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Abstract: Although subsidence has been observed at the San Emidio geothermal field in Nevada
using interferometric synthetic aperture radar since the early 1990s, the spatial extent and temporal
evolution of the subsidence have not heretofore been quantified. Furthermore, the weather conditions
and geographic location of San Emidio negatively affect interferometric image quality, causing low
correlation amongst pairs. To address this, we introduce a new method for selecting pairs in areas of
low correlation and small deformation signal using a minimum spanning tree method with a measure
of image quality as the weighting criterion. We validate our pair selection approach by comparing
our data products to SqueeSARTM data products from a previous study at San Emidio. We also
develop a deformation model which characterizes the spatial extent of subsidence at San Emidio
in terms of volume change of the reservoir. After applying this deformation model to our data set
of interferometric pairs, we examine the temporal relationship of the observed deformation with
production and injection operations associated with geothermal power production.
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1. Introduction

1.1. Interferometric Synthetic Aperture Radar

Since the late 1980s, interferometric synthetic aperture radar (InSAR) has proved itself to be a
powerful geodetic technique capable of measuring surface deformation from a variety of sources.
The principle of synthetic aperture radar dictates that image resolution depends on the length of the
antenna and bandwidth of the system (e.g., [1,2]), allowing for image resolution on the order of a meter.
The two-dimensional structure of radar data along with the pair-wise nature of interferometry allow
InSAR to capture both the spatial and temporal extent of deformation with uncertainty on the order of
millimeters to centimeters.

The availability of radar systems with diverse wavelengths and cadences increases the
applicability of InSAR to a wide variety of geophysical studies, including monitoring geothermal
processes. In particular, differential InSAR (DInSAR) has been widely used to monitor surface
deformation at many geothermal sites in the Western U.S. Several studies have used observed
subsidence to develop subsurface reservoir models (e.g., [3–5]). In addition, data sets of multiple
InSAR pairs have been used to determine temporal variations in subsidence at geothermal fields
(e.g., [6,7]).
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As noted by Barbour et al. [8], traditional DInSAR methods may fall short in agricultural areas.
In such cases, a common alternative method is to make use of both persistent and distributed scatterer
processing to improve data quality and enhance signal detection in InSAR pairs (SqueeSARTM, [9]).
While effective, this method can be computationally expensive. Recently, Xu et al. [10] analyzed
Sentinel-1A data at the Cerro Prieto geothermal field, California, U.S. using a coherence-based small
baseline subset method with common-point stacking to make atmospheric corrections.

1.2. San Emidio Geothermal Field, Nevada

San Emidio geothermal field is located ∼ 100 km north of Reno, Nevada in the Basin and Range
Province. The field resides in the San Emidio desert with the Fox Range to its west and the Northern
Lake Range to its east [11]. The faulting regime at San Emidio is predominantly N-striking and
W-dipping and consists of two major faults: the Northern Lake Range fault and the San Emidio
fault [11,12]. A stress analysis has been performed, applying a “normal faulting stress regime to the
San Emidio area faults, with a minimum horizontal stress direction oriented 115 [degrees]. This is
consistent with the shmin determined through inversion of fault data by Rhodes [11]. Under these
stress conditions, north–northeast striking, steeply dipping fault segments have the highest dilation
tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency
to slip. Interestingly, the San Emidio geothermal field lies in an area of primarily north striking faults,
which have moderate dilation tendency and moderate to low slip tendency” [13].

In the south–east portion of the region, near the operating power plant, the San Emidio fault is
intersected by a NNE-striking normal fault. There is also an ENE-striking sinistral-normal fault located
in the northeast portion of the region that connects two strands of the Northern Lake Range fault
system [11,12]. The San Emidio fault (SEF) lies to the west of and in the footwall of the Lake Range
fault (LRF). Southeast of the operating field is the topographic expression of a right step over in the
LRF. The same seems to occur with the SEF, as seen in multiple geophysical data sets. The permeability
created by minor dilation and high fault density within this step over is thought to facilitate deep
fluid circulation at San Emidio [12]. Earlier studies demonstrated spatial correlation between surface
deformation, faulting, and wellfield production and injection [12].

In 1987, a binary power plant began operating under the supervision of Empire Geothermal
Power LLC in the SW region of San Emidio with a capacity of 3.6 MW [14]. The plant used shallow
production wells between 30 to 100 m depth until the early 2000s. To address the issue of cooling in
the shallow reservoir, new production wells were installed at depths between 500 and 700 m along the
San Emidio fault and the original production wells were converted to injection wells [14]. In 2008, the
ownership of the power plant changed to U.S. Geothermal Inc., who commissioned a new plant with
an operating capacity of 14.7 MW in 2012 [14]. Ormat Technologies acquired U.S. Geothermal Inc. in
2018 and is now the current operator of the plant. Locations of the wells, power plant, and faults are
shown on the maps in Figure 1.

The geographic location of San Emidio and its resulting weather conditions present challenges
to measuring the deformation observed at San Emidio by interferometric synthetic aperture radar
(InSAR) due to poor correlation. In addition, the signature of the deformation signal at San Emidio is
small. A previous study by Eneva et al. [12] employs the SqueeSAR method to improve data quality
and enhance signal detection in InSAR pairs at San Emidio.

In this study, we explore improving pair selection using a minimum spanning tree (MST)
algorithm with a weighting criterion defined to avoid pairs with poor quality while simultaneously
selecting pairs with clearer deformation signal. We establish a deformation model that spatially
characterizes the subsidence signal at San Emidio. Using time-series analysis on a data set of pairs
spanning from 1992 to 2010, we estimate how deformation changes over time at the field.
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Emidio Fault north to the Wind Mountain Mine (Bonham and Papke, 1969; Drakos, 2007, 
Rhodes et al., 2010, 2011; Figure 2). 

The San Emidio Geothermal Area first produced power in 1987 with a 3.6 MW binary plant fed 
by shallow, 148˚C wells. After U.S. Geothermal Inc. acquired the project in 2008, work began to 
maximize the production potential, and a new 14.7 MW plant was commissioned in 2012. Ormat 
is the current owner after completing acquisition of U.S. Geothermal Inc. in April 2018. Over the 
life of the project, production has ranged from <3000 gpm to >4500 gpm at temperatures of 140-
148˚C. From 2015 to 2017, drilling south of the producing field discovered a new, hotter 
(>160˚C) resource that is currently in development.  

San Emidio wells produce primarily from depths of ~1700 to 2300 feet (~520-700 m) below 
surface from fractures hosted by silicified tuff and intermediate to mafic composition lavas. The 
top of the reservoir generally follows the contact between overlying, mechanically weak, 
commonly clay-altered volcaniclastic rocks and underlying, mechanically strong, silicified tuff 
and lavas. The shallow injection zone is associated with massive silicification of tuff and 
tuffaceous sedimentary rocks, and most injectate flows north in the shallow subsurface. The 
newly discovered resource to the south has a similar geologic setting with the reservoir hosted by 
fractured, silicified tuff and lava which are overlain by clay-altered, volcaniclastic rocks. 

 
Figure 2: Southeastern San Emidio Desert and the San Emidio Geothermal Area (SEGA), Washoe County, 

NV. LRF-Lake Range fault; SEF-San Emidio fault; WMM-Wind Mountain Mine. Active and monitor 
wells show the extent of the currently defined resource area which is open to the south and west. 
Bleached and Fe-stained rocks along the SEF and LRF and in the vicinity of the WMM are 
hydrothermally altered. Green-blue-gray exposures in the footwall of the west-dipping LRF are 

Figure 1. (left) Figure 1 from Warren et al. [14] (reproduced with permission): “Southeastern San
Emidio Desert and the San Emidio Geothermal Area (SEGA), Washoe County, NV. LRF—Lake Range
fault; SEF—San Emidio fault; WMM—wind mountain mine. Active and monitor wells show the
extent of the currently defined resource area which is open to the south and west. Bleached and
Fe-stained rocks along the SEF and LRF and in the vicinity of the WMM are hydrothermally altered.
Green–blue–gray exposures in the footwall of the west-dipping LRF are Mesozoic metamorphic rocks
which are overlain by Tertiary rocks that dip to the east. Dark blue faults are from Rhodes [11].” (right)
Deformation field at San Emidio in terms of wrapped range change in cycles from an Envisat track 27
pair spanning 10th November 2004 to 10th September 2008. One cycle of wrapped phase corresponds
to a range change of approximately 28 mm. The dashed rectangular region in the SE denotes the region
used for deformation analysis in this study. Faults are denoted with black lines. Inverted triangles
are injection wells and upright triangles are production wells. The power plant is denoted with a
black square. Coordinates are easting and northing kilometers in universal transverse mercator (UTM)
projection zone 11N, WGS84 [15].

2. Data and Methods

2.1. Data

We select the same sets of synthetic aperture radar (SAR) scenes as used by Eneva et al. [12]
to facilitate comparison between the resulting interferometric (InSAR) data products. This includes
98 epochs from the C-band Envisat (ENVI) satellite [16]: 53 from descending track 27 and 45 from
ascending track 120. Also included are 38 epochs from the descending track 27 of the European
Remote-Sensing (ERS) satellite missions ERS-1 and ERS-2 [17]. These epochs are listed in Table A1.

Interferograms are calculated by combining pairs of compatible images using GMT5SAR [18,19],
an interferometric processing software package that utilizes generic mapping tools (GMT) to create
and visualize interferometric pairs. GMT5SAR allows for removal of noise by applying an adaptive
(“modified Goldstein”) filter that depends on coherence [19–21]. An example of one such interferogram
spanning 10th November 2004 to 10th September 2008 from track 27 of the Envisat satellite is shown in
Figure 1. Additional examples are shown in Figures A1–A6. Table 1 shows the unit vector ŝ pointing
from the ground to the sensor aboard the satellite and incidence angle for each satellite.
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Table 1. Unit vector ŝ = [sE, sN , sU ] pointing from a point on the ground to the sensor aboard the
satellite and satellite incidence angle θ for European Remote-Sensing (ERS) track 27 and Envisat tracks
27 and 120.

Satellite Track ŝ θ

ERS T27 [0.35;−0.08; 0.93] 21◦

ENVI T27 [0.35;−0.08; 0.93] 21◦

ENVI T120 [−0.37;−0.08; 0.92] 22◦

2.2. Methods

2.2.1. Selecting and Weighting Pairs

Given each of the three satellite track’s set of epochs (at points in time), we selected a data set of
pairs (spanning intervals in time). To do so, we considered image quality as measured by the amount
of phase noise within an interferometric pair (e.g., [16]). Factors that contribute to quality include:
(a) the orbital separation (also known as the perpendicular component B⊥ of the baseline), (b) the
time span of the pair (also known as the temporal baseline), and (c) the difference in Doppler centroid
frequencies (e.g., [22–24]). One popular approach is to select minimum spanning tree (MST) pairs
using orbital separation as a weighting criterion (e.g., [25]). This method falls short, however, when
imaging mountainous areas such as northern Nevada, which receive considerable precipitation in
winter months.

To address these complications, we weighted each pair by a measure of its quality [26]. We used
an empirical measure of quality γ(i, j) for a pair spanning from time ti to time tj as defined by the
product of three individual components [2,22,27]:

γ(i, j) = γg(i, j) · γt(i, j) · γD(i, j), (1)

where subscripts g, t, and D represent geometric, temporal, and Doppler contributions, respectively.
We defined these individual components of γ(i, j) in a manner similar to that of Refice et al. [22] and
incorporated additional complexity in the geometric and temporal components.

The geometric component is defined as:

γg(i, j) =
(

1− |b⊥(i, j)|
wbbcrit

)
· [H(wbbcrit − |b⊥(i, j)|)], (2)

where bcrit represents the critical baseline (about 1100 m for Envisat and ERS [22,28]), wb is a specified
weighting value for the critical baseline (set to be 0.5 to favor pairs with orbital baselines less than
550 m), and H represents the Heaviside “step” function. The Heaviside function was used to filter
pairs with orbital separation greater in absolute value than wbbcrit.

The temporal component is defined using an exponential decay function:

γt(i, j) = exp
(
−|∆t|
btemp

)
·
[
min[min[H(mti − 3.5), 1−H(mti − 11.5)],

min[H(mtj − 3.5), 1−H(mtj − 11.5)]
]
,

(3)

where ∆t is the time span (in absolute value) of the pair in days, btemp is a specified temporal decay
constant (set to 80 days following Refice et al. [22] to favor pairs with shorter time spans), and mti is
the numerical value of the month of ti. In this case, we used the Heaviside function to filter pairs with
epochs occurring during winter months (mid-November through mid-March).
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Finally, the Doppler component of γ(i, j) is defined as:

γD(i, j) =
(

1− | fDc(i)− fDc(j)|
Ba

)
· [H(Ba − | fDc(i)− fDc(j)|)], (4)

where fDc is the Doppler centroid frequency [Hz] for each image and Ba is the azimuthal
bandwidth [Hz].

We normalized γ to be between zero and one and set a MST weighting criterion of

w(i, j) = 1− γnorm(i, j). (5)

The resulting subset of pairs included in Table A2 optimizes the quality of the interferograms.
This data set includes three trees in a minimum spanning forest (MSF) comprised of data from both the
ERS and Envisat satellites, as graphed in Figure 2. These pairs are publicly available on the Geothermal
Data Repository [29].
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Figure 2. The graph showing pairs in the minimum spanning forest data set chosen by maximizing an
empirical measure of quality γ(i, j). ERS-1/2 pairs are shown in green (track 27) and ENVI pairs are
shown in red (tracks 27 and 120). Pairs are shown according to their orbital separation in m.

2.2.2. Deformation Modeling

We used simulated annealing to derive a model that best describes the deformation. This
nonlinear approach to deformation modeling was implemented in an open-source software package
named the general inversion of phase technique (GIPhT) [26,30]. For a given deformation model and
a corresponding set of initial estimates and bounds for the parameters, GIPhT inverts data values from
pixels of an observed interferogram using simulated annealing and outputs refined estimates of the
model parameters.

We considered a simple model for the deformation observed at San Emidio. To describe the
reservoir, we assumed a cuboidal model with a single sink in an elastic half space with uniform
material properties. The cuboid represents a volume element with sides of width W, length L, and
height H, giving an initial volume of V0 = LWH. This volume element is defined by three rectangular
patches that are mutually orthogonal. We estimated seven model parameters, including source location
(easting, northing, and elevation), cuboid dimensions (length, width, and height), and volume change
∆V. We assumed a uniform Poisson’s ratio of ν = 1/4. To start, we chose initial estimates of the
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location and dimension parameters based on results from Eneva et al. [12] (their Figure 2b). In
addition to the seven parameters corresponding to the deformation model, we also estimated nuisance
parameters corresponding to contributions from atmospheric effects, orbital errors, and an initial offset
per epoch (e.g., [30]).

We started by deriving best-fitting estimates for the dimensions and location of the cuboidal
sink using the ENVI T27 stack of (unwrapped) range change rates derived by Eneva et al. [12]
using SqueeSAR. To avoid complications arising from signals due to sources other than those due
to production at the site (e.g., precipitation, mining), we focused on modeling only the deformation
observed around the production wells as outlined in Figure 1. Once best-fitting estimates of the
cuboidal reservoir’s location and dimensions were found, they were used in modeling the individual
MST pairs to arrive at estimates of reservoir volume change.

2.2.3. Time-Series Analysis

To determine any temporal trends in the deformation, we performed time-series analysis on the
estimated volume changes derived from the spatial deformation modeling. To handle the pair-wise
nature of these volume changes, we used a graph-theoretic approach to the procedure known as
temporal adjustment, which converts a series of individual, pair-wise volume changes ∆Vi,j into
cumulative volume change at individual points ti and tj in time [26,31]. We considered several
different parameterizations for the temporal function f (t). For simplicity, we started with a single-rate
parameterization:

f1(ti) = a1(ti − t0), (6)

where t0 = 1992.43 is the start date of our InSAR data set in decimal years.
We also considered a piecewise-linear parameterization with m breaks at times tk that form

(m− 1) intervals:

f2(ti) = Σk=m
k=1 akD(ti), where

D(ti) =


0 if ti < tk

(ti − tk) if tk ≤ ti < tk+1

(tk+1 − tk) if ti ≥ tk+1,

(7)

where ak is a parameter to be estimated.

3. Results

3.1. Analysis of Data Quality

To determine the quality of our data selection, we compared the deformation measured from our
MST data sets to those from Eneva et al. [12] derived by TRE ALTAMIRA using the SqueeSAR
procedure [26]. We worked with the phase gradient. For each of the three sets of data, we
calculated the eastward component of the phase gradient directly from wrapped phase using quadtree
resampling [32]. As described by Ali and Feigl [32], this quantity is one component of the deformation
gradient [33]. We used quadtree resampling [32] to smooth interferometric phases and derive the east
component of the phase gradient fields to form a stack [34]. Both of these functionalities were
incorporated into GIPhT. We also converted the SqueeSAR results from Eneva et al. [12] (their
Figure 2b,d) into wrapped phase and performed the same quadtree resampling and gradient procedure.
Finally, we compared the fields derived from each of the three SqueeSAR stacks to the corresponding
gradients of pairs selected by MST. Dividing by the time interval ∆t, we found a velocity gradient that
can be thought of as a strain rate expressed in microstrain/yr or picostrain/s:

ψ̇ =
∆φ

∆X∆t
, (8)
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where the quotient of the difference in phase ∆φ divided by the difference in easting position ∆X
defines the eastward component of the phase gradient. The resulting velocity gradient data sets are
summarized in Table 2. Additional time-series analyses of the MST gradient data sets are shown in
Figures A7–A9.

Table 2. Mean for SqueeSAR (SQR) and minimum spanning tree (MST) stack gradients for each
satellite track.

Data Set SQR Mean MST Mean
[picostrain/s] [picostrain/s]

ERS T27 −0.8× 10−3 −0.5× 10−3

ENVI T27 2.4× 10−3 2.4× 10−3

ENVI T120 −1.7× 10−3 −0.8× 10−3

The mean and sample standard deviation for each differenced set of gradients are shown in
Table 3 in terms of strain rate. We see that none of the three sets of differences was significantly
different than zero. To determine if the means of the SqueeSAR stack gradients were different from
the means of the MST stack gradients, we performed a Student’s T-test. The results are summarized
in Table 4 and Figure 3. All three data sets failed to reject the null hypothesis of equal means at 95%
confidence.

Table 3. Distribution parameters for differenced SqueeSAR and MST stack gradients for each
satellite track.

Data Set Sample Mean Sample std. Deviation
[picostrain/s] [picostrain/s]

ERS T27 2.9× 10−4 0.34
ENVI T27 −4.2× 10−5 0.28
ENVI T120 8.6× 10−4 0.34

Table 4. Results of Student’s T-test for equal means (e.g., [35], p. 521). H0: means are equal; H1: means
are significantly different; p-value: probability of rejecting H0 when it is true.

Data Set p-Value

ERS T27 0.94
ENVI T27 0.97
ENVI T120 0.82

3.2. Deformation Modeling

The best-fitting estimates of the cuboidal reservoir model parameters derived from modeling
the ENVI T27 stack of (unwrapped) range change rates from Eneva et al. [12] are shown in Table 5.
Results are shown in Figures 4 and 5. We defined the cost of the inversion as the L1 misfit of the
unwrapped range change rate [6] and found it to be 0.7 mm/yr. These best fitting estimates of location
and dimensions of the cuboidal reservoir were used to model all individual pairs in our MST data set
in terms of wrapped phase change, resulting in estimates of reservoir volume change which were then
used for subsequent time-series analysis.



Remote Sens. 2019, 11, 1935 8 of 28

   

 

   

Figure 3. Histogram of differences in the eastward component of velocity gradient fields estimated
from SqueeSAR and minimum spanning tree (MST) for all three interferometric synthetic aperture
radar (InSAR) data sets. Differences are shown in terms of strain rate (picostrain per second).

Table 5. Best-fitting estimates of a single cuboidal sink model after simulated annealing on unwrapped
range change rates from ENVI T27 SqueeSAR stack.

Parameter Name Best-Fitting Estimate Uncertainty

Centroid Easting in m 296,109 375
Centroid Northing in m 4,472,750 380

Centroid Depth in m 500 75
Cuboid Length in m 2000 500
Cuboid Width in m 200 50

Cuboid Thickness in m 500 100
Volume Change Rate (m3/yr) −4.6× 103 0.5× 103
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T27 stack spanning 23rd June 2004 to 28th April 2010 analyzed using nonlinear inversion methods
outlined in Feigl and Thurber [30]. Inversion was performed using unwrapped range change rates.
Results are shown in terms of unwrapped range change rate: observed range change rate (a), modeled
range change rate (b), residual between observed and modeled (c) and absolute value of residuals
(d). Faults are denoted with black lines. Inverted triangles are injection wells and upright triangles
are production wells. The power plant is denoted with a black square. Coordinates are easting and
northing kilometers in the UTM projection zone 11N, WGS84 [15].
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Figure 5. (top) schematic showing best-fitting cuboid model in cross-section (UTM northing vs.
elevation/depth). (bottom) Profile of modeled cumulative displacement derived from the best-fitting
cuboidal model along the profile line UTM Northing = 4471.3 km.

3.3. Time-Series Analysis

We worked with volume change rates derived from modeling deformation in terms of wrapped
phase change from the individual MST pairs using the cuboidal sink model. Starting with a single-rate
parameterization (Equation (6)), we found a best-fitting estimate of volume change rate to be
(−1.1± 0.1)× 104 m3/yr. We defined a dimensionless misfit χ of the model to the data as the square
root of the reduced χ2 statistic ([36], p. 334). We found χ = 1.6. Results are shown in Figure 6.

We also explored the possibility that the rate changes over time (Equation (7)). We tried a
three-segment piecewise-linear parameterization with a break during the gap in the data set. We
found the best-fitting estimates of volume change rates for the two intervals of data coverage to be
(−1.3± 0.1)× 104 m3/yr for the time interval from 1992 to 2001 and (−0.9± 0.1)× 104 m3/yr for the
time interval from 2003 to 2010. We found a corresponding misfit of χ = 1.5.

To determine if the increased complexity of the piecewise-linear parameterization is justified, we
used an F-test for model complexity (e.g., [35], p. 627). The results are shown in Table 6. We found
that the added complexity of the piecewise-linear parameterization is not justified at 95% confidence.
We concluded that the temporal trend of the volume change of the modeled reservoir is best explained
as a constant rate.

Table 6. Results of F-tests for model complexity (e.g., [35], p. 627). H0: more complex parameterization
does not provide a significantly improved fit to the data over the single-rate parameterization; H1:
more complex parameterization provides a significantly improved fit to the data over the single-rate
parameterization; do f : denotes degrees of freedom.

dof1 dof2 Test Value Critical Value Result

105 104 −10.44 1.38 fail to reject H0
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Figure 6. Time series at San Emidio, showing cumulative volume change from temporal adjustment of
volume change rates estimated from InSAR data spanning 1992 to 2010. Black lines show the modeled
volume change with 68% confidence intervals (dashed lines) as estimated by temporal adjustment with
a single-rate temporal function [31]. Red segments indicate measurements of observed volume change
derived from individual interferometric pairs. For each pair, the volume change at the mid-point of each
time interval is plotted to fall on the modeled curve and the vertical blue bars denote 1σ measurement
uncertainty, after scaling by the square root of the variance scale factor (i.e., the dimensionless misfit χ).

4. Discussion

When we compared our MST data sets (selected using quality γ as a weighting criterion) to
the corresponding data sets from SqueeSAR, we found no significant difference in mean strain
rates estimated from the stacks of gradients at 95% confidence in all three InSAR data sets. Thus,
our modification to the MST method of pair selection introduced by Refice et al. [22] allows MST
methods to be applicable to InSAR deformation analysis in areas of low correlation and small signal.
This provides another viable option for InSAR time-series analysis which may be less time-intensive
and computationally expensive than existing methods.

We found that the deformation at the San Emidio geothermal field is well explained by
parameterizing the reservoir as a cuboidal sink (Figure 5). This sink aligns with faults in the area and
spatially encompasses the majority of production and injection wells at the site. We found a best-fitting
depth of 500 m, which is consistent with lower bounds of likely reservoir depths based on cross-section
analyses [14,37].

When modeling the observed deformation as a function of time, we found that the best-fitting
parameterization is a constant rate of volume change. This is in agreement with the line-of-sight
time-series analysis by Eneva et al. [12].

To explore the possibility that the observed deformation is related to pumping at the site, we
compared the cumulative values of volume change derived from temporal adjustment with records
from Ormat of cumulative monthly gross production (Figures A10 and A11) as reported to the State
of Nevada. We normalized the estimated cumulative volume change values (Figure A11) and the
observed cumulative gross production values using the statistical Z-transform (e.g., [35]). We then
tested the correlation using Pearson’s test (e.g., [35], p. 599) with the null hypothesis that there is no
correlation between pumping and deformation. We found a statistically strong correlation between
normalized cumulative volume change and normalized cumulative gross production with a correlation
coefficient of R => 0.99 (Figure 7). The corresponding p-value, or the probability of rejecting the
null hypothesis of no correlation when it is true, is less than 10−100. Thus, we inferred a significant
correlation between cumulative deformation and pumping.
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Figure 7. Scatter plot showing the cumulative values of volume change derived from temporal
adjustment of InSAR data and cumulative gross production. Results from a Pearson’s test for correlation
are shown in terms of correlation coefficient R and p-value p.

5. Conclusions

We have developed a new method to select a good set of interferometric pairs in areas of poor
interferometric image correlation using a minimum spanning tree algorithm with a seasonally- and
spatially-weighted measure of quality as the weighting criterion. This selection procedure yields a
temporally averaged, phase gradient rate field that is equivalent in mean to that produced by the
SqueeSAR procedure, thus providing a viable alternative to selecting an optimal data set when working
in areas of poor correlation with a small deformation signature.

Using nonlinear inversion, we determined that the deformation at San Emidio is well explained
by parameterizing the reservoir as a cuboidal sink. Temporal analysis of the volume change rates
estimated from individual interferometric pairs using this deformation model suggests a constant rate
of volume change of (−1.1± 0.1)× 104 m3/yr between 1992 and 2010, consistent with the time-series
analysis in terms of line-of-sight displacement performed by Eneva et al. [12]. When comparing
cumulative volume change to cumulative gross production, we found a strong, positive correlation.
This suggests that deformation at San Emidio was influenced by geothermal production at the site
between 1998 and 2010.
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Abbreviations

The following abbreviations are used in this manuscript:
dof Degrees of freedom
ENVI Envisat, Environmental satellite
ERS European Remote-Sensing satellite
InSAR Interferometric Synthetic Aperture Radar
GIPhT General inversion of phase technique
GMT Generic mapping tools
MST Minimum spanning tree
MSF Minimum spanning forest
SAR Synthetic aperture radar
UTM Universal Transverse Mercator

Appendix A. SAR and InSAR Data Sets

Table A1. List of epochs in data set.

Epoch (YYYY–MM–DD) Satellite Track Frame

1992–05–03 ERS T27 2799
1992–06–07 ERS T27 2799
1992–07–12 ERS T27 2799
1992–08–16 ERS T27 2799
1993–01–03 ERS T27 2799
1993–041–8 ERS T27 2799
1993–06–27 ERS T27 2799
1993–09–05 ERS T27 2799
1993–12–19 ERS T27 2799
1995–04–11 ERS T27 2799
1995–05–16 ERS T27 2799
1995–06–20 ERS T27 2799
1995–08–29 ERS T27 2799
1995–11–07 ERS T27 2799
1995–11–08 ERS T27 2799
1995–12–12 ERS T27 2799
1996–01–16 ERS T27 2799
1996–01–17 ERS T27 2799
1996–04–30 ERS T27 2799
1996–05–01 ERS T27 2799
1996–08–14 ERS T27 2799
1996–10–23 ERS T27 2799
1996–11–27 ERS T27 2799
1997–03–12 ERS T27 2799
1997–07–30 ERS T27 2799
1997–10–08 ERS T27 2799
1998–05–06 ERS T27 2799
1998–06–10 ERS T27 2799
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1999–01–06 ERS T27 2799
1999–08–04 ERS T27 2799
1999–09–08 ERS T27 2799
2000–04–05 ERS T27 2799
2000–05–10 ERS T27 2799
2000–06–14 ERS T27 2799
2000–07–19 ERS T27 2799
2000–08–23 ERS T27 2799
2000–09–27 ERS T27 2799
2000–12–06 ERS T27 2799
2001–01–10 ERS T27 2799
2003–10–29 ENVI T120 801
2003–12–03 ENVI T120 801
2004–06–23 ENVI T27 2799
2004–06–30 ENVI T120 801
2004–09–01 ENVI T27 2799
2004–09–08 ENVI T120 801
2004–10–06 ENVI T27 2799
2004–10–13 ENVI T120 801
2004–11–10 ENVI T27 2799
2004–11–17 ENVI T120 801
2004–12–22 ENVI T120 801
2005–01–19 ENVI T27 2799
2005–02–23 ENVI T27 2799
2005–03–02 ENVI T120 801
2005–03–30 ENVI T27 2799
2005–05–04 ENVI T27 2799
2005–05–11 ENVI T120 801
2005–06–08 ENVI T27 2799
2005–06–15 ENVI T120 801
2005–07–13 ENVI T27 2799
2005–07–20 ENVI T120 801
2005–08–17 ENVI T27 2799
2005–09–21 ENVI T27 2799
2005–10–26 ENVI T27 2799
2005–11–30 ENVI T27 2799
2005–12–07 ENVI T120 801
2006–01–11 ENVI T120 801
2006–02–08 ENVI T27 2799
2006–02–15 ENVI T120 801
2006–03–15 ENVI T27 2799
2006–04–19 ENVI T27 2799
2006–04–26 ENVI T120 801
2006–05–24 ENVI T27 2799
2006–05–31 ENVI T120 801
2006–06–28 ENVI T27 2799
2006–08–02 ENVI T27 2799
2006–09–06 ENVI T27 2799
2006–10–11 ENVI T27 2799
2006–10–18 ENVI T120 801
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2006–11–15 ENVI T27 2799
2006–11–22 ENVI T120 801
2006–12–20 ENVI T27 2799
2006–12–27 ENVI T120 801
2007–01–24 ENVI T27 2799
2007–02–28 ENVI T27 2799
2007–03–07 ENVI T120 801
2007–04–04 ENVI T27 2799
2007–05–09 ENVI T27 2799
2007–06–13 ENVI T27 2799
2007–07–18 ENVI T27 2799
2007–08–22 ENVI T27 2799
2007–10–03 ENVI T120 801
2007–10–31 ENVI T27 2799
2007–11–07 ENVI T120 801
2007–12–12 ENVI T120 801
2008–01–09 ENVI T27 2799
2008–01–16 ENVI T120 801
2008–02–13 ENVI T27 2799
2008–02–20 ENVI T120 801
2008–03–19 ENVI T27 2799
2008–03–26 ENVI T120 801
2008–04–23 ENVI T27 2799
2008–04–30 ENVI T120 801
2008–05–28 ENVI T27 2799
2008–06–04 ENVI T120 801
2008–07–02 ENVI T27 2799
2008–07–09 ENVI T120 801
2008–08–06 ENVI T27 2799
2008–08–13 ENVI T120 801
2008–09–10 ENVI T27 2799
2008–09–17 ENVI T120 801
2008–10–15 ENVI T27 2799
2009–03–04 ENVI T27 2799
2009–03–11 ENVI T120 801
2009–04–08 ENVI T27 2799
2009–04–15 ENVI T120 801
2009–05–13 ENVI T27 2799
2009–05–20 ENVI T120 801
2009–06–17 ENVI T27 2799
2009–06–24 ENVI T120 801
2009–07–22 ENVI T27 2799
2009–07–29 ENVI T120 801
2009–08–26 ENVI T27 2799
2009–09–02 ENVI T120 801
2009–09–30 ENVI T27 2799
2009–10–07 ENVI T120 801
2009–11–11 ENVI T120 801
2009–12–09 ENVI T27 2799
2009–12–16 ENVI T120 801
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2010–01–13 ENVI T27 2799
2010–01–20 ENVI T120 801
2010–02–17 ENVI T27 2799
2010–02–24 ENVI T120 801
2010–03–24 ENVI T27 2799
2010–03–31 ENVI T120 801
2010–04–28 ENVI T27 2799
2010–05–05 ENVI T120 801
2010–06–09 ENVI T120 801

Table A2. Data set of MST pairs selected using MST methods and γ(i, j) as a weighting criterion. First
and second epochs of each pair are given in YYYY–MM–DD format, perpendicular baseline b⊥ and
temporal baseline ∆t are given in meters and days, respectively.

Epoch 1 Epoch 2 b⊥ ∆t

1992–06–07 1992–07–12 −507.8 35
1992–06–07 1993–04–18 151.1 315
1992–07–12 1992–08–16 −279.5 35
1992–08–16 1993–01–03 −329.8 140
1993–04–18 1993–09–05 −188.8 140
1993–04–18 1993–12–19 407.6 245
1993–06–27 1993–09–05 502.7 70
1993–06–27 1995–04–11 13.1 653
1995–04–11 1995–05–16 −256.8 35
1995–05–16 1995–06–20 71.9 35
1995–06–20 1995–08–29 223.5 70
1995–08–29 1995–11–08 401.6 71
1995–08–29 1996–01–16 −305.5 140
1995–08–29 1996–08–14 −42.1 351
1995–11–07 1995–11–08 −197.8 1
1995–11–07 1995–12–12 99.9 35
1995–11–07 1996–05–01 173.4 176
1996–01–16 1996–01–17 −268.2 1
1996–04–30 1996–05–01 −90.4 1
1996–05–01 1996–10–23 57.8 175
1996–08–14 1997–07–30 148.9 350
1996–10–23 1996–11–27 257.5 35
1997–03–12 1997–07–30 −126.5 140
1997–07–30 1997–10–08 445.7 70
1997–10–08 1998–05–06 57.3 210
1998–05–06 1998–06–10 297.2 35
1998–05–06 1999–08–04 −447 455
1998–06–10 1999–01–06 −2326.6 210
1999–08–04 2000–04–05 −182.5 245
1999–09–08 2000–04–05 410 210
2000–04–05 2000–06–14 0.5 70
2000–05–10 2000–08–23 −434.2 105
2000–06–14 2000–07–19 −359.2 35
2000–06–14 2000–09–27 350.5 105
2000–08–23 2000–09–27 −282.1 35
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2003–10–29 2004–09–08 231.9 315
2003–12–03 2004–09–08 315.6 280
2004–06–23 2004–10–06 326.7 105
2004–06–23 2004–11–10 −385.3 140
2004–09–08 2004–11–17 401.8 70
2004–10–13 2005–05–11 456.9 210
2004–11–10 2005–03–30 −206.1 140
2004–11–10 2008–09–10 48.8 1400
2004–11–17 2004–12–22 268.3 35
2004–11–17 2005–06–15 −272.4 210
2004–12–22 2005–03–02 −115.1 70
2005–01–19 2005–02–23 −38.4 35
2005–05–11 2005–07–20 201.5 70
2005–06–15 2005–07–20 −497.3 35
2005–07–20 2006–01–11 132.7 175
2005–11–30 2006–04–19 227.7 140
2006–02–15 2006–05–31 232.1 105
2006–03–15 2006–04–19 −253.9 35
2006–04–26 2007–10–03 527.7 525
2006–06–28 2006–08–02 332.7 35
2006–11–15 2007–04–04 361.7 140
2006–11–22 2006–12–27 −149.4 35
2006–11–22 2007–11–07 −475.2 350
2006–11–22 2008–08–13 −393 630
2006–12–20 2007–02–28 −19.3 70
2006–12–27 2007–03–07 −296.5 70
2007–01–24 2007–04–04 133 70
2007–05–09 2007–07–18 −7.2 70
2007–06–13 2007–07–18 7.2 35
2007–06–13 2007–08–22 234 70
2007–10–03 2007–11–07 199.3 35
2007–10–03 2007–12–12 −186.1 70
2008–01–09 2008–02–13 −208.5 35
2008–01–16 2008–03–26 121.2 70
2008–02–13 2008–04–23 186.3 70
2008–02–20 2008–04–30 148.3 70
2008–03–19 2008–04–23 −248.7 35
2008–03–26 2008–04–30 −322.1 35
2008–04–30 2008–07–09 −19.5 70
2008–05–28 2008–07–02 118 35
2008–05–28 2008–08–06 253.3 70
2008–06–04 2008–07–09 −60.1 35
2008–07–09 2008–08–13 226.6 35
2008–07–09 2008–09–17 −144.6 70
2008–09–10 2009–04–08 309.8 210
2008–09–17 2009–04–15 120.9 210
2008–10–15 2009–05–13 −30.2 210
2009–03–04 2009–06–17 −16 105
2009–03–11 2009–04–15 −200.1 35
2009–04–08 2009–05–13 250.2 35
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2009–04–15 2009–05–20 57 35
2009–05–13 2009–06–17 271.2 35
2009–05–13 2009–07–22 −186.6 70
2009–05–20 2009–06–24 −86.6 35
2009–06–17 2009–08–26 −59.2 70
2009–06–24 2009–07–29 235.4 35
2009–07–22 2009–09–30 −57.6 70
2009–07–29 2009–09–02 88.4 35
2009–09–02 2009–11–11 −210.6 70
2009–09–30 2009–12–09 −339.8 70
2009–09–30 2010–04–28 196.3 210
2009–10–07 2009–11–11 154.6 35
2009–10–07 2009–12–16 −171.8 70
2009–11–11 2010–05–05 −119.7 175
2010–01–13 2010–02–17 −165.8 35
2010–01–20 2010–02–24 −149.6 35
2010–02–17 2010–04–28 161.8 70
2010–02–24 2010–03–31 227.8 35
2010–02–24 2010–05–05 −87.8 70
2010–03–24 2010–04–28 −238.7 35
2010–05–05 2010–06–09 129.4 35
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Figure A1. Deformation field at San Emidio in terms of wrapped range change in cycles from an ERS
track 27 pair spanning 20th June 1995 to 29th August 1995. One cycle of wrapped phase corresponds to
a range change of approximately 28 mm. Orbital baseline b⊥ = 223.5 m and temporal baseline ∆t = 70
days. Coordinates are easting and northing kilometers in UTM projection zone 11N, WGS84 [15].
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Figure A2. Deformation field at San Emidio in terms of wrapped range change in cycles from an ERS
track 27 pair spanning 30th July 1997 to 8th October 1997. One cycle of wrapped phase corresponds to
a range change of approximately 28 mm. Orbital baseline b⊥ = 445.7 m and temporal baseline ∆t = 70
days. Coordinates are easting and northing kilometers in UTM projection zone 11N, WGS84 [15].
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Figure A3. Deformation field at San Emidio in terms of wrapped range change in cycles from an Envisat
track 120 pair spanning 11th May 2005 to 20th July 2005. One cycle of wrapped phase corresponds to a
range change of approximately 28 mm. Orbital baseline b⊥ = 201.5 m and temporal baseline ∆t = 70
days. Coordinates are easting and northing kilometers in UTM projection zone 11N, WGS84 [15].
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Figure A4. Deformation field at San Emidio in terms of wrapped range change in cycles from an
Envisat track 120 pair spanning 15th February 2006 to 31st May 2006. One cycle of wrapped phase
corresponds to a range change of approximately 28 mm. Orbital baseline b⊥ = 232.1 m and temporal
baseline ∆t = 105 days. Coordinates are easting and northing kilometers in UTM projection zone 11N,
WGS84 [15].
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Figure A5. Deformation field at San Emidio in terms of wrapped range change in cycles from an
Envisat track 27 pair spanning 22nd July 2009 to 30th September 2009. One cycle of wrapped phase
corresponds to a range change of approximately 28 mm. Orbital baseline b⊥ = −57.6 m and temporal
baseline ∆t = 70 days. Coordinates are easting and northing kilometers in UTM projection zone 11N,
WGS84 [15].
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Figure A6. Deformation field at San Emidio in terms of wrapped range change in cycles from an
Envisat track 27 pair spanning 13th January 2010 to 17th February 2010. One cycle of wrapped phase
corresponds to a range change of approximately 28 mm. Orbital baseline b⊥ = −165.8 m and temporal
baseline ∆t = 35 days. Coordinates are easting and northing kilometers in UTM projection zone 11N,
WGS84 [15].

Appendix B. Strain Rate Analysis

We also examine cumulative deformation at San Emidio in terms of strain using the gradients
derived in Section 3.1. We focus on the area surrounding the power plant, which is located at 296.3 km
Easting, 4472.7 km northing (UTM). For each pair in our MST gradient data sets, we take a sample
mean and standard deviation of the gradients recorded within a 100 m by 100 m region centered on
the power plant. We then perform a time-series analysis on the sample mean of the gradients using the
sample standard deviations as uncertainties. We follow the procedure introduced in Section 2.2.3 using
Equation (6) to arrive at an average strain rate for the area surrounding the power plant. The time-series
analysis for each MST data set is shown in Figures A7–A9. Best-fitting estimates of strain rate are
shown in Table A3.
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volumetric strain near San Emidio power plant as measured by ERS T27

Figure A7. Cumulative strain near the San Emidio power plant as derived from temporal adjustment of
mean strain rate values near the plant as measured by the ERS T27 MST data set. Plotting conventions
as in Figure 6.
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Figure A8. Cumulative strain near the San Emidio power plant as derived from temporal adjustment of
mean strain rate values near the plant as measured by the ENVI T27 MST data set. Plotting conventions
as in Figure 6.
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Figure A9. Cumulative strain near the San Emidio power plant as derived from temporal adjustment
of mean strain rate values near the plant as measured by the ENVI T120 MST data set. Plotting
conventions as in Figure 6.

We compare our results to the strain rates measured using the SqueeSAR data set. We similarly
take a sample mean and standard deviation of the gradients recorded within a 100 m by 100 m region
centered on the power plant using the SqueeSAR gradient stack. We then compare the resulting mean
and standard deviation to the values estimated by the time-series analysis of the MST data sets. For
each satellite and track, we first difference the mean strain rate from SqueeSAR with the corresponding
rate for the MST data set and calculate the resulting uncertainty using the relationship for the variance
difference of two Gaussian random variables (e.g., [35]). The results are shown in Table A3. We find
that the differences in the mean strain rates are not significantly different from zero.

Table A3. Mean strain rates near the power plant at San Emidio as measured by SqueeSAR and
estimated by time-series analysis of the MST pairs.

Data Set SQR Sample Mean MST Sample Mean Differenced Mean
Data Set and std. Deviation and std. Deviation and std. Deviation

[picostrain/s] [picostrain/s] [picostrain/s]

ERS T27 −8.8± 8.5 −16.2± 9.7 7.4± 12.9
ENVI T27 −0.1± 14.5 −4.8± 3.8 −4.7± 15.0
ENVI T120 −8.8± 8.5 −6.3± 2.9 −2.4± 9.0
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Appendix C. Pumping Data
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Figure A10. Time series showing rate of gross total monthly injection (blue), gross total monthly
production (red), and total monthly net production (green) in m3/s. Data are from Ormat as reported
to the State of Nevada.
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Figure A11. Time series of cumulative total monthly gross injection (blue), cumulative total monthly
gross production (red), and cumulative total monthly net production (green) at San Emidio in m3. Data
are from Ormat as reported to the State of Nevada.
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