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Abstract: Fine-resolution Light Detection and Ranging (LiDAR) data often exhibit excessive surface
roughness that can hinder the characterization of topographic shape and the modeling of near-surface
flow processes. Digital elevation model (DEM) smoothing methods, commonly low-pass filters, are
sometimes applied to LiDAR data to subdue the roughness. These techniques can negatively impact
the representation of topographic features, most notably drainage features, such as headwater streams.
This paper presents the feature-preserving DEM smoothing (FPDEMS) method, which modifies
surface normals to smooth the topographic surface in a similar manner to approaches that were
originally designed for de-noising three-dimensional (3D) meshes. The FPDEMS method has been
optimized for application with raster DEM data. The method was compared with several low-pass
filters while using a 0.5-m resolution LiDAR DEM of an agricultural area in southwestern Ontario,
Canada. The findings demonstrated that the technique was better at removing roughness, when
compared with mean, median, and Gaussian filters, while also preserving sharp breaks-in-slope and
retaining the topographic complexity at broader scales. Optimal smoothing occurred with kernel
sizes of 11–21 grid cells, threshold angles of 10◦–20◦, and 3–15 elevation-update iterations. These
parameter settings allowed for the effective reduction in roughness and DEM noise and the retention
of terrace scarps, channel banks, gullies, and headwater streams.

Keywords: DEM; LiDAR; data smoothing; denoise; roughness; micro-topography; hydrology;
geomorphometry; streams

1. Introduction

Modern terrain mapping techniques that are based on Light Detection and Ranging (LiDAR)
have allowed for accurate fine-resolution digital elevation model (DEM) production [1–3], with the
ability to represent small-scale topographic variation [4]. At small spatial scales (<10 m), topographic
surfaces are highly complex, owing to the prevalence of un-autocorrelated topographic variation,
which contributes to the rough appearance of many LiDAR DEMs [5–8]. Small-scale surface roughness
adds complexity to a DEM and it is often undesirable because of its impact on the characterization
of larger-scale topography and because it confounds the measurement of geomorphometric indices,
e.g., slope, aspect, curvature, and flow directions [9–12]. Surface roughness is a natural component of
Earth’s topography, and therefore its presence in fine-resolution DEMs is expected. However, surface
roughness is often removed from DEMs using various de-noising or smoothing techniques [4,9,13–15],
most commonly including data reduction (e.g., grid resampling [16] and generalization [14,17–19])
and low-pass filters.

Low-pass filters are frequently applied to smooth DEMs to remove error and lessen
roughness [9,20,21]. These filters suppress the short-scale signal corresponding to error/roughness,
reduce local variation, and preserve the longer-range signal representing spatially autocorrelated
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information. However, low-pass filters have the tendency to blur edges, or breaks-in-slope [22].
Furthermore, most existing smoothing methods assume that the salient topographic features that
are contained within a DEM exist at larger spatial scales than the unwanted variability. However,
in fine-resolution LiDAR DEMs, the topographic expression of salient micro-topographic drainage
features may also occupy scales that overlap with surface roughness. Many current approaches to
filtering-based DEM smoothing are unable to explicitly preserve these salient micro-topographic
drainage features. Many hydrological applications benefit from DEM representation of small drainage
features, such as rills, ditches, gullies, and headwater channels, which exist at the same spatial scales
as surface roughness [23,24]. Small drainage features often control modelled surface drainage patterns.
Very often, it is the ability of LiDAR DEMs to represent these small-scale drainage features that provides
the justification for the acquisition of these data in projects. Thus, it is counter-productive to smooth
fine-resolution DEMs if the outcome is the removal of salient topographic information.

Edge-preserving low-pass filters aim to retain the sharpness of edge definition while smoothing
the unstructured short-scale variation [25–27] and these techniques may be useful for preserving
drainage features in LiDAR data. Although this family of filters has mainly been developed for
application with digital imagery [26,27] and to de-noise three-dimensional (3D) mesh models [28–32],
they have been applied previously to the smoothing of DEM data [13]. Stevenson et al. [13] used the
Sun et al. [31] method to demonstrate that feature-preserving DEM de-noising was possible, at least
for the coarse-resolution interferometric DEMs to which it was applied in that study. However, the
Sun et al. [31] algorithm was not originally intended for data sets as large as typical LiDAR DEMs.
Rather, the algorithm was designed to de-noise point cloud datasets of 3D object models, to which
triangulated meshes are fit. When applied to raster data sets, Sun et al.’s [31] MDenoise program
(i.e., the back-end of GRASS GIS’s r.denoise tool) proceeds by fitting a triangular irregular network
(TIN) to each grid cell. This triangulation-based, iterative approach to smoothing is a highly inefficient
workflow when it is applied to large raster DEMs. These computational factors can limit the practical
usefulness of Sun et al.’s [31] method for application with LiDAR DEMs.

This study aims to explore the potential for feature-preserving smoothing for the removal of
roughness in fine-resolution LiDAR DEMs in a way that can preserve small drainage features. To
achieve this goal, we introduce a novel feature-preserving DEM smoothing (FPDEMS) method that
has been specifically designed to work with the raster LiDAR data sets. The method is then compared
with several common low-pass filters while using a 0.5-m resolution LiDAR DEM of an agricultural
area in southwestern Ontario, Canada.

2. Materials and Methods

2.1. Feature-Preserving DEM Smoothing (FPDEMS)

The Feature Preserving DEM Smoothing (FPDEMS) algorithm was specifically designed to smooth
raster DEMs, following the approach that is commonly used for 3D mesh model smoothing. Under
the assumption that surface normals represent local surface geometry better than vertex position
values, many mesh smoothing methods first smooth the normal vector field and then use this field to
reconstruct the smoothed surface’s vertices [30–32]. Thus, these mesh-based techniques have three
general steps: (1) calculate the normal vector field from the input surface, (2) smooth the normal vector
field, and (3) use the smoothed normals to update the original vertex positions.

A surface normal is a 3D vector that is perpendicular to the tangent plane at a point of measurement.
If the tangent plane to a point (x, y, z) on the surface is defined as,

ax + by + cz + d = 0, (1)

the three components of the normal (n) are:

n = (a, b, c). (2)
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Mesh-based smoothing methods derive n for each face in the 3D model. These faces usually
correspond to the triangular facets of a triangulation fit to the model vertices. Triangulation is a
suitable way of inferring structure from 3D point clouds. However, triangulation is redundant for the
elevations of a DEM, because the raster data structure itself permits the rapid and efficient querying of
neighboring elevation values and the characterization of surface geometry [33]. Stevenson et al. [13]
applied an implementation of Sun et al.’s [31] mesh smoothing method (available in GRASS GIS as
the r.denoise tool) to de-speckle interferometric DEM data. While r.denoise works with either point
clouds or raster data, it does appear to perform a triangulation on both data types. Therefore, surface
normals are calculated for the eight triangular facets connecting each grid cell elevation to its neighbors.
Triangulation of rasters is both computationally expensive and requires substantially more memory
resources than necessary. The FPDEMS method, by comparison, calculates a single normal for each
grid cell based on the 3rd order finite-difference surface-fitting scheme [33] that is commonly used in
geomorphometric analysis to estimate slope gradient and aspect. One can derive the rates of change in
elevation in the x and y directions from the eight outer elevations in the 3 × 3 window surrounding
each grid cell in the DEM (Figure 1), using:

∂z
∂x

=
[
zi+1, j−1 − zi−1, j−1 + 2

(
zi+1, j − zi−1, j

)
+ zi+1, j+1 − zi−1, j+1

]
/8d, (3)

∂z
∂y

=
[
zi−1, j+1 − zi−1, j−1 + 2

(
zi, j+1 − zi, j−1

)
+ zi+1, j+1 − zi+1, j−1

]
/8d (4)
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Figure 1. Scheme used to denote the address of the eight elevation values surrounding grid cell,
zi,j, in a raster digital elevation model (DEM). The DEM grid resolution, d, is the spacing between
neighboring cells.

The normal components can then be derived from:

a =
−
∂z
∂x
‖n‖

(5)

b =
−
∂z
∂y

‖n‖
(6)

c = 1/‖n‖ (7)

where ‖n‖ is the magnitude of n, calculated in the following way:

‖n‖ =

√(
∂z
∂x

)2

+

(
∂z
∂y

)2

+ 1 (8)
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Equations (5)–(8) provide formulations for directly deriving unit normals (i.e., vector magnitude
= 1.0) from eight neighboring elevations. Unit normals are the canonical form of representing these
data. If instead we choose not to normalize n, c = 1.0 and there is no need to store all three components
of the normal vector field. This reduces the memory requirements of the normals by one-third and also
reduces the number of calculations that are involved in smoothing of the field.

Another advantage of directly utilizing the inherent structure of a raster lies in the ability to use
convolution filtering to smooth the normal vector field. Most of the mesh smoothing methods achieve
broad-scale smoothing by applying multiple iterations of localized smoothing of the normals of adjacent
triangular facets [28–32]. The FPDEMS method, by comparison, achieves broad-scale smoothing of
the normal vector field by applying a filtering operation with kernel sizes of a user-specified width;
larger kernels result in more aggressive DEM smoothing. Any low-pass filter operation could be used
to smooth the normal vector field. The FPDEMS method uses the same feature-preserving low-pass
scheme that was proposed by Sun et al. [31]. The filter kernel weights are larger for neighboring cells
with normals that are well aligned with the kernel center cell normal, and the weights decrease as the
angle between normals increases. The smoothed normal (n’i) for cell i is calculated as:

n′i =
∑N

j
w jn j, (9)

where N is the number of grid cells in the kernel and wj is the weight assigned to neighboring cells j.
wj is computed while using the following conditional case:

w j =


(
cos ∠

(
ni, n j

)
− cosθt

)2∑N
k (cos ∠(ni, nk) − cosθt)

2 , ∠
(
ni, n j

)
< θt

0, ∠
(
ni, n j

)
≥ θt

(10)

The upper condition in Equation (10) occurs when the angle between the center-cell normal and
the neighboring normal, ∠

(
ni, n j

)
, is smaller than a user-specified threshold (θt). Neighbors with

normal differences that are larger than θt are assigned a weight of zero, which effectively excludes them
from the calculation of the cell i smoothed normal. This ensures that neighboring sites on different
terrain facets, and thus separated by a break-in-slope, do not contribute to the smoothing operation.

After the normal vector field has been smoothed, elevations are iteratively updated while using
the smoothed normals. An updated elevation for cell i is calculated based on the smoothed tangent
planes of i’s eight neighbors (i.e., substituting n’j in Equation (1) and solving for zi at (xi, yi)), while
using the same weighting scheme that is described in Equation (10). Again, neighbors with normal
differences that are greater than the threshold angle are excluded (wj = 0). This elevation updating
process continues for a user-specified number of iterations.

FPDEMS was implemented as the FeaturePreservingSmoothing tool within the open-source
geospatial analysis platform WhiteboxTools [34]. The source code of the tool, developed using the Rust
programming language, is available on the WhiteboxTools GitHub repository. Estimation of surface
normals and the smoothing of the normal field are both parallelized in the FeaturePreservingSmoothing
tool for improved computational efficiency. The iterative elevation updating step was the only portion
of the workflow that was not parallelized. The user must specify the three main tool parameters,
including the smoothing filter kernel size, the threshold normal difference angle (specified in degrees),
and the number of elevation-update iterations. The user may also optionally restrict the elevation
modifications to a maximum value. Elevation updates that are larger than this value are left unmodified.

2.2. Study Site and Data

The FPDEMS smoothing algorithm was applied to a 324,000,000-grid cell (1.3 GB), 0.5-m resolution
LiDAR DEM. The DEM covers an 81 km2 area east of Brantford Ontario, Canada (Figure 2). The study



Remote Sens. 2019, 11, 1926 5 of 20

site is located between latitude and longitude ranges of 43◦5′50”N to 43◦10′44”N and 80◦5′22”W to
80◦12′5”W, respectively, and it overlaps with portions of the Big Creek and Fairchild Creek sub-basins,
which are tributaries of the Grand River. Headwater streams tend to be deeply incised within the area.
The large incised meanders of each of the major rivers exhibit broad floodplains that are bordered by
steep paired terrace scarps, which is most evident in the case of the lower portion of Fairchild Creek.
This creek cuts a prominent northwest-southeast diagonal through the study site. The steep terrace
scarps that are associated with the streams provide significant local relief, although the overall relief
of the study site is only 40 m. The physiography of the site largely consists of dissected sand plains
and clay plains [35]. The majority of the study site is agricultural and there are some smaller forested
areas that are scattered throughout. There are also small urbanized areas within the site, which are
particularly associated with the outlying portions of Brantford, located towards the west.
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Figure 2. The study site located northeast of Brantford, within Southwestern Ontario, Canada. The
0.5 m resolution DEM is displayed here with shaded relief to emphasize topographic variation.

The DEM was interpolated with a triangulation scheme from last- and only-returns of the source
LiDAR point cloud. A private contractor that was commissioned by the Ontario Ministry of Agriculture,
Food, and Rural Affairs (OMAFRA) and the Ministry of Natural Resources and Forestry (MNRF)
collected the LiDAR source data during leaf-off and snow-free ground conditions in the spring of
2018 and they have been made publicly available. The LiDAR data was projected in the NAD83 UTM
zone 17N (EPSG:2958) coordinate system. The average point density of the data set is eight points
·m−2. The LiDAR data set was produced to meet accuracy standards for Ontario digital geospatial
data for a 0.05 m non-vegetated vertical accuracy class, equating to ±0.098 m at a 95% confidence
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level and a vegetated vertical accuracy of ±0.147 m at the 95th percentile [36]. The FlattenLakes tool
in WhiteboxTools was used to correct the surfaces of waterbodies and wider rivers within the area.
The DEM was also treated to remove any off-terrain objects. The DEM resolution is sufficient to
represent the micro-topographic roughness that is associated with agricultural tillage patterns and the
irregularity of the ground beneath forest cover. Additionally, numerous gullies and headwater streams
are apparent in the data set. Several roads transect the site, and their embankments are apparent in the
DEM, as are roadside drainage ditches.

2.3. Circular Variance of Aspect and Surface Complexity Scale Signatures

Circular variance of aspect (CVA) was used in this study to assess the impact of DEM smoothing
treatments on topographic variability in the smoothed data set across a range of spatial scales. CVA
is a measure of how variable aspect (i.e., slope orientation) is within a local neighborhood, and it is
calculated as follows:

CVA = 1−

√(∑N
1 a

)2
+

(∑N
1 b

)2

N
, (11)

where a and b are defined in their unit vector form, as in Equations (5) and (6). CVA characterizes
surface shape complexity, or texture, at the scale of the neighborhood. CVA is 0.0 for smooth sites and it
approaches 1.0 in areas of high surface roughness or complex topography. Ridge lines and steep-sided
valley bottoms, where the neighborhood kernels overlap with a nearly equal proportions of grid cells
of opposite slope directions, also tend to exhibit high CVA. When a filter window completely overlaps
a relatively simple plain, i.e., a hillslope, all of the contained aspect values are well aligned and the
CVA is low.

The relation between CVA and kernel size (i.e., spatial scale) is referred to as the CVA scale
signature (Figure 3), a function that can be used to characterize the complexity of the topographic
surface across spatial scales.
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Figure 3. A conceptual model of the impact of an ideal DEM smoothing treatment on the CVA
scale signature. The blue line represents the pattern of circular variance of aspect (CVA) for a
hypothetical DEM and the red line indicates the effects of an ideal smoothing treatment. That is,
smoothing should result in suppression of surface complexity at shorter scales while leaving larger
scale complexity unaffected.
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Grohmann et al. [7] found that vector dispersion, which is a measure of angular variance similar to
CVA, increases nearly monotonically with increased spatial scale. This was the result of accumulating
all of the angular variance of smaller scales up to the test scale. A more revealing scale relation can
be estimated by isolating the amount of surface complexity at specific scale ranges. A roughness
metric should emphasize the texture of landforms at larger spatial scales, rather than integrating the
complexity at all smaller scales. As such, our CVA calculation isolated the surface complexity that was
associated with landscape features at a particular test scale by subduing the complexity at smaller
scales with an application of Gaussian blur to the DEM.

DEM smoothing methods should aim to reduce the complexity of the surface at the short spatial
scales at which roughness dominates, while not significantly altering the topographic complexity at
larger spatial scales (Figure 3). The topographic variability at larger spatial scales are dominated by
landforms and their representation in DEM should remain unaltered by the DEM smoothing process.
Therefore, the CVA scale signature provides a method by which we are able to characterize the impact
of a particular smoothing treatment.

3. Results

3.1. FPDEMS Parameter Selection

The FPDEMS smoothing method was applied to the study site DEM, with varying parameter
settings, while using a computer with a 6-core 2.6 GHz processor and 32 GB of memory. The three
main parameters that must be set in the FPDEMS method include the filter kernel size, the normal
difference threshold angle, and the number of elevation-update iterations. The method appears to
be somewhat insensitive to the choice of filter kernel size, with widely ranging values from 11 × 11
to 51 × 51 providing very similar effects on the CVA scale signatures (Figure 4a). The 11 × 11 test
reduced the topographic complexity for a slightly smaller range of scales (Figure 4a), and there was
a very small increase in CVA, relative to the untreated DEM, at scales within the hillslope trough
(Figure 3). While this would suggest that FPDEMS adds complexity at these intermediate scales,
visual examination of the 11 × 11 test DEM (Figure 5) did not reveal any obvious evidence of this
(note, shaded relief images are presented, rather than the DEMs, because the subtle differences in
topographic texture are more apparent in these data). By filter sizes of 15–17, this phenomenon appears
to disappear and the FPDEMS-treated DEMs have CVA signatures that closely follow the original
DEM’s signature at intermediate to longer spatial scales. The observed insensitivity to kernel size
is likely the result of the weighting scheme that is used in the normal vector smoothing phase of
the FPDEMs method. This scheme provides significantly more weight to the neighboring grid cells
with similar normal vectors, excluding those cells with normal differences larger than the threshold.
Ultimately, this means that, under natural terrain, much of the smoothing weight will be assigned to
nearby locations and increasing the kernel size does not provide substantial additional smoothing
beyond a certain point (i.e., the point at which the kernels are likely to overlap with adjacent hillslopes,
which will be ignored by the thresholding component of the scheme). However, altering the FPDEMS
kernel size did significantly impact the processing times when compared with the negligible impact of
varying the normal vector difference threshold, and the relatively subdued increase in processing time
that was observed with an increased number of elevation-update iterations (Table 1).
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Figure 4. The effects of Feature Preserving DEMs (FPDEMs) smoothing on the CVA scale signature of
the study site DEM including varying (a) the filter kernel size from 11 × 11 to 51 × 51 (in grid cells;
each test used a threshold of 15◦ and three iterations), (b) the normal vector difference threshold from
5◦ to 50◦ (each test used 17 × 17 kernels and three iterations), and (c) the number of elevation-update
iterations from 1 to 10 (each test used 17 × 17 kernels and a threshold of 15◦).
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Figure 5. The effect of altering the FPDEMs filter size for two small areas within the study DEM. Each
smoothing operation was run with a normal vector difference threshold of 15◦ and five elevation-update
iterations. Images present portions of the shaded relief images extracted from each DEM.

Table 1. The impact of varying parameter setting values on the processing performance of the
FeaturePreservingSmoothing tool. Processing times include file input/output. The kernel size tests
used a threshold of 15◦ and three iterations, the threshold tests used 17 × 17 kernels and three iterations,
and the iteration tests used 17 × 17 kernels and a threshold of 15◦.

Parameter Value Time (s)

Kernel size 11 × 11 155.4
(grid cells) 17 × 17 228.4

25 × 25 394.6
31 × 31 566.7
51 × 51 1330.7

Threshold 5.0◦ 246.8
(degrees) 10.0◦ 234.6

15.0◦ 230.3
25.0◦ 237.7
50.0◦ 232.1

Iterations 1 176.7
3 232.0
5 277.8
7 338.2
10 403.8
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Varying the normal difference threshold angle used in the exclusion of neighboring grid cells
situated on different terrain facets (Equation (10)) significantly impacted the extent to which the
FPDEMS method smoothed short-scale topographic complexity in the test DEM (Figure 4b). The
smallest tested threshold value of 5.0◦ resulted in far less smoothing than thresholds of 15.0◦ or higher.
At threshold values larger than 15.0◦, the CVA scale signatures appear quite similar at all scales.
However, the impact of these largest tested threshold values is evident in the resulting smoothed
DEMs (Figure 6). While each of the treatments effectively removed short-scale roughness in the
DEM, by threshold values of 25◦ to 50◦, the boundaries of channel edges, roadside ditches, and other
breaks-in-slope become less sharply defined.
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Figure 6. The effects of altering the normal difference threshold angle value from 15◦ to 50◦ in the
FPDEMs. Each smoothing operation was run with a 15 × 15 filter size and 5 elevation-update iterations.
Images present portions of the shaded relief images extracted from each DEM.

Increasing the number of elevation-update iterations had a similar impact on the CVA scale
signature as the effect of altering the normal difference threshold angle (Figure 4c). Increasing from
one to three iterations resulted in a significant reduction of short-scale roughness, which widened the
micro-topographic wedge (Figure 3). However, further increases in the number of iterations yielded
very little change in the resulting scale signatures. This same pattern was also evident from visual
inspection of the smoothed DEMs (Figure 7).
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Figure 7. The effects of altering the number of elevation update iterations in the FPDEMS. Each
smoothing operation was run with a 15 × 15 filter size and a threshold angle of 15◦. Images present
portions of the shaded relief images extracted from each DEM.

Overall, the FPDEMS method produced CVA scale signatures that closely satisfied the ideal
of subduing topographic complexity at small spatial scales, while not significantly impacting the
complexity of larger-scale landforms (Figure 3). Even with relatively conservative parameter settings
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(e.g., 11 × 11 kernel, 15◦ threshold, and three iterations), the method was found to effectively remove the
roughness and noise within the DEM. The crispness of significant boundaries was well preserved with
threshold values less than approximately 25◦, which was particularly evident in the definition of small
streams and drainage ditches within the study site. The very slight increase in topographic complexity
that was apparent in the CVA signatures at scales between approximately 30 and 60 grid cells (Figure 4)
may have resulted from the tendency of the algorithm to not only preserve edge sharpness, but also,
under certain parameter settings, to enhance the definition of some rounded boundaries.

3.2. Comparison With Other DEM Smoothing Methods

The FPDEMS method was compared with common low-pass filters, including mean, median, and
Gaussian filters. The implementations of these filters available in the WhiteboxTools software were
used for testing. Varying sized low-pass filters were applied to the study site DEM and the CVA scale
signatures were extracted from each of the smoothed DEMs (Figure 8).

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 

 

were used for testing. Varying sized low-pass filters were applied to the study site DEM and the CVA 

scale signatures were extracted from each of the smoothed DEMs (Figure 8). 

 

Figure 8. The effects of applying (a) mean, (b) median, and (c) Gaussian low-pass filters of varying 

sizes on the CVA scale signature of the study site DEM. Filter kernel sizes are each expressed in grid 

cells. The Gaussian filter kernel size is a function of the sigma-parameter value. 

The mean, median, and Gaussian low-pass filters showed substantially greater impact at the 

intermediate to longer spatial scales in their respective CVA scale signatures than the FPDEMS 

method (Figure 8). Particularly, at the larger tested filter kernel sizes, the signatures documented 

substantial reductions in the complexity of large-scale topography. It is likely that this was associated 

Figure 8. The effects of applying (a) mean, (b) median, and (c) Gaussian low-pass filters of varying
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cells. The Gaussian filter kernel size is a function of the sigma-parameter value.
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The mean, median, and Gaussian low-pass filters showed substantially greater impact at the
intermediate to longer spatial scales in their respective CVA scale signatures than the FPDEMS method
(Figure 8). Particularly, at the larger tested filter kernel sizes, the signatures documented substantial
reductions in the complexity of large-scale topography. It is likely that this was associated with
the lowering of peaks/ridges and the raising of valley bottoms/channels at larger kernel sizes of the
low-pass filters. The degree to which each of the low-pass filters was able to subdue smaller-scale DEM
roughness was also highly dependent on filter kernel size. Significant smoothing was found to occur
for the mean and median filters with kernel sizes larger than 7 × 7 and for Gaussian filters with sigma
values greater than 1.3–1.7 grid cells. The mean and median CVA scale signatures were very similar
overall, while the Gaussian signatures demonstrated more conservative smoothing across all spatial
scales at comparable kernel sizes (Figure 8). Of course, this is unsurprising, given the nature of how
Gaussian low-pass filters determine kernel weights, providing greater weight to closer neighboring
grid cells.

The processing times of all three low-pass filter tests were substantially lower, by approximately
one order of magnitude, than those of the corresponding FPDEMS tests (Table 2). The WhiteboxTools
mean filter uses an integral-image based approach and the processing times were therefore independent
of kernel size. WhiteboxTools’ median filter takes advantage of the redundancy between adjacent filter
windows and is therefore also highly efficient. However, the Gaussian filter tests had processing times
that approached those of the FPDEMs method, particularly at larger sigma values. All three low-pass
filter implementations are parallelized and fully utilized all of the test system’s processor cores.

Table 2. The impact of varying filter kernel size on processing performance of various low-pass filtering
methods. The Gaussian filter kernel size is a function of the sigma-parameter value. Processing times
include file input/output.

Method Value (Grid Cells) Time (s)

Mean 3 × 3 16.1
5 × 5 15.0
7 × 7 15.0
9 × 9 15.0

11 × 11 14.9
15 × 15 16.0
21 × 21 15.1

Median 3 × 3 15.5
5 × 5 15.9
7 × 7 16.7
9 × 9 16.7

11 × 11 17.1
15 × 15 18.3
21 × 21 20.3

Gaussian Sigma = 0.3 18.7
Sigma = 0.7 23.3
Sigma = 1.0 31.9
Sigma = 1.3 42.3
Sigma = 1.7 56.9
Sigma = 2.3 91.0
Sigma = 3.3 150.6

Figure 9 provides a detailed comparison of the impacts of each of the low-pass filters on the study
site DEM. This small area within the study site shows portions of two agricultural fields (lower half)
and a forested area (upper half). While the trees of the forested areas are not present in the DEM,
the excessive roughness of the forest floor is apparent in the unsmoothed data set. A steep terrace
scarp is apparent in the bright section within the upper-left corner of the image, and the boundaries



Remote Sens. 2019, 11, 1926 13 of 20

of this slope are well defined (Figure 9). A deep, steep-sided gully, initiating at the field-forest edge
and within the swale between the two fields, cuts through the central area. Tillage patterns and DEM
noise (nearly vertical striping possibly due to LiDAR scan lines) are also evident within the gentler
topography of the fields.
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Figure 9. A comparison of the mean, median, and Gaussian low-pass filters and the FPDEMS method
for smoothing fields, a gully, and a forested terrace hillslope within the study site DEM. Images present
portions of the shaded relief images extracted from each DEM.

The mean and Gaussian filters both notably blur the edges of the hillslope and gully features. The
complex texture of the fields is effectively removed while using both of these filters; however, significant
roughness remains within the forested areas (Figure 9). The median filter, by comparison, does well to
preserve the sharpness of the breaks-in-slope, while also smoothing the roughness of the original DEM.
Nonetheless, the shape of the gully does appear to be significantly altered by median filtering; the
narrow end-portion of the feature is filled in and the middle section appears to be widened. However,
perhaps more problematic is the introduction of a contouring effect that is particularly apparent on
the steeper forested areas and within the lower field swale. These small terrace-like features, which
resemble slump scars, are not evident within the original DEM. Based on the CVA scale signatures
(Figure 8) and the inspection of the filtered DEMs, it is apparent that smaller filter kernel sizes would
result in substantially more retained roughness after smoothing and larger kernels would yield more
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edge blurring (mean and Gaussian filters) or more alteration of feature shapes and artificial terracing
(median filter).

Figure 9 presents two FPDEMS method treatments (11 × 11 kernel/15◦ threshold/10 iterations
and 17 × 17 kernel/20◦ threshold/15 iterations) for comparison with the common low-pass techniques.
The edge-preserving nature of FPDEMS is clearly able to maintain the sharp breaks-in-slope that is
associated with the gully and the terrace scarp. Furthermore, the shape of the gully feature does not
appear to be significantly altered by the treatments with the FPDEMS method. Both of the treatments
appear to remove the texture of the original DEM within the fields. The less aggressive FPDEMS
smoothing treatment (11 × 11 kernel/15◦ threshold/10 iterations) did as well or better at removing
the excessive roughness of the forested areas than the three low-pass filters. The more aggressive
treatment was able to remove almost all of the roughness of the forest floors, albeit with some loss in
finer topographic details, e.g., the hedge-row mound dividing the two fields was smoothed.

In addition to preserving the sharpness of breaks-in-slope, the FPDEMS method was particularly well
suited to maintaining the geometry of the small streams and other drainage features (e.g., roadside ditches).
Figure 10 shows the effects of each of the tested smoothing methods in an area containing a deeply incised
stream channel. The mean and Gaussian filters both rounded the channel banks, widened the channel,
and raised the bottom, effectively filling in the feature in narrower places. By comparison, the median
low-pass filter and FPDEMS method preserved the steepness of channel banks well. However, notice
how the yazoo tributary that flows along the bottom of the southern terrace scarp (lower right corner) is
retained after treatment with the FPDEMS method, but it is obscured by the median filtering treatment.
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Figure 10. A comparison of the mean, median, and Gaussian low-pass filters and the FPDEMS method
for smoothing a small incised stream within the study site DEM. A small yazoo tributary stream flows
along the base of the lower terrace scarp, near the bottom-right corner. Images present portions of the
shaded relief images extracted from each DEM.
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Although the CVA scale signatures quantify the impact of treatment methods on the topographic
complexity at different scales, and the shaded-relief images provide a means to visually characterize
the impact of treatments on specific features, it is also useful to examine the relative degree to which
treatments modify the original DEM. The root-mean-square (RMS) elevation differences between the
mean (7 × 7), median (7 × 7), Gaussian (Sigma = 1.7 cells), and FPDEMS (11 × 11 kernel/15◦ threshold/10
iterations) treated DEMs and the original data were 0.082 m, 0.048 m, 0.069 m, and 0.028 m, respectively,
and the 90% linear error (LE90) values were 0.056 m, 0.048 m, 0.048 m, and 0.043 m, respectively.
Therefore, for similar overall levels of smoothing (Figures 4 and 8), the FPDEMS method requires less
overall modification of the original elevation values.

3.3. Implications For Flow-Path Modelling

The earlier sections demonstrate the ability of the FPDEMS method to subdue the roughness that often
impact DEM-based surface flow-path modelling, while also preserving the small drainage features, such as
headwater streams and ditches, which are apparent in LiDAR data. It is frequently the effects that excessive
roughness has on the ability to model flow patterns while using a DEM that are the primary motivation
for smoothing LiDAR data. Flow-path modelling relies on the accurate characterization of local slope
gradient and flow direction (related to aspect), which in turn may be used to model the flow pathways and
the spatial pattern of upslope area (Figure 11). These data are applied in delineating catchments and in
modelling soil moisture (e.g., the wetness index) and sediment erosion and transport.

A comparison of the effects of mean filtering and the FPDEMS method on flow-path modelling
data (Figure 11) demonstrated the impact that even a relatively small 7 × 7 mean filtering has on the
slope distribution. The slope gradient along the banks of the incised channel is significantly reduced.
Similarly, the steepest portions of the terrace scarps are also somewhat flattened by mean filtering.
The FPDEMS method, by comparison, preserves the steepest slope gradients along both the incised
channel and the terrace scarps, while subduing the slope variability resulting from micro-topographic
roughness. The range of slope values after applying the FPDEMS method (0.0◦ to 58.8◦) was similar to
the original DEM (0.0◦ to 60.1◦), while mean filtering substantially reduced the range (0.0◦ to 48.5◦).

The effects of roughness in the original LiDAR DEM are probably most apparent in the D∞ [37]
flow direction data (Figure 11), where the larger-scale flow patterns are completely overwhelmed by
local-scale variability. The irregularity of modelled flow directions, due to excessive roughness, has
the effect of lengthening flow paths, which are apparent in the convoluted flow lines in the upslope
area data. The mean filter and the FPDEMS treatments were both found to effectively suppress the
local-scale signal in flow-directions, providing for clearer representation of field-scale surface flow
patterns. The shallowing of the bank slopes and widening of the channel by the mean filter noted
above is also apparent in the flow direction data, as is the relative sharpness of major breaks-in-slope
in the FPDEMS flow direction image. However, the difference between the two DEM smoothing
techniques are less pronounced in the D∞-derived [37] upslope area (i.e., flow accumulation) data.
Both techniques significantly and similarly impacted the pattern of upslope area, providing shorter, less
convoluted flow pathways and more divergent flow patterns on the hillslopes (denoted by the fuzzier
appearance of the smoothed upslope area rasters in Figure 11), as compared to the original DEM. While
visual interpretation of these smoothed flow patterns is arguably improved by the treatments, it is
difficult to comment on the accuracy of one distribution over another in the absence of reference data.
Researchers often assess the accuracy of flow patterns while using mapped stream networks; however,
in this area, the mapped streams are of a lower spatial accuracy than the LiDAR data.

While comparisons with the median and Gaussian filter treatments are not provided in Figure 11,
their impacts were observed to be intermediary between those of the mean and FPDEMS treatments.
Instead we have chosen to compare the relative impact of the FPDEMS method with the mean filter for
brevity, because the mean treatment provides the greatest contrast with the FPDEMS method, and
because of the common use of mean filtering for DEM smoothing in practice.
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Figure 11. The spatial distribution of slope gradient, D∞ flow direction, and D∞ upslope area for the
same portion of the study site shown in Figure 10. These flow-path terrain attributes are shown for the
original DEM (left column), the 7 × 7 mean treated DEM (center column), and the FPDEMS (15 × 15
filter size/15◦ normal difference threshold angle/5 iterations) treated DEM (right column).

4. Discussion

The CVA scale signatures show that the FPDEMS method exhibits the desired property of subduing
the micro-topographic peak by smoothing roughness and reducing noise in fine-resolution LiDAR
data when applied with filter kernel sizes larger than 11 × 11, normal difference threshold angles of
larger than 15◦, and with three or more elevation-update iterations (Figure 4). Threshold angles of
between approximately 10◦ and 20◦ were found to be optimal for the test data, with threshold values
that were larger than this producing a loss of definition in the incised channel banks and terrace scarp
boundaries within the site. This range of threshold values is narrower than the 8.1◦ to 29.5◦ range
recommended by Stevenson et al. [13] when applying the Sun et al.’s [31] method to coarser-resolution
interferometric DEMs.
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The low-pass filter methods produced CVA scale signatures that showed greater alteration,
specifically a lowering of topographic complexity, at broader spatial scales extending upwards of about
100 grid cells (Figure 8). This was particularly obvious for filter kernel sizes that were larger than about
nine grid cells (mean and median filters) and for sigma values larger than 2.3 grid cells (Gaussian
filter). Naturally, the lowering of peaks and divides and the raising of channels and valley floors that
were caused by spatial elevation averaging caused this decrease in the average CVA at these scales.
The FPDEMS treated elevation models produced CVA signatures that consistently, being insensitive to
parameter settings, more closely matched the signature of the original DEM at broader spatial scales.
However, under certain parameter settings, the method did produce signatures that exhibited a small
increase in average CVA at intermediate scales. Any increase in average CVA is unexpected because
it implies that the smoothing technique has introduced topographic complexity at these scales. We
hypothesize that this introduced complexity may have resulted from the tendency of the method, at
smaller filter kernel sizes and with greater elevation-update iterations, to enhance the sharpness of
the originally rounded slopes. That is, while the method does well to preserve the original sharpness
of natural breaks-in-slope, under some conditions it did tend to produce a sharper break than what
appeared in the original DEM. This phenomenon was not widespread in the test data, but it is the
reason that kernel sizes less than 11 × 11 grid cells and greater than 15 elevation-update iterations are
not recommended for application with fine-resolution LiDAR data such as those used in the test.

While the computational performance of the FPDEMS method was substantially lower than the
conventional low-pass filter techniques, processing times were found to be practically reasonable
for general application with typical LiDAR data sets. The 1.3 GB study site DEM was smoothed
while using the FeaturePreservingSmoothing tool in between 2.6 and 22.4 minutes, depending on the
parameter settings. This indicates that the method can be practically applied to the types and sizes of
LiDAR DEMs that are commonly applied in research at present. The processing times were particularly
sensitive to the filter kernel size parameter, although the impact of varying this parameter on the
degree of smoothing was significantly less than either the normal difference threshold angle or the
number of elevation-update iterations. Thus, it is recommended that, when applied to fine-resolution
LiDAR data sets, filter kernels of between 11 and 21 grid cells are best. While comparisons were
made with the low-pass filters that are commonly used for DEM smoothing in practice, it would have
also been useful to compare the FeaturePreservingSmoothing tool against other feature-preserving
methods. Unfortunately, we were unable to successfully apply either GRASS GIS’s r.denoise tool
or SAGA GIS’s Mesh Denoise tool to the study site DEM. Mesh Denoise’s memory use continued
to increase during operation and the process was terminated after more than three hours. The
Mesh Denoise tool relied heavily on slow virtual memory and was terminated when the memory
requirements of the tool were approximately five times the available system memory. By comparison,
the FeaturePreservingSmoothing tool required a maximum 6.04 GB of memory.

The application of CVA scale signatures provided a useful means of assessing the impact of various
smoothing methods, and of varying parameter settings, on the topographic information contained
within the DEM. It allowed for the quantification of the degree to which a treatment successfully
subdued micro-topographic roughness and DEM noise without altering longer-range topographic
features, including landform representation. It is important to note that the hillslope trough of the
CVA scale signature (Figure 3) is not a direct measure of the average hillslope length scale of the site,
but is related to it. The trough results from a filter kernel size that is larger than the scale at which
micro-topographic roughness and noise are expressed and is small enough that a significant number of
filter windows will not overlap with adjacent terrain facets separated by divides or valley bottoms.
Filter windows that are completely contained within a single hillslope will exhibit a relatively uniform
aspect, since hillslopes are defined by their characteristic slope orientation (while gradients may vary
downslope). For the study site that was examined in this research, this scale of suppressed topographic
complexity was relatively short and it extended from approximately 7 to 30 grid cells (3.5 to 15 m).
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More rugged terrains are likely to exhibit CVA signature troughs at longer scales, and perhaps possess
broader-shaped hillslope troughs.

The edge-preserving nature of the FPDEMS method performed better at retaining the sharp
definition of significant breaks-in-slope within the test DEM, as compared with mean and Gaussian
filtering. Median filtering offered a similar level of edge-preservation to the FPDEMS method; however,
it exhibited the undesirable qualities of changing the shape of features and introducing an artificial
contouring to the data. Sun et al. [31] also noted the characteristic of median-based filtering to introduce
artifact features in noisy 3D meshes. When compared with the low-pass filters, the FPDEMS did not
appreciably fill-in, widen, or alter the shape of the incised streams that were found throughout the
study site. It also performed better in retaining the small in-field headwater channels, gullies, and
the roadside ditches that were common within the site. The extra costs of acquiring LiDAR data are
often motivated by the ability of these data to better represent these types of small-scale drainage
features [38]. Many of these drainage features occupy similar spatial scales to the roughness within
LiDAR data and this research demonstrates that some of the most commonly applied DEM smoothing
techniques can significantly degrade their representations.

The spatial distribution of slope that was produced by the FPDEMS method was simplified by
removing short-scale variation in the original DEM, without altering large-scale patterns or shortening
the overall range of slope values. As with mean filtering, flow-direction data were found to be
significantly simplified through the application of the FPDEMS method, providing less convoluted flow
paths. While the simplified flow-direction raster is certainly easier to visually interpret than the pattern
that is produced by the rough DEM, whether or not this is more realistic is likely a function of the type
of flow phenomena operating in an area. The more convoluted flow paths that are dominated by the
excessive roughness in the original DEM may better reflect overland flow patterns, particularly across
tilled agricultural fields where tillage and rills are known to control flow [39,40]. However, in places
where shallow subsurface flow dominates runoff processes, the smoothed flow directions and more
divergent pathways provided by the mean filter and FPDEMS method may better represent the flow
patterns at the field-scale. Drainage channels exist because the magnitude and frequency of flow allows
for the erosion and transportation of sediment within to outpace the rate of deposition [41]. Thus, the
preservation of small-scale drainage features in a DEM after smoothing, such as that demonstrated by
the FPDEMS method, must provide a more realistic model of local flow patterns than a DEM in which
these features have been completely obscured by either liberal, non-edge-preserving smoothing or
data resampling.

5. Conclusions

Fine-resolution LiDAR data are often characterized by very high surface roughness. This local-scale
variability can greatly impact the ability of researchers to quantify topographic shape (e.g., slope,
aspect, curvature) and to model the near-surface flow processes. DEM smoothing methods, such as
low-pass filtering and data resampling, are often applied to LiDAR DEMs as a pre-processing step to
overcome these challenges. Unfortunately, these techniques can negatively impact the representation
of topographic features, most notably drainage features, like headwater streams and ditches. Previous
research has demonstrated the potential for using normal vector field smoothing as the basis for
feature-preserving DEM generalization. This paper presented a novel DEM smoothing technique,
called FPDEMS, which was implemented as the FeaturePreservingSmoothing tool of the WhiteboxTools
geospatial analysis software. The FPDEMS method is based on a feature-preserving normal vector field
smoothing technique that is similar to Sun et al.’s [31] approach, originally designed for de-noising 3D
meshes. However, the FPDEMS method has been optimized for application with large raster DEMs.

The suitability of the FPDEMS method for smoothing a LiDAR DEM of a largely agricultural area in
southwestern Ontario, Canada was evaluated by comparing its performance against commonly applied
low-pass filters. The findings demonstrated that the technique performed better at removing DEM
roughness, while preserving the sharpness of breaks-in-slope and retaining small drainage features, as
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compared with mean, median, and Gaussian filters. Optimal parameter values for application with
the LiDAR data set occurred with kernel sizes of between 11 and 21 grid cells, threshold angles (used
for normal vector field smoothing) of 10◦ to 20◦, and three to 15 elevation-update iterations. These
settings allowed for an effective reduction in micro-topographic roughness and DEM noise and the
retention of terrace scarp boundaries, incised channel banks, gullies, and headwater streams.
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