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Abstract: Today, more and more deep learning frameworks are being applied to hyperspectral image 
classification tasks and have achieved great results. However, such approaches are still hampered by long 
training times. Traditional spectral–spatial hyperspectral image classification only utilizes spectral features at 
the pixel level, without considering the correlation between local spectral signatures. Our article has tested a 
novel hyperspectral image classification pattern, using random-patches convolution and local covariance 
(RPCC). The RPCC is an effective two-branch method that, on the one hand, obtains a specified number of 
convolution kernels from the image space through a random strategy and, on the other hand, constructs a 
covariance matrix between different spectral bands by clustering local neighboring pixels. In our method, the 
spatial features come from multi-scale and multi-level convolutional layers. The spectral features represent the 
correlations between different bands. We use the support vector machine as well as spectral and spatial fusion 
matrices to obtain classification results. Through experiments, RPCC is tested with five excellent methods on 
three public data-sets. Quantitative and qualitative evaluation indicators indicate that the accuracy of our RPCC 
method can match or exceed the current state-of-the-art methods.  

Keywords: random patches convolution; local covariance; feature extraction; hyperspectral image 
classification 

 

1. Introduction 

There are more and more remote sensing applications based on hyperspectral images (HSIs). 
The latest hyperspectral sensors can obtain hundreds of spectral channel data points in high spatial 
resolution [1]. Rich spectral‒spatial information is widely used in HSIs for scene recognition [2], 
regional variation of urban areas [3], and classification of features [4–6]. Classification of HSIs for 
ground objects can be widely used in precision agriculture [7], urban mapping [8], and environmental 
monitoring [9]. As such, classification has attracted much attention, and a wide variety of methods 
have been developed. HSI classification uses a small number of manual tags to indicate the category 
label of each pixel [10]. Like other classification applications, there are significant challenges involved 
in HSIs classification tasks, such as the well-known Hough phenomenon [11]. If the label data are 
very limited, more spectral data will reduce the accuracy of classification [12]. 

In order to overcome this problem, a large number of studies [13,14] have proposed many 
effective methods. These methods include dimensionality reduction (DR) [15,16] and band selection 
[17,18]. Hyperspectral dimensionality reduction has both supervised and unsupervised methods [19]. 
The difference is in whether the two use annotation information—for example, locally linear 
embedding [20], principal component analysis (PCA), and the maximum noise fraction (MNF) [21]. 
Jiang et al. [22] proposed a multi-scale PCA method based on superpixel segmentation, called 
superPCA, which uses principal component analysis in different regions. The supervised approach 



Remote Sens. 2019, 11, 1954 2 of 21 

uses sample categories to achieve data dimensionality reduction through learning metrics that are 
closer to the same category of data [23,24]: for example, linear discriminant analysis and local 
discriminant embedding (LDE) [25]. Unlike PCA, which maximizes the variation in the projected 
sample, MNF can reduce the dimensionality and noise of image data more efficiently by maximizing 
the signal-to-noise ratio of the sample. Simultaneously, in many fields, such as image classification 
[26], face recognition [27], HSI scene classification [28], and pixel classification [29], these applications 
obtain features between samples by calculating a covariance matrix (CM) method. This is because the 
covariance matrix can effectively express the correlation between hyperspectral bands. Using the 
concept of CM, these methods [28,29] have achieved good results. 

With the development of computer vision, spatial features are playing an increasingly pivotal 
role in HSI classification [30]. Many classic feature extraction methods have been developed, such as 
the gray level co-occurrence matrix [31], wavelet texture [32], and Gabor texture features [33]. To 
extract the spatial information from HSIs for their classification, Benediktsson et al. [34] uses 
morphological opening and closing to extract the spatial features of HSIs. In reference [35], there is a 
more efficient and automated approach based on this. Afterwards, references [36,37] and many other 
scholars have conducted relevant research on the same topics. However, the above features are 
traditional handcrafted features that are generally applicable to specific scenarios; the algorithm is 
not robust enough when the task environment that needs to be processed is complex. This means that 
the algorithm parameters can only be targeted to specific scenes and only shallow features are 
obtained, such as shapes and textures. When the terrain of the study area changes drastically, it is 
difficult to apply them to the entire scene [38]. 

Recently, in order to improve classification performance, many HIS classification methods based 
on spectral-spatial features have been proposed. There are several ways to apply spatial information, 
such as joint sparse models [39] and Markov random fields (MRF) [40]. In reference [39], a spectral–
spatial feature learning method based on the group sparse coding (GSC) for the HSI classification is 
proposed, which incorporates spatial neighborhood correlations information via clusters, each of 
which is an adaptive spatial partition of pixels. In addition, they also develop kernel GSC to capture 
nonlinear relationships that can achieve a group sparse representation in the kernel space where data 
become more separate. Zhang et al. [40] propose a novel method that could obtain the semantic 
representation of each pixel with more detailed information and less noise for HSI classification. First, 
different types of features on different feature spaces are mapped to the same semantic space via a 
probabilistic support vector machine (SVM) classifier. Then, various semantic representations and 
local spatial information are integrated into the MRF model. Both of these methods achieve efficient 
fusion of spectral spatial features, learn a representative subspace from the spectral and spatial 
domains, and produce good classification performance. 

However, most of the traditional spectral and spectral–spatial classifiers do not classify the 
hyperspectral data in a deep manner [41]. Artificial intelligence technology has led to the 
development of new deep neural networks [42,43] and has been widely used in the field of image 
processing, with the performance greatly exceeding that of traditional methods. Compared with 
handcrafted features, deep neural networks can obtain deeper features and are robust for 
classification or segmentation tasks. Unlike shallow handcrafted features, deep learning features are 
derived from the intrinsic, more abstract information of the image, which can well represent local 
variation in the image. Long et al. [44] proposes FCN, which is the first pixel-by-pixel prediction 
segmentation framework for end-to-end training. Badrinarayanan et al. [45] proposed the earliest 
semantic segmentation framework for encoding and decoding modes, called SegNet. Both promoted 
the application of deep learning in image classification and semantic segmentation. 

In the field of HSIs classification, Chen et al. [46] constructed a stacked autoencoder (SAE) deep 
learning framework for HSIs classification. The SAE can extract the depth features, but the input data 
must be one-dimensional and the spatial information is lost. Chen et al. [47] used a 2D convolutional 
neural network (CNN) to identify vehicles in high-resolution remote sensing images. Unlike Chen et 
al. [46], Zhao and Du [48] first performed data dimensionality reduction based on balanced local 
discriminant, and then classified HSIs using pixel-level CNN via spectral-spatial features. 
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Considering the limited hyperspectral image training data, it may not be appropriate to directly apply 
the image segmentation or classification framework based on deep learning in the field of computer 
vision. Zhu et al. [41] proposed two generative adversarial network (GAN) frameworks for HSI 
classification. The first one, called the 1D-GAN, is based on spectral vectors and the second one, called 
the 3D-GAN, combines the spectral and spatial features. These two architectures demonstrated 
excellent abilities in feature extraction and the classification results showed that the GANs are 
superior to traditional CNNs even under the condition of limited training samples. In [49], Xu et al. 
proposed RPNet, which does not require training and backward propagation, and used a multi-layer 
convolution feature to achieve good results for HSI classification. It can be seen that there are some 
flaws in these works. First, it is very time consuming to apply deep learning directly [46–48] in the 
field of computer vision. The authors of references [46–48], only use the deepest features. Third, some 
abovementioned works overlooked or did not make full use of the band information of hyperspectral 
images, which is the most valuable information that can be obtained from hyperspectral images. 

Therefore, to tackle the above problems faced during hyperspectral images classification, 
inspired by reference [29] and reference [49], we tested a novel hyperspectral image classification 
model using random patches convolution and local covariance (RPCC). Our proposed method 
combines all spectral correlation information and multi-scale convolution features, which makes it 
highly discriminative for HSIs classification. In our RPCC, first, spectral features are extracted based 
on the maximum noise fraction method [21] and covariance matrix (CM) representation [29]. 
However, CM is on the Manifold space and does not apply to the calculation of Euclidean space. So 
the CMs are converted to Euclidean space for the next step. Second, we randomly generate image 
patches from the original hyperspectral image as a convolution kernel by random projection. This 
uses each convolution kernel to perform multi-layer convolution on the image. Then the obtained 
multi-scale spatial information and spectral covariance matrix are merged into spectral-spatial 
features. Finally, we use the SVM classifier and fused spectral–spatial features to identify the class 
label. 

Our work makes the following three contributions: 

1. For the first time, we introduce a RPCC method combining random patches convolution and 
covariance matrix representation into hyperspectral image classification. RPCC has a simple 
structure, and the experiments show that its performance can match the state of the art. 

2. Our RPCC is able to extract highly discriminative features, and combines both multi-scale multi-
layer convolution information and the correlation between different spectral bands without any 
training. 

3. We verified that the applicability of the randomness and localizing in our method is a kind of 
regularization pattern that has great potential to overcome the salt-and-pepper noise and over-
smoothing phenomena in HSIs processing. 
Our article is organized as follows. In Section 2, we introduce the proposed method RPCC in 

detail. Section 3 introduces the relevant experiments, and the results show the excellent performance 
of RPCC in three experiments. Sections 4 and 5 provide a discussion and conclusions, respectively. 

2. Methodology 

Figure 1 shows the framework of RPCC, which has two parallel branches. It obtains multi-scale 
convolution features via a random patches convolution [49] algorithm. Local covariance matrices are 
calculated to obtain all spectral correlation information for the image. Then, the obtained multi-scale 
spatial information and spectral covariance matrix are merged into spectral‒spatial features. Finally, 
we added the fused spectral–spatial features into the SVM for HSIs classification. 
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Figure 1. The framework of our proposed random patches convolution and local covariance-based 
classification (RPCC). 

2.1. Maximum Noise Fraction-Based Dimensionality Reduction 

Each HSI band records the sunlight in a different spectral range, and the scale between these 
bands are varied. So the principal components (PCs) generated by the PCA transformation calculated 
using the covariance matrix do not represent the characteristics of the original data well. The research 
of Eklundh and Singh [50] indicates that the PCs calculated using the correlation matrix consistently 
yielded significant improvements in SNR to comparison to those calculated using the covariance 
matrix. The results obtained in this study show that PCA using the correlation matrix is the desirable 
mode of analysis in remote sensing applications. In most remotely sensed data, the signal at any point 
in the image is strongly correlated with the signal at neighboring pixels, while the noise shows only 
weak spatial correlations. According to this, Switzer [51] developed the min/max autocorrelation 
factors (MAF), which in effect estimates the noise covariance matrix for salt-and-pepper noise, as well 
as other forms of signal degradation such as striping. In response to the inadequacy of the PCA 
transformation, Green et al. [21] proposed minimum noise fraction (MNF) transformation, which 
uses the MAF to estimate the noise covariance matrix for the more complicated cases that often exists 
in remotely sensed multispectral scanner data and provides an optimal ordering of images in terms 
of image quality. The challenge of MNF transform is to obtain the noise covariance matrix. Nielsen 
and Larsen [52] have given four different ways of estimating it. They all rely on the data being 
spatially correlated. One way is by computing the covariance of the first order differences, assuming 
the noise is temporally uncorrelated. This way, the MNF transform is identical to min/max 
autocorrelation factors transform [51,53]. Fang et al. [29] explained the results of comparative 
experiments on HSIs reduction using MNF, PCA, and independent component analysis, (ICA), and 
found that MNF offers great advantages for the calculation of spectral relationships. Therefore, in the 
present study we use MAF to estimate the noise covariance matrix and MNF as a HSIs preprocessing 
method to extract the spectral features. 

We defined the input HSIs data as 𝐼∈𝑅௠ൈ௡ൈ௭. Here m, n, and z are the number of rows, columns, 
and spectral bands, respectively. Assuming that 𝐼∈𝑅௠ൈ௡ൈ௭  is separated into the noise 𝐼୒  and the 
signal 𝐼ୗ, we have 𝐼 ൌ 𝐼୒ ൅ 𝐼ୗ . (1) 

The transformation matrix 𝑽 was obtained by maximizing the SNR of the signal covariance to 
the noise covariance: arg max𝑽 𝑽்Covሺ𝐼ୗሻ𝑽𝑽்Covሺ𝐼୒ሻ𝑽 , (2) 

where Covሺ𝐼ୗሻ  and Covሺ𝐼୒ሻ  are the covariance of the signal and the noise, respectively. The 
optimization problem of Equation (2) is equivalent to: arg max𝑽 𝑽்Covሺ𝐼ሻ𝑽𝑽்Covሺ𝐼୒ሻ𝑽 , (3) 



Remote Sens. 2019, 11, 1954 5 of 21 

where Covሺ𝐼ሻ represents the overall covariance of the HIS data, Covሺ𝐼ሻ = Covሺ𝐼୒ሻ + Covሺ𝐼ୗሻ. Covሺ𝐼୒ሻ is estimated by MAF [51]. According to the Lagrange multiplier method, the optimal solution 
to Equation (3) is: Covሺ𝐼ሻ𝑽 ൌ 𝛌Covሺ𝐼୒ሻ𝑽. (4) 

Then the eigenvalues were arranged from large to small, and the first 𝑑  corresponding 
eigenvalue vectors were used as a transformation matrix: 𝑽 ൌ ሾ𝑣ଵ, 𝑣ଶ, … , 𝑣ௗሿ . (5) 

Therefore, the number of MNF principal components is 𝑑 and the output data after MNF 
transformation are 𝐼୫୬୤ : 𝐼୫୬୤ ൌ 𝑽்𝐼 . (6) 

2.2. Spatial Feature Extraction with Random Patches Convolution 

For spatial feature extraction, the data 𝐼୫୬୤ ∈ 𝑅௠ൈ௡ൈௗ  were obtained by MNF transformation. 
Then, the data 𝐼୫୬୤ were whitened to reduce the correlation between different data bands. After the 
whitening operation, the data were 𝐼୵୦୧୲ୣ୬ ∈ 𝑅௠ൈ௡ൈௗ. 

Inspired by the RPNet [49], we used multi-layer convolution, which not only has a simple 
architecture and requires no training but also can obtain multi-scale spatial information by extracting 
shallow and deep features. That can be seen in Figure 2. 

 
Figure 2. The workflow of spatial feature extraction with random patches convolution. 

We generated k random pixel locations using random functions from the data 𝐼୵୦୧୲ୣ୬.Then we 
obtained k random patches by using an image window with a size of 𝑤 ൈ 𝑤 ൈ 𝑑 around each pixel as 
random patches. For the pixels at the edge of the image, the blank area is filled by mirroring the 
adjacent pixels. Taking a Pavia University data–set as an example, the original Pavia University data 
are subjected to MNF transformation (PCs=20), a whitening processing, and 20 pixels edge mirroring 
to obtain data 𝐿ଵ ∈ 𝑅௠ൈ௡ൈଶ଴. In Section 3.2, we specifically analyzed the effect of the number of MNF 
PCs, the size of patches and the number of patches on the accuracy of classification. 

Figure 3a is the first three-channel color composite image of 𝐿ଵ ∈ 𝑅௠ൈ௡ൈଶ଴ with 20 randomly 
generated 40 ൈ 40 ൈ 20 red rectangular windows; Each red window has a yellow number, from 1 to 
20.  Figure 3b gives the corresponding random patches extracted from 𝐿ଵ ∈ 𝑅௠ൈ௡ൈଶ଴.  Each patch has 
a number corresponding to the left red window. These random patches will all be selected as 
convolution kernels. After obtaining the first-layer convolution feature, the above process was 
repeated to obtain the second layer convolution feature. The specific process is as follows. 
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(a) (b) 

Figure 3. (a) The first three-channel color composite image of 𝐿ଵ with 20 pixels edge mirroring. (b) 
The random patches from 𝐿ଵ. 

Each random patch acts as a convolution kernel, so the random patching and whitening data 
convolution operations can be defined as follows:  𝑆௜ ൌ ∑ 𝑃௜ሺ௝ሻ ∗ 𝐼୵୦୧୲ୣ୬ሺ௝ሻௗ௝ୀଵ  , (7) 

where 𝑆௜ is the i-th feature map, 𝑖 ൌ 1,2, … , 𝑘, 𝐼୵୦୧୲ୣ୬ሺ௝ሻ is the j-dimensional whitening data, ∗ is the 
convolution operator, and 𝑃௜ሺ௝ሻ is the j-dimensional random patch of the i-th feature map. The stride 
of the 2D convolution is 1 and the vacant area is filled by mirroring the adjacent pixels. 

Let 𝐹௟ and 𝐹௟ିଵ be the 𝑙-th and ሺ𝑙 െ 1ሻ-th layer feature sets, respectively. Then, at the beginning, 
the first-layer feature set 𝐹ଵ ൌ ሼ𝑆ଵ, 𝑆ଶ, … , 𝑆௞ሽ. We performed MNF dimensionality reduction on the 
first-layer feature set 𝐹ଵ to generate new random patches. Then, by convolving the 𝐹ଵ with random 
patches, we obtained the second-layer feature set 𝐹ଶ. In a similar manner, we obtained the 𝑙-th-layer 
feature set. Finally, we obtained all the features from different layers  𝐹ୱ୮ୟ୲୧ୟ୪∈𝑅௠ൈ௡ൈ௟௞: 𝐹ୱ୮ୟ୲୧ୟ୪ ൌ ሼ𝐹ଵ, 𝐹ଶ, … , 𝐹௟ሽ. (8) 

2.3. Spectral Feature Extraction 

Local covariance can indicate the degree of correlation between features; [26] and [27] used local 
covariance for facial recognition and image classification. Fang et al. [29] used local spectral 
covariance for hyperspectral data classification. By comparing the spectral covariance with the entire 
image range, the local spectral covariance can be obtained more accurately, with more feature 
information and less computational complexity. As shown in Figure 4, for every pixel in the data 𝐼୫୬୤, 
we obtained N local spectral cubes by using an image window with a size of 𝑤 ൈ 𝑤 ൈ 𝑑. The total 
number of HSIs pixels is N, where 𝑁 ൌ 𝑛 ൈ 𝑚. Furthermore, we used the k nearest- neighbor method 
to extract the spectral bands in each local spectral cube; each local spectral cube 𝐵௜ obtained the most 
relevant T spectral bands. 𝑏௧௜ is the t-th spectral band in the local cube region 𝐵௜: 𝐵௜ ൌ ൛𝑏ଵ௜ , 𝑏ଶ௜ , … 𝑏௧௜ … , 𝑏௜் ൟ, 𝑖 ൌ 1,2, … , 𝑁.  (9) 

For each local spectral cube, we constructed a corresponding covariance feature matrix which is 
expressed as follows: 𝑪௜ ൌ 1𝑇 െ 1 ෍൫𝑏௧௜ െ 𝜇൯൫𝑏௧௜ െ 𝜇൯்்

௧ୀଵ  . (10) 
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where 𝜇 is the mean vector of the 𝐵௜. Finally, we obtained all of the features from all spectral cubes:  𝐹ୱ୮ୣୡ୲୰ୟ୪ ൌ ሼ𝑪ଵ, 𝑪ଶ, … , 𝑪ேሽ,  𝐹ୱ୮ୣୡ୲୰ୟ୪ ∈ 𝑅ௗൈௗൈே.  (11) 

Referring to references [26,54,55], we needed to make 𝑪௜ strictly positive. Therefore, we let 𝑪௜∗ ൌ𝑪௜ ൅ 𝜆𝑬, where E is the unit matrix and 𝜆 = traceሺ𝑪௜ሻ ൈ 10ିଷ. It is worth noting that, since 𝐹ୱ୮ୣୡ୲୰ୟ୪ is 
on the Manifold space [26], the covariance matrices will be converted to Euclidean space using the 
method in [56]. Given two covariance matrices 𝐶ଵ  and 𝐶ଶ , the Log-Euclidean distance (LED) was 
defined as follows: 𝑪୪ୣୢሺ𝑪ଵ, 𝑪ଶሻ ൌ ‖logmሺ𝑪ଵሻ െ logmሺ𝑪ଶሻ‖୊ . (12) 

where  ‖. ‖୊ and logm are the F norm and the logarithm operator.  

 
Figure 4. The workflow of spectral feature extraction. 

2.4. Classification Based on Spectral–Spatial Features 

We transformed the spectral‒spatial features obtained by the above method to the same 
dimension. Let 𝐹ୱ୮ୟ୲୧ୟ୪∈𝑅௠ൈ௡ൈ௟௞ be 𝐹ୱ୮ୟ୲୧ୟ୪∈𝑅ேൈ௟௞ and  𝐹ୱ୮ୣୡ୲୰ୟ୪∈𝑅ௗൈௗൈேbe 𝐹ୱ୮ୣୡ୲୧ୟ୪∈𝑅ேൈௗమ by reshaped 
operator. Then, the spectral–spatial vectors are as follows: 𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪ ൌ ሾ𝐹ୱ୮ୟ୲୧ୟ୪, 𝐹ୱ୮ୣୡ୲୧ୟ୪ሿ. (13) 

It is worth noting that these features must be normalized, the formula for which is as follows: 𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪୬୭୰୫ ൌ 𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪ െ meanሺ𝐹௦୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪ሻvarሺ𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪ሻ  (14) 

where  varሺ𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪ሻ,  meanሺ𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪ሻ  and 𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪୬୭୰୫  are the variance ,mean of 𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪  and normalized spectral–spatial feature, respectively. The fused spectral–spatial 𝐹ୱ୮ୣୡ୲୧ୟ୪ିୱ୮ୟ୲୧ୟ୪୬୭୰୫are fed into the SVM classifier. 
The spectral–spatial features extracted by our method combine the shallow and deep 

convolution features of the spatial domain, which means that the method can better characterize 
multi-scale feature information in hyperspectral remote sensing images. The method also combines 
spectral information from different local spectral cubes of the spectral domain. It can obtain spectral 
spatial information simply and efficiently.  

Lastly, unlike the RPNet proposed by reference [49], our RPCC does not involve the fusion of 
raw HSI data into an SVM, and there is no nonlinear activation operation. We used the same method 
as in references [29,54] to approximate the matrices in the Euclidean space. The source code will be 
released soon (https://github.com/whuyang/RPCC). 

3. Experimental Setup and Analysis 

In our experiments, to overcome the categories’ imbalance problem, instead of splitting a dataset 
by an average percentage of each class, we specified the number of labeled samples for each 
annotated class of each data set. The training set is generated randomly from the ground reference 
data and the remaining reference samples consist of testing sets; all are listed in Tables 1‒3. Then we 
used the LibSVM [57] implementation for the SVM classification with five-fold cross validation. The 
range of the regularization parameters is from 2ି଼ to 2ଵ଴. In order to reduce the deviation caused by 
random sampling on classification results, all the experiments in this paper were randomly repeated 
30 times using the same training and test samples number and both the average value and the 
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standard deviation are reported. Moreover, the accuracy of each category, OA and kappa coefficient 
(Kappa) were chosen as criteria for quantitative assessment. All algorithms were programmed in 
Matlab 2017a (MathWorks, Natick, MA, USA) and tested with an Intel E5-2667v2, 128 GB and 
GTX1080Ti. 

3.1. Data Sets 

Here, we conducted experiments and evaluated our approach on three common hyperspectral 
public data sets. 

The Indian Pine HSI data‒set was used for the first experiment, as detailed in reference [58]. The 
data set has a rows and columns of 145 × 145 pixels and 200 spectral bands. The wavelength is from 
0.4 to 2.5 μm and the spatial resolution is 20 m. The labels used for training have sixteen classes. 
Figure 5 gives the false color composite image (bands 36, 17, and 11 for R, G, and B, respectively) and 
the ground truth color map of the data set. Table 1 gives the specific training and test sample 
information for the experiment. 

  

 

(a) (b) 

  
(c) (d) 

Figure 5. The Indian Pine data set. (a) False color composite image; (b) ground truth color map; 
(c) training set; (d) test set. 

Table 1. Training and test numbers for the Indian Pine HSI. 

Class Name Training Test 
1 Alfalfa 30 16 
2 Corn—no till 150 1278 
3 Corn—min till 150 680 
4 Corn 100 137 
5 Grass/pasture 150 333 
6 Grass/trees 150 580 
7 Grass/pasture—mowed 20 8 
8 Hay/windrowed 150 328 
9 Oats 15 5 

10 Soybean—no till 150 822 
11 Soybean—min till 150 2305 
12 Soybean—clean till 150 443 
13 Wheat 150 55 
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14 Woods 150 1115 

15 Buildings/Grass/Trees/Driv
es 

50 336 

16 Stone/Steel/Towers 50 43 
 Total 1765 8484 

The Pavia University HSI data set was used for the second experiment, as detailed in reference 
[58]. The data set has a rows and columns of 610 × 340 pixels and 103 spectral bands. The wavelength 
is from 0.43 to 0.86 μm and the spatial resolution is 1.3 m. The labels used for training have nine 
classes. Figure 6 gives the false color composite image (bands 10, 27, and 46 for R, G, and B, 
respectively) and the ground truth color map of the data set. Table 2 gives the specific training and 
test sample information for the experiment. 

  

 

(a) (b) 

  
(c) (d) 

Figure 6. The Pavia University data set. (a) False color composite image; (b) ground truth color map; 
(c) training set; (d) test set. 
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Table 2. Training and test numbers for the Pavia University HSI. 

Class Name Training Test 
1 Asphalt 548 6083 
2 Meadows 540 18,109 
3 Gravel 392 1707 
4 Trees 542 2522 
5 Metal sheets 256 1089 
6 Bare soil 532 4497 
7 Bitumen 375 955 
8 Bricks 514 3168 
9 Shadows 231 716 
 Total 3930 38,846 

The Kennedy Space Center (KSC) HSI data set was used for the third experiment, as detailed in 
[58]. The data set has a rows and columns of 512 × 614 pixels and 176 spectral bands. The wavelength 
is from 0.4 to 2.5 μm and the spatial resolution is 1.8 m. The labels used for training have thirteen 
classes. Figure 7 gives the false color composite image (bands 10, 34, and 19 for R, G, and B, 
respectively) and the ground truth color map of the data set. Table 3 gives the specific training and 
test sample information for the experiment. 

  

 

(a) (b) 

  
(c) (d) 

Figure 7. The KSC data set. (a) False color composite image; (b) ground truth color map; (c) training 
set; (d) test set. 

Table 3. Training and test numbers for the KSC HSI. 

Class Name Training Test 
1 Scrub 33 728 
2 Willow swamp 23 220 
3 CP hammock 24 232 
4 CP Oak 24 228 
5 Slash pine 15 146 
6 Oak-Broadleaf 22 207 
7 Hardwood swamp 9 96 
8 Graminoid marsh 38 393 
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9 Spartina marsh 51 469 
10 Cattail marsh 39 365 
11 Salt marsh 41 378 
12 Mud flats 49 454 
13 Water 91 836 

 Total 459 4752 

3.2. Parameter Analysis 

There were several important parameters used in the proposed RPCC: P is the number of MNF 
PCs, W is the size of patches, K is the number of pixels in a local cube, N is the number of patches, 
and D is the number of convolutional layer. Among them, according to our algorithm design, N 
should be greater than or equal to P. Considering the efficiency of the algorithm, we set N equal to P. 

First, we designed the experiment and plotted the relationship between P and classification 
accuracy in our RPCC. Parameters W, K, N, and D are 25, 160, 45, and 5, respectively. As shown in 
Figure 8, when P increases from 5 to 20, the classification accuracy of the Indian Pine and KSC data 
has increased significantly, but the Pavia University rise is not obvious. When P is larger than 20, the 
overall accuracy (OA) of all three decreases and the OA of the Pavia University data set is significantly 
lower. As the P value increases, the experimental time of the three data sets is significantly longer. 
Considering the balance between accuracy and time consumption, we set P = 20. 

 
Figure 8. Sensitivity analysis of the number of principal components and classification accuracy for 
three data sets. OA: Overall Accuracy, KSC: Kennedy Space Center. 

Second, we analyzed the sensitivity of the classification accuracy to parameter W, with 
parameters P, K, N, and D set to 20, 160, 20, and 5, respectively. The value of W is 15 to 31, and the 
step size is 2. Figure 9 shows that as W increases from 15 to 21, the classification accuracy of the Indian 
Pine data set gradually increases, and the classification accuracy of KSC and University of Pavia 
increases slightly. When W exceeds 21, the classification accuracy of the Indian Pine data set begins 
to decrease, while the classification accuracy of the KSC and University of Pavia decreases slightly, 
and tends to be stable. So we chose W = 21. 
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Figure 9. Sensitivity analysis of the size of patches and classification accuracy for three data sets. OA: 
Overall Accuracy, KSC: Kennedy Space Center. 

Third, we evaluated the classification accuracy of the RPCC with different values of K and D. In 
this experiment, K was varied from 40 to 360 with a step of 40, and D was varied from 1 to 9 with a 
step of 1. The parameters P, W, and N were 20, 21, and 20, respectively. Figure 10 shows that the OA 
for all three HSIs data sets are maintained at a high level. When K and D increase, the OA of Indian 
Pine, University of Pavia and KSC are gradually increasing. As can be seen in Figure 10a, 10c, when 
the highest OA of the Indian Pine and KSC data sets was achieved, K = 160 and D = 5. When the 
highest classification accuracy of Pavia University data-set was obtained, D = 5 and K = 160, 200, or 
240. Taking into account the computational efficiency and the previous work of reference [29], we set 
K = 160 and D = 5. Table 4 summarizes all the parameters in our experiments. 

  
(a) (b) 

 
(c) 

Figure 10. Sensitivity analysis of the number of pixels, the number of convolutional layer and 
classification accuracy for three data sets. OA: Overall Accuracy, KSC: Kennedy Space Center (a) 
Indian Pine data set; (b) Pavia University data set; (c) KSC data set. 

Table 4. Parameters for the proposed random patches convolution and local covariance-based 
classification (RPCC) method. 
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Parameter Explanation Value 
P Number of MNF principal components 20 
W Size of patches 21 
K Number of pixels in local cube 160 
D Number of convolutional layer 5 
N Number of patches 20 

3.3. Classification Results 

Our method was compared with RAW [59], MNF [21], and the five state-of-the-art HSIs 
classification methods, SMLR-SpTV [60], Gabor-based [33], EMAP [35], LMRC [29], and RPNet [49], 
and a detailed analysis was carried out using the quantitative and qualitative experimental results. 
The last five methods were developed in recent years [61,62] and are closely related to our methods. 
SMLR-SpTV uses a spatially adaptive hidden Markov field and spectral fidelity to obtain spectral–
spatial information for HSIs classification. The Gabor-based method uses the classical Gabor filter to 
obtain effective spectral features. EMAP can extract the geometric features of HSIs and form a feature 
vector space that describes the information of HSIs structure attributes, which is an effective spectral–
spatial classification method. LMRC integrates spatial context information and spectral correlation 
information for HSIs classification by means of local covariance matrix representation. RPNet has a 
new multi-layer convolution structure that can quickly obtain high-precision classification results. 
The Monte Carlo iteration of SMLR-SpTV method is 10 times. The EMAP attribute extraction 
threshold is 2.5–10% according to the mean of each feature, the standard deviation attribute step is 
2.5%, and the area attribute threshold is 200,500, and 1000, respectively.  The parameters in the Gabor-
based, LMRC, and RPNet methods are the same as the ones used in references [29,33,49]. Tables 5–7 
show the results of quantitative experiments for all methods. Figures 11–13 give color classification 
results maps of the corresponding methods. 

The quantitative results of the aforementioned state-of-the-art methods in the first experiment 
are shown in Table 5, and Figure 11 shows the corresponding classification map. It is clear that our 
RPCC approach achieves the highest OA and Kappa as well as the best classification map. From Table 
5 it is clear that, in most categories, our RPCC has the best class accuracy. Among the 16 categories, 
only the accuracy of Corn, Soybean–clean, Wheat, and Buildings–Grass–Trees–Drives are lower than 
SMLR-SpTV and LCMR. Considering the accuracy of all the categories, our proposed RPCC achieves 
an advantage of 2%–22% on the indicator of OA and Kappa. The RAW and MNF methods only use 
spectral information, and more noise and misclassification can be seen on their classification map 
from Figure 11, such as for the Soybeans–min class in the middle of the map. Clearly, spatial 
information is beneficial for improving classification. The remaining six methods all consider 
spectral–spatial features. Comparing the classification map obtained using the SMLR-SpTV, Gabor-
based, and EMAP methods, it can be seen that the SMLR-SpTV and Gabor-based methods produce 
smoother classification maps. In the integrated SMLR-SpTV method, MRF improves the classification 
performance and allows spatially smooth classification. The LMRC and RPNet methods both have 
good classification performance; however, our proposed RPCC obtains better results by combining 
the advantages of LMRC and RPNet. The RPCC not only uses spectral–spatial features to reduce 
misclassification, but also uses local k-nn clustering, covariance expression, and random patches to 
make the obtained spectral–spatial features more discriminative. Therefore, RPCC has a simple and 
efficient feature extraction strategy that can produce competitive experimental results. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 11. The Indian Pine classification results. (a) False-color image; (b) ground-truth color map; (c) 
RAW; (d) MNF; (e) SMLR-SpTV; (f) Gabor-based; (g) EMAP; (h) LCMR; (i) RPNet; (j) proposed 
RPCC. 

Table 5. The classification results using different methods for Indian Pine HSI. 

Class Table MNF 
SMLR-
SpTV 

Gabor-
Based 

EMAP LCMR RPNet RPCC 

1 84.38± 7.83 
87.50± 7.87 

98.75± 2.54 
98.33± 2.81 

93.13± 6.43 100 ± 0 96.04± 4.78 
99.58± 1.59 

2 75.94± 1.88 
84.21± 1.90 

96.71± 1.21 
95.18± 1.86 

92.48± 1.19 
96.35± 1.09 

94.41± 0.93 
98.84± 0.57 

3 77.26± 2.53 
82.31± 2.23 

97.65± 1.07 
98.65± 0.85 

89.26± 2.02 
98.13± 1.14 

97.38± 1.16 
99.48± 0.49 

4 82.58± 2.99 
87.25± 2.56 100 ± 0 99.88± 0.34 

93.43± 3 
99.37± 0.71 

99.56± 0.45 
99.98± 0.13 

5 94.44± 1.68 
96.64± 1.05 

98.78± 1.26 
99.72± 0.46 

96.98± 1.38 
99.34± 0.7 

98.68± 0.98 
99.64± 0.58 

6 97.79± 0.83 
98.88± 0.61 

99.76± 0.28 
99.78± 0.26 

99.20± 0.56 
99.82± 0.17 

99.68± 0.36 
99.98± 0 

7 89.17± 10.24 
94.17± 6.34 100 ± 0 98.75± 3.81 

92.92± 7.1 100 ± 0 91.25± 8.78 100 ± 0 

8 98.17± 0.63 
99.39± 0.49 100 ± 0 100 ± 0 98.77± 0.86 100 ± 0 99.97± 0 100 ± 0 

9 93.33± 10.93 100 ± 0 100 ± 0 100 ± 0 88± 18.64 100 ± 0 100 ± 0 100 ± 0 

10 83.48± 1.88 
88.30± 1.97 

97.92± 1.48 
97.04± 1.5 

92.65± 1.63 
95.64± 1.16 

95.56± 1.14 
99.32± 0.72 

11 68.66± 1.84 
75.12± 1.97 

94.78± 1.51 
93.61± 1.63 

87.55± 2.24 
96.11± 1.19 

94.60± 1.51 
98.96± 0.55 

12 82.47± 2.88 
92.05± 2.04 

99.61± 0.27 
98.72± 1.02 

95.59± 1.57 
97.58± 1 

98.34± 0.82 
99.52± 0.35 

13 99.58± 0.78 
99.45± 0.85 100 ± 0 99.94± 0.33 

98.48± 1.44 
99.94± 0.33 

99.70± 0.69 
99.52± 0.82 

14 93.69± 1.53 
94.60± 1.65 

99.92± 0.19 
99.57± 0.52 

96.49± 1.23 
99.95± 0 

99.19± 0.46 
99.98± 0 

15 57.87± 4.25 
70.35± 4.53 

99.18± 1.2 
98.77± 1.49 

89.64± 2.36 
99.92± 0.21 

95.35± 3.22 
99.87± 0.5 

16 94.65± 4.93 
94.42± 4.98 

98.99± 2.09 
97.83± 2.73 

92.02± 5.13 
99.69± 0.8 

98.29± 2.02 
99.77± 0.94 

OA 80.23± 0.71 
85.51± 0.64 

97.56± 0.41 
96.93± 0.52 

92.41± 0.68 
97.63± 0.34 

96.56± 0.44 
99.38± 0.19 
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Kappa 77.29± 0.80 
83.31± 0.72 

97.17± 0.47 
96.43± 0.60 

91.2± 0.78 
97.25± 0.4 

96.01± 0.51 
99.28± 0.22 

For the second experiment, Figure 12 and Table 6 show the classification results and 
classification accuracy, respectively, of the Pavia University data set. On the whole, five classification 
methods based on spectral‒spatial features have achieved similar classification accuracy. Our method 
still has the highest OA and Kappa. Figure 12 also illustrates that the classification maps of RAW, 
MNF, and EMAP are quite noisy, especially in the Bare Soil and Meadows regions. The classification 
maps of SMLR-SpTV and Gabor-based show overfitting. Additionally, the LCMR and RPNet 
methods failed to distinguish between the categories of Bricks, Bare soil, and Meadows. Therefore, 
our proposed RPCC method can achieve good performance in both classification mapping and 
accuracy. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 12. The Pavia University classification maps. (a) False-color image; (b) ground-truth color map; 
(c) RAW; (d) MNF; (e) SMLR-SpTV; (f) Gabor-based; (g) EMAP; (h) LCMR; (i) RPNet; (j) proposed 
RPCC. 

Table 6. The classification results using different methods for the Pavia University HSI. 

Class Raw MNF SMLR-
SpTV 

Gabor-
Based 

EMAP LCMR RPNet RPCC 

1 90.45± 0.89 
90.87± 0.76 

98.35± 0.6 
97.36± 0.42 

89.54± 0.82 
99.36± 0.19 

98.76± 0.49 
99.93± 0 

2 93.34± 0.56 
93± 0.62 

99.01± 0.45 
99.51± 0.16 

91.41± 0.67 
99.57± 0.16 

99.64± 0.14 
99.95± 0 

3 83.82± 1.16 
82.32± 1.35 

99.08± 0.83 
96.45± 0.69 

76.33± 1.46 
99.56± 0.34 

99.35± 0.31 
99.98± 0 

4 97.48± 0.51 
97.90± 0.59 

95.23± 0.78 
99.45± 0.29 

97.36± 0.38 
99.55± 0.21 

99.42± 0.16 
99.74± 0.21 

5 99.44± 0.28 
99.73± 0.16 100 ± 0 99.71± 0.25 

98.39± 0.82 100 ± 0 100 ± 0 99.94± 0.14 

6 93.41± 0.57 
94.06± 0.63 100 ± 0 99.91± 0 

94.70± 0.57 
99.97± 0 

99.83± 0.14 100 ± 0 
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7 92.28± 1 
92.28± 0.9 

99.98± 0 
98.64± 0.57 

92.73± 1.18 
99.65± 0.25 

99.59± 0.23 99.9 ± 0 

8 87.77± 0.89 
84.74± 1.16 

98.7± 0.44 
97.02± 0.68 

83.95± 1.51 
99.13± 0.18 

99.33± 0.29 
99.91± 0.12 

9 99.91± 0.15 99.9 ± 0 90.64± 1.89 
98.68± 0.59 

97.85± 0.76 
98.93± 0.34 

99.91± 0 
98.96± 0.7 

OA 92.56± 0.25 
92.26± 0.29 

98.65± 0.25 
98.85± 0 

90.96± 0.37 
99.55± 0 

99.49± 0.1 
99.92± 0 Kappa 89.94± 0.33 

89.55± 0.37 
98.15± 0.34 

98.42± 0.14 
87.87± 0.48 

99.38± 0.1 
99.3± 0.14 

99.89± 0 
For the third experiment, Figure 13 and Table 7 show the classification results, false-color 

images, corresponding ground-truth maps, and classification accuracy, respectively, of the KSC data-
set. Our proposed RPCC method is 1%–10% higher than the other seven methods and has the highest 
accuracy in all categories. Figure 13 shows that our RPCC method achieves better classification for 
the classes of Water, Mud flats, Salt marsh, and Cattail marsh than the other methods. Similar to the 
Pavia University and Indian Pine data sets, the classification maps obtained using the RAW and MNF 
methods show over-smoothing. The SMLR-SpTV, Gabor-based, EMAP, and RPNet methods 
typically misclassify Water and Cattail marsh in some areas. Moreover, the LCMR method results in 
a large amount of misclassification for the CP/Oak category. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 13. The KSC classification maps. (a) False-color image; (b) ground-truth color map; (c) RAW; 
(d) MNF; (e) SMLR-SpTV; (f) Gabor-based; (g) EMAP; (h) LCMR; (i) RPNet; (j) proposed RPCC. 

Table 7. The classification results using different methods for the KSC HSI. 

Class Raw MNF SMLR-
SpTV 

Gabor-
based 

EMAP LCMR RPNet RPCC 

1 90.42± 3.23 
89.98± 2.91 

99.85± 0.4 
86.70± 3.02 

90.83± 3.19 
98.41± 2.03 

91.97± 4.89 
99.97± 0.15 

2 90.27± 4.43 
93.17± 4.48 

98.61± 2.01 
35.12± 8.68 

89.82± 3.68 
99.86± 0.52 

90.41± 3.8 
99.95± 0.25 

3 87.41± 3.95 
87.49± 3.24 

98.61± 1.44 
79.04± 7.47 

86.78± 4.20 
98.55± 0.8 

93.76± 2.63 
99.81± 0.94 

4 72.21± 5.29 
71.73± 5.9 

93.85± 4.97 
48.49± 13.84 

78.64± 5.86 
97.43± 1.05 

86.87± 5.72 
98.92± 3.05 

5 61.30± 7.86 
73.63± 6.54 

96.67± 4.69 
55.98± 9.39 

74.54± 8.09 
94.79± 5.08 

94.82± 5.17 
98.81± 3.69 

6 68.89± 7.11 
81.22± 5.07 100 ± 0 72.54± 6.09 

85.12± 5.64 
99.37± 0.82 

71.45± 7.51 100 ± 0 

7 79.97± 10.01 
88.30± 8.17 

98.72± 4.89 
36.91± 14.86 

77.33± 14.08 
96.49± 7.17 

80.17± 10.2 100 ± 0 

8 91.62± 2.25 
92.65± 2.17 100 ± 0 76.80± 4.59 

94.56± 2.59 
97.91± 1.58 

94.23± 2.77 100 ± 0 

9 96.35± 1.41 
97.04± 1.88 

99.97± 0.16 
93.86± 2.97 

97.89± 1.32 
99.23± 0.93 

98.08± 0.94 100 ± 0 
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10 95.35± 2.89 
98.62± 0.7 100 ± 0 78.85± 4.52 100 ± 0 100 ± 0 99.34± 0.86 100 ± 0 

11 96.16± 2.45 
98.02± 1.49 

99.61± 1.18 
86.21± 4.69 

96.79± 1.35 
99.96± 0.11 

99.55± 0.38 100 ± 0 

12 94.46± 2.7 
96.49± 1.9 

99.92± 0.25 
83.56± 3.54 

92.68± 1.92 100 ± 0 97.51± 1.55 100 ± 0 

13 99.83± 0.17 
99.8± 0.16 100 ± 0 95.40± 1.43 

99.18± 0.44 100 ± 0 99.77± 0.18 100 ± 0 

OA 90.91± 0.66 
92.78± 0.59 

99.38± 0.33 
80.02± 1.3 

92.81± 0.84 
99.05± 0.45 

94.56± 0.8 
99.90± 0.18 Kappa 89.88± 0.73 

91.97± 0.65 
99.31± 0.37 

77.68± 1.46 
91.99± 0.93 

98.94± 0.5 
93.94± 0.89 

99.88± 0.20 

4. Discussion 

In Figures 11–13 and Tables 5–7, a comparison with the other seven methods of the Indian Pine, 
Pavia University, and the KSC data-set shows that the proposed RPCC method can obtain better 
visual effects and higher accuracy. This proves the validity of the spectral spatial‒feature extraction 
pattern in our method. There are three reasons for this. First, we perform spectral clustering on each 
pixel neighborhood region and then calculate the spectral covariance matrix of the extracted pixels, 
so that we obtain spectral correlation information for all regions of the entire image.  Second, the 
random-patch convolution can extract shallow and deep features, allowing both multi-scale and 
multi-layer spatial features to be combined. Third, the randomness and localization in RPCC are a 
kind of regularization pattern that has great potential to overcome the pepper noise and over-
smoothing phenomena in HSIs processing. Through the above classification results and quantitative 
evaluation, our method can be a novel and effective spectral‒spatial classification framework. 

In the field of machine learning, it is difficult to achieve the desired performance with single 
features and single models. An important method is to integrate. Typical fusion methods are early 
fusion and late fusion. Early fusion is a feature-level fusion that concatenates different features and 
puts them into a model for training. For example, these spectral-spatial classification methods in 
[39,40] and our RPCC are early fusion methods. Late fusion refers to the fusion of the score level. The 
practice is to train multiple models. Each model will have a prediction score, and the results of all 
models will be fused to obtain the final prediction results. Here, we have designed two late fusion 
methods as variants of RPCC. One is RPCC-LPR, which shares the same process as RPCC except that 
it uses SVM with linear, polynomial, and radial basis functions. Another is S-LPR-S-LPR, which uses 
SVM with linear, polynomial and radial basis functions to classify spatial and spectral features. Both 
methods use the majority vote method to obtain the final classification result with default parameters. 
Table 8 shows the classification accuracy of the three methods. It can be seen that the two simple 
fusion strategies do not improve the classification accuracy. On the one hand, it may be that the two 
methods require more complicated parameter adjustments to achieve the best results. On the other 
hand, since the most suitable kernel functions may be different for different features, perhaps the 
multiple kernel learning (MKL) method is more suitable for spectral‒spatial feature fusion. By 
adopting different kernels for different features, multiple kernels are formed for different parameters. 
Then we can train the weight of each kernel and learn the best combination of kernel functions for 
classification. In short, our method is very suitable as a simple baseline method based on spectral‒
spatial feature classification, but there is still much room for improvement. 

Table 8. The classification results (OA (%) and Kappa (%)) obtained by using RPCC and its two 
variants. 

Data set 
RPCC RPCC-LPR S-LPR-S-LPR 

OA Kappa OA Kappa OA Kappa 

Indian Pine 99.38± 0.19 
99.28± 0.22 

98.95± 0.36 
98.78± 0.42 

98.76± 0.28 
98.56± 0.32 
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Pavia 
University 

99.92± 0 
99.89± 0 

99.83± 0 
99.77± 0 

99.61± 0.15 
99.46± 0.18 

KSC 99.90± 0.18 
99.88± 0.20 

99.55± 0.33 
99.50± 0.37 

99.47± 0.30 
99.41± 0.33 

The computation time of the algorithm has a significant impact on various remote sensing 
applications. Table 9 summarizes the computational time required by the SMLR-SpTV, Gabor-based, 
EMAP, LCMR, RPNet, and RPCC methods. Based on the overall performance of each method in the 
three experiments, the SMLR-SpTV and Gabor-based methods are the slowest. This is due to the fact 
that the SMLR-SpTV method trained samples in 10 Monte Carlo runs and the high-dimensional 
features of each pixel extracted by Gabor-based methods reduce its efficiency; both of these are very 
time-consuming processes. The RPNet method is clearly the fastest. Compared with the CMR and 
EMAP methods, our proposed RPCC runs faster for two data-sets, since the efficient random 
convolution and simplified covariance representation operations are adopted when extracting 
spatial–spectral features. Our RPCC method is more time-consuming than the RPNet method for all 
three data sets, this is because the RPCC is subject to the construction of covariance features. This 
process takes up two-thirds of the total runtime of the method. Since our algorithm is a two-branch 
structure, spectral and spatial features can be calculated in parallel. Therefore, we can further 
improve the efficiency of our algorithm. 

Table 9. The computation time using six methods on three data sets (s). 

Data set SMLR-SpTV 
Gabor-
Based EMAP LCMR RPNet RPCC 

Indian Pine 213.78 111.49 30.79 17.11 17.29 19.97 
Pavia 

University 
1010.97 230.86 428.02 181.86 75.69 154.72 

KSC 1737.38 766.94 179.0 228.4 35.36 204.67 
To summarize, by comparing the above algorithms on three experiments, it was shown that the 

RPCC method is able to extract highly discriminative features by combining both multi-scale, multi-
layer convolution information and correlations between different spectral bands in the classification. 
The RPCC can be a competitive and robust approach for hyperspectral image classification. 
Specifically, our experiments show that randomness and local clustering are reliable techniques and 
have great potential to overcome the pepper noise and over-smoothing phenomena in HSI 
classification.  

5. Conclusions 

In this study, a new hyperspectral image classification pattern using random patch convolution 
and local covariance is proposed. RPCC is an effective two-branch method. First, it obtains a specified 
number of convolution kernels from the image space through a random strategy for extracting deep 
spatial features. Second, a covariance matrix is constructed between spectral bands by clustering local 
neighboring pixels in order to explore the correlation between different bands. Then the obtained 
multi-scale spatial information and spectral covariance matrix are merged into spectral‒spatial 
features, which are fed into an SVM classifier for HSIs classification. Experiments comparing the 
performance of our model with those of five closely related spectral–spatial methods showed that 
our RPCC method can match or exceed current state-of-the-art methods. 

However, considering that the RPCC is not fast enough, we plan to design an effective and 
efficient spectral‒feature representation method. Furthermore, the framework of spectral–spatial 
feature extraction is not sufficiently coupled in our method, and we will therefore further integrate 
randomness and localization techniques, for example by introducing a deep spectral feature or 
superpixel methods. 
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