different fusion methods for the University of Houston data sets.

Methods Average Accuracy Overall Accuracy κ Statistic Elapsed Time

GGF [10] 83.03 80.48 0.788 34 s

EP+CNN [13] 90.39 89.71 0.888

∼ 700 sDeep Fusion [7] 85.31 90.60 0.898
two-branch CNN [29] 90.11 87.98 0.870
three-stream CNN [15] 84.36 90.22 0.894

HyMCKs [16] 91.14 90.33 0.895 -

HODA [63] 88.79 87.05 0.860 18 s
LTDA [34] 88.83 87.12 0.860 60 s

CHOTF (ours) 91.93 91.24 0.905 254 s

The OA increase is 1.4–4% compared to four deep learning based methods (i.e., EP+CNN [13],
Deep Fusion [7], two-branch CNN [29], and three-stream CNN [15]). HyMCKs [16] provides
competitive accuracies with an OA of 90.33%. In addition, when compared to tensor factorization
based methods, the proposed method still outperforms HODA [63] and LTDA [34], with an increase of
4% in terms of OA. As for AA and κ statistic, the improvements of performance are still significant.

As for the computational time, the proposed method costs 254s for one independent run. Whereas,
the other two tensor-based methods are much faster, e.g., the elapsed time of HODA and LTDA are
18 s and 34 s, respectively. This is because HODA and LTDA adopt second-order tensors in tensor
factorization. Deep learning based fusion methods are time consuming, e.g., two-branch CNN costs
735 s. In this context, the computational cost of the proposed method is reasonable considering the
relatively higher accuracy.

4.2. For the Trento Data Sets

Table 10 reports the classification accuracies of the proposed method as well as some existing
methods introduced in the literature recently.
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Table 10. Overall (OA), average (AA), kappa statistic (κ), and elapsed time (s: seconds) obtained by
different fusion methods for the Trento data sets.

Methods Average Accuracy Overall Accuracy κ Statistic Elapsed Time

GGF [10] 78.23 77.98 0.717 15 s

EP+CNN [13] 98.40 98.85 0.985

∼ 500 sDeep Fusion [7] 77.17 97.83 0.971
two-branch CNN [29] 96.19 97.92 0.968
three-stream CNN [15] 79.47 97.91 0.973

HyMCKs [16] 98.18 98.97 0.986 -

HODA [63] 97.19 98.76 0.972 3 s
LTDA [34] 90.29 92.73 0.903 15 s

CHOTF (ours) 97.51 98.76 0.983 144 s

In this scene, we unfortunately found that HyMCKs obtained the highest OA among the other
counterparts, with an OA of 98.97%. In addition, EP+CNN ranking second among all the considered
methods, but CHOTF still outperforms Deep Fusion, two-branch CNN, and three-stream CNN. As for
AA, EP+CNN obtained the best performance, with an AA of 98.40%. In terms of κ statistic, HyMCKs
again outperforms others, with the value of 0.986. However, when compared to the other two tensor
factorization based methods, our method still produces better results. For example, the OA of CHOTF
is 98.76%, which is the same as HODA but 6% higher than that of LTDA. CHOTF produces an AA
of 97.51%, which is 0.4% and 7% higher than HODA and LTDA, respectively. In addition, the OA of
CHOTF is only 0.21% lower than HyMCKs.

In this context, our method still provide good performance since it outperforms the other two
related tensor-based methods and three deep learning based methods. In addition, CHOTF provides
competitive results as HyMCKs in this experiment. Therefore, the above results also validate the
superior performance of the proposed method. As for computational time, our method costs 144 s,
and HODA only costs 3 s due to the relatively small scene in this experiment.

5. Conclusions

In this paper, we focus on the limitations of current flat-view matrix based methods by presenting
a novel CHOTF framework for hyperspectral and LiDAR data classification based on morphological
features. In particular, the framework generates third-order tensors based on spectral-spatial features,
yields more latent features, and conducts classification by using SMLR. On the above analysis of
the experimental results based on the real data sets, we can conclude that the proposed framework
outperforms different DR-based methods, independent third-order tensor factorization based methods,
and some recently proposed hyperspectral and LiDAR data classification methods. It should be noted
that the proposed method is not restricted to LiDAR data but can also be applied to any other kind of
2.5D (i.e., image-like) data.

Although our experimental results are encouraging, further work on additional scenes and
comparison methods should be conducted in future. In our work, we have introduced a CHOTF model
for the first time in the literature of hyperspectral and LiDAR data classification. The involved spectral,
spatial, and elevation information are jointly considered in the model, where some of the factors are
shared among different data sources. However, the structures in tensors and the complementary
information between tensors are not yet exploited. Our next work will focus on exploiting different
structures and the complementary information in the model, which may be beneficial to overcome the
missing values between different data sources.
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