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Abstract: In this article, a novel approach for land cover change detection (LCCD) using very
high resolution (VHR) remote sensing images based on spatial–spectral feature fusion and
multi-scale segmentation voting decision is proposed. Unlike other traditional methods that have
used a single feature without post-processing on a raw detection map, the proposed approach
uses spatial–spectral features and post-processing strategies to improve detecting accuracies and
performance. Our proposed approach involved two stages. First, we explored the spatial features
of the VHR remote sensing image to complement the insufficiency of the spectral feature, and then
fused the spatial–spectral features with different strategies. Next, the Manhattan distance between the
corresponding spatial–spectral feature vectors of the bi-temporal images was employed to measure
the change magnitude between the bi-temporal images and generate a change magnitude image
(CMI). Second, the use of the Otsu binary threshold algorithm was proposed to divide the CMI into a
binary change detection map (BCDM) and a multi-scale segmentation voting decision algorithm to
fuse the initial BCDMs as the final change detection map was proposed. Experiments were carried out
on three pairs of bi-temporal remote sensing images with VHR remote sensing images. The results
were compared with those of the state-of-the-art methods including four popular contextual-based
LCCD methods and three post-processing LCCD methods. Experimental comparisons demonstrated
that the proposed approach had an advantage over other state-of-the-art techniques in terms of
detection accuracies and performance.

Keywords: land cover change detection; very high resolution; bi-temporal remote sensing images;
spatial–spectral features; multi-scale segmentation

1. Introduction

Land cover change detection (LCCD) with bi-temporal remote sensing images is a popular
technique in remote sensing applications [1–3]. This technique concentrates on finding and capturing
land cover changes using two or more remote sensing images that cover the same geographic area
acquired on different dates [1,4–6]. LCCD plays an important role in large-scale land use analysis [7–9],
environment monitoring evaluation [10,11], natural hazard assessment [12–14], and natural resource
inventory [15]. However, issues such as “salt-and-pepper” noise in the detection results, especially for
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VHR remote sensing images [16–18], pose a challenge in the practical applications of LCCD with
remote sensing images.

LCCD with bi-temporal remote sensing images can be viewed as a pattern recognition problem in
image processing where two groups of pixels are labelled, one class for the changed pixels and the
other for the unchanged pixels [19]. Existing methods for LCCD can be classified into two types: binary
change detection and “from–to” change detection. A binary change detection method acquires land
cover change information by measuring the change magnitude through a comparison of bi-temporal
images such as image rotation [20], image difference [21], and change vector analysis methods [22–24].
In these methods, a binary threshold is adopted to separate the pixels of the change magnitude
image (CMI) into “changed” and “unchanged”. Some advantages of binary change detection are
that it is straightforward and operational; however, the limitation of this method is that it can only
provide the size and distribution of the change target without providing more details on the change
information [25,26]. In contrast, the “from–to” change method can directly recognize the kinds of
changes “from one to another”. However, most “from–to” change detection methods depend on the
performance of the corresponding land cover classification [22,27–29].

In recent decades, a considerable number of studies have focused on LCCD based on VHR remote
sensing images [30–32]. The VHR remote sensing image can depict ground targets in more detail than
median-low resolution remote sensing images. However, these VHR images with insufficient spectra,
but higher resolution usually means a larger intra-variance of the intra-class [33–35]. Although satellite
sensors such as the WorldView-3 satellite have collected VHR images with eight spectral bands
(red, red edge, coastal, blue, green, yellow, near-IR1, and near-IR2) in recent years, the image still
demonstrates “larger intra-variance of the intraclass” [36,37]. Furthermore, when using LCCD on VHR
bi-temporal images, the two images acquired on different dates are usually inconsistent in terms of
atmospheric conditions, sun height, or seasonal phenology; this difference will bring “pseudo-change”
in the detection map [38,39]. To address this problem, the contextual spatial feature is usually adopted
to smoothen the noise and improve detection accuracies. For example, Celik et al. proposed a
method called principal component analysis and k-means clustering (PCA_Kmeans), which divided
the CMI into h × h overlapping blocks [40]. The fuzzy clustering method was integrated into the
change vector analysis for LCCD (CVA_FCM) [41]. The semi-supervised fuzzy c-means clustering
algorithm (Semi_FCM) was developed to address the problem of separating the different images into
changed and unchanged pixels [42]. Zhang et al. presented a novel method for unsupervised change
detection (CD) from remote sensing images using level set evolution with local uncertainty constraints
(LSELUC) [43]. The level set method was developed for acquiring landslide inventory mapping with
VHR remote sensing images [13]. The Markov random field is another effective way of employing
contextual information to improve the performance of LCCD with VHR remote sensing images [44–46].
Although these methods can reduce the noise in the detection map, they are sensitive to contextual
space and the progress of determining the contextual scale depends on the mathematical model used
and the experience of the practitioner.

Apart from the aforementioned spatial context-based LCCD methods, which are referred to
as pre-processing LCCD techniques in this study, a number of studies have also reported that the
post-processing procedure can further improve the performance and accuracy of LCCD [22,47].
The post-processing LCCD method focuses on processing the initial detection map and enhancing
the performance of LCCD. For example, post-processing with majority voting (MV) has played
an important role in improving the raw classification of remote sensing images [48,49]. A general
post-processing classification framework (GPCF) was proposed to smoothen the noise of the initial
classification map in [50]. Inspired by the post-processing work in image classification, in our previous
study [51], an object-based expectation maximization (OBEM) post-processing approach was developed
to refine raw LCCD results, which confirmed that using post-processing could effectively improve the
performance of LCCD.
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While reviewing LCCD techniques with remote sensing images in the past decades [1,2,20,21,52],
most LCCD methods were found to concentrate on the extraction and utilization of one single feature
to measure the change magnitude between bi-temporal images. In addition, if these methods are
defined as “pre-processing LCCD techniques”, then post-processing LCCD techniques for the methods
are still missing. With the challenge of LCCD with VHR images becoming increasingly prominent
in recent years, a considerable number of initial detection results cannot satisfy the requirements of
practical application due to the large amount of “salt-and-pepper noise” in a raw change detection map.
Pre- and post-processing LCCD techniques should complement each other to improve the change
detection performance and accuracies. This complementarity and improvement serve as the basic
motivation and viewpoint of our work.

This study, which was inspired by the effectiveness of spatial–spectral feature fusion for image
classification [34,53–55] and the post-processing LCCD method [51], developed a novel LCCD approach
to improve the performance of LCCD with VHR bi-temporal remote sensing images. The contribution of
the proposed framework lies in constructing a new workflow based on the existing techniques including
the spatial–spectral feature fusion and the multi-scale segmentation majority voting techniques.
Compared with our previous works, which include the MV [49] and OBEM [51], the improvement and
difference of this proposed framework are twofold:

(1) While the binary change detection was viewed previously as a “pre-processing technique”,
MV [49] and GPCF [50] can be applied to smoothen the noise and improve the initial detection
performance. However, the existing regular window sliding technique cannot cover various
ground targets with different shapes and sizes. Hence, in the proposed framework, in addition
to the spatial–spectral feature fusion strategy, the initial detection map sets were fused and
smoothened using multi-scale segments that represent anastomosis with the size and shape of
the ground targets.

(2) In the previous post-processing method called the OBEM [51], the best raw initial change detection
result is first chosen from the initial detection results set, then multi-scale segmentation based on
the post-event images is adopted to smoothen the noise of the selected initial raw map. In contrast,
in the proposed framework, the multi-scale segmentation was used directly to fuse the initial
detection results and generate the final change detection map by the majority voting decision.

Three pairs of VHR remote sensing images for depicting real land cover change events were
employed to assess the effectiveness and performance of our proposed framework. Four state-of-the-art
context based LCCD methods and three post-processing LCCD methods were adopted and compared
with the proposed framework. Experiments based on the bi-temporal remote sensing images,
which covered the real landslide and land use events, were conducted for comparisons. The present
study concluded that the proposed LCCD framework based on the integration of spatial–spectral
features and multi-scale segmentation voting decision was better suited for the task of change detection
than other state-of-the-art techniques.

The rest of this article is divided into four sections. Section 2 describes the proposed methodology.
A description of the experimental dataset is given in Section 3. Section 4 presents the details of the
experiments and discussion on the results. Conclusions are drawn in Section 5.

2. Methodology

In the present work, a novel framework based on spatial–spectral feature fusion and multi-scale
segmentation voting decision for change detection with VHR remote sensing images is proposed.
The present work has two contributions: (1) an algorithm based on spatial–spectral feature fusion,
Manhattan distance, and Otsu threshold was integrated to obtain the initial BCDMs; and (2) a
multi-scale segmentation voting decision method was developed to fuse the initial BCDMs into the
final change detection map. Unlike other state-of-the-art techniques that consider only pre- or post-
techniques alone, the proposed framework was designed to integrate pre- and post-techniques into a
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single platform to detect land cover change. As shown in Figure 1, the proposed framework has two
major stages, which will be discussed in detail in the following sections.Remote Sens. 2019, 7, x FOR PEER REVIEW  4 of 22 
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2.1. Generation of the Initial BCDMs

The aim of the first stage is to generate the initial BCDMs based on spatial–spectral feature
fusion. The motivation for fusing different spatial–spectral features lies in that different spatial–spectral
features have outstanding different ground targets in an image. One advantage of fusing different
spatial–spectral features is that it can enhance the ability to detect a variety of targets. In other words,
different spatial–spectral feature extraction methods may have various advantages, and fusing different
spatial–spectral features together may provide a potential means of utilizing the advantages of the
different spatial–spectral feature extraction methods.

Figure 1a shows the proposed framework of generating the initial BCDMs. First, the spatial
feature of the bi-temporal images is extracted using a developed spatial feature extraction method and
the spatial and spectral features are stacked with different fusion methods to improve the homogeneity
of the target. Second, the Manhattan distance is employed to measure the change magnitude between
the corresponding fused feature vector, as presented in Equation (2). Finally, Otsu [56] is applied on
the CMI to obtain the binary change detection map.

Three classical spatial feature extraction methods, namely, extended morphological profiles
(EMPs) [57], morphological attribute profiles (Aps) [58], and rolling guide filter (RGF) [59], which
have been applied successfully for image classification, were introduced to explore the spatial
feature of the bi-temporal VHR remote sensing images and verify our viewpoint in the first
stage. The spatial and spectral features are denoted as Ft1

spa = { f 1,t1
spa , f 2,t1

spa , f 3,t1
spa , . . . , f N,t1

spa } and

Ft1
spe = { f

1,t1
spe , f 2,t1

spe , f 3,t1
spe , . . . , f M,t1

spe }, respectively.
In this stage, feature fusion is proposed to complement the insufficiency of the spectral information

of the VHR remote sensing image. Three feature fusion strategies (layer stacking [35], mean-weight [60]
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and adaptive weight [61]), which have been applied successfully in road extraction, land cover
classification, and image segmentation with VHR remote sensing image, respectively, were proposed.
Different strategies have different effects on spatial and spectral features, as shown in Equation (1).
For example, the layer stacking method [35] is the most widely used multi-feature fusion approach
that concatenates the multiple features into one vector (W1 = W2 = 1.0). The mean-weight fusion
method [60] separates the effects on Ft1

spa and Ft1
spe as 0.5 (W1 = W2 = 0.5). In the adaptive weight

method [61], the weight of a pixel is determined by the correlation between the center pixel and
its surrounding neighbors, and the closer correlation implies a heavier weight, and consequently,
more details can be tracked in the literature [61].

Ft1
f usion =

{
W1Ft1

spa, W2Ft1
spe

}
(1)

The change magnitude between the bi-temporal images is measured by considering the availability
of the Manhattan distance for detecting land cover change [62]. The change magnitude between the
corresponding pixel (Pt1

i j and Pt2
i j ) are calculated using the Manhattan distance [63] as presented in

Equation (2). The entire bi-temporal image is processed pixel-by-pixel in this manner and a change
magnitude image (CMI) is generated. The spatial–spectral feature used for calculating MD should
correspond to the same feature fusion strategy. Therefore, three feature fusion approaches based on
one composition of spatial–spectral feature will produce three CMIs.

MD
(
Pt1

i j , Pt2
i j

)
= ‖Ft1

f usion − Ft2
f usion‖ (2)

To divide each CMI into a binary change detection map, the binary threshold method, Otsu [56],
was employed to divide the CMI into a BCDM. Otsu assumes that the CMI has two classes, changed and
unchanged, and calculates the optimum threshold separating the two classes so that their intra-class
variance is minimal or equivalent. Otsu has been applied successfully in the prediction of the binary
threshold for detecting land cover change (more details can be found in [64,65]).

2.2. Multi-scale Segmentation Voting Decision

In the second stage, the BCDMs are fused into the final change detection map through our proposed
multi-scale segmentation voting decision method to further improve the performance of LCCD.

For the second stage, inspired by previous studies [14,49,50], a multi-scale segment voting decision
method was developed as a post-processing fusion strategy. Multi-scale segmentation based on the
post-event image was acquired using eCognition to ensure that the image was constructed in an object
manner (“object” is a group of pixels homogeneous in spectra domain and connected continuously in
the spatial domain [66]). Here, the post-event image refers to the image that depicts the occurrence of
the detection target such as the landslide or building-up area. Then, the initial BCDMs and multi-scale
segmentation were overlapped and the final change detection was generated in an object-by-object
manner. In the final change detection map, the label of the pixel within an object was assigned according
to the rule of the major voting decision. It is worth noting that the multi-scale segmentation utilized in
the proposed approach, called the fractal evolution net approach (FENA) [67], has three parameters
(scale, shape, and compactness). In addition, FNEA has been embedded in the eCognition 8.7 software
as a “multi-scale segmentation” tool for processing images [68]. The shape and compactness were
fixed at 0.8 and 0.9, respectively, because high compactness and homogeneity of segmental objects
were expected in our proposed approach.

Combining an image object with MV [49] for fusing and smoothing the initial BCDM has three
advantages. (1) The multi-scale segmentation is based on the post-event image and the pixels within an
object usually have high-level homogeneity and can be deemed as the same material class. Therefore,
some noise pixels can be removed effectively in the final change detection map. (2) The spatial
information of the changed or unchanged area such as shape, size, and distribution is obtained from
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the post-event image through multi-scale segmentation. According to the multi-scale segmentation
theory, the shape and size of an object yield to the shape and size of a target or a part of a target.
Therefore, smoothing the changed or unchanged area can be done in an adaptive object manner instead
of a pixel manner. An adaptive smoothing filter is more rational and practical than using a regular
window for detecting land cover change, which is uncertain in terms of shape and size. (3) According
to the characteristics of the proposed multi-scale segmentation voting decision strategy, the generation
of the final change detection map is acquired by fusing the initial BCDMs. Therefore, the proposed
approach has the potential ability to integrate the different advantages of the initial BDCM and improve
detection accuracy. A schematic example is presented in Figure 2 to demonstrate the effectiveness of
the proposed multi-scale segmentation voting decision.
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3. Experiments and Analysis of Results

In this section, three pairs of bi-temporal remote sensing images with very high spatial resolution
were used to test the effectiveness of the proposed framework. First, the image data for the three land
cover change events were described in detail. Then, the experiments were designed and presented.
Finally, the results were compared and the parameter sensitivity of the proposed framework analyzed.

3.1. Dataset Description

The three image datasets used in the experiments are illustrated in Figure 3. These images were
acquired through the aerial platform and QuickBird satellite. The images depict landslide change and
land use change events. More details on the images are given below and in the caption of Figure 3.

Site A: The bi-temporal images shown in Figure 3a,b were acquired in April 2007 and July
2014, respectively. The bi-temporal image scene depicts the pre- and post-event of a landslide on
Lantau Island, Hong Kong, China. The size of this site was 750 × 950 pixels with a spatial resolution
of 0.5 m/pixel. The ground reference of the landslide inventory map was interpreted manually as
presented in Figure 3c.

Site B: The bi-temporal images of Site B were acquired in the same way as the data for Site A.
As shown in Figure 3d,e, the size of the scene was 1252 × 2199 pixels, with a spatial resolution of
0.5 m/pixel. The ground reference of the landslide inventory map of Site B is given in Figure 3f.

Ji’Nan QuickBird data: As shown in Figure 3g–h, the bi-temporal images were acquired by the
QuickBird satellite in April 2007 and February 2009, respectively. The size of the image scene was
950 × 1250 pixels with a spatial resolution of 0.61 m/pixel. This area is also covered by different land-use
types including crops, naked soil, roads, and railways, and the bi-temporal images are different for
each season. These factors pose challenges in detecting land cover changes.

The ground reference of each dataset was interpreted manually. During the progress of
interpretation, the bitemporal images were overlayered together. Then, mapping tools such as
“Swipe”, “Adjust Transparency”, and the editing toolbars in the ArcMap 10.2, were employed to map
the ground reference. In addition, to avoid missing change detection, the changed and unchanged
areas were outlined grid-by-grid. Details of the ground reference for each dataset are presented in
Table 1.
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Figure 3. False color bi-temporal images for land cover change detection: (a) Pre-landslide image
of Hong Kong, Site A; (b) Post-landslide image of Hong Kong, Site A; (c) Ground reference for the
landslide in Hong Kong, Site A; (d) Pre-landslide image of Hong Kong, Site B; (e) Post-landslide image
of Hong Kong, Site B; (f) Ground reference for the landslide in Hong Kong, Site B; (g) Pre-event image
of Ji’Nan QuickBird data; (h) Post-event image of Ji’Nan QuickBird data; (i) Ground reference for the
Ji’Nan QuickBird.



Remote Sens. 2019, 11, 1903 8 of 22

Table 1. Details of ground reference pixels for each dataset.

Dataset No. of Unchanged Pixels No. of Changed Pixels

Site A 677,434 350,66

Site B 2,639,914 113,234

Ji’Nan QuickBird Data 987,017 200,483

3.2. Experimental Designation

Three experiments were designed to demonstrate the effectiveness and superiority of the proposed
framework in detecting land cover change with VHR remote sensing images.

In the first experiment, bi-temporal images of Site A were used to demonstrate the effectiveness
of the proposed framework. The raw spectral features (false color bands) of the bi-temporal images
were adopted to detect the landslide area based on the Manhattan distance and Otsu binary threshold.
Then, three classic spatial extraction methods (EMPs [57], Aps [58], and RGF [59]) and three
multi-features fusion methods (layer stacking [35], mean weight [60], and adaptive weight [61])
were validated in our proposed framework. The parameters of the multi-feature extraction methods
are detailed in Table 2.

The superiority of the proposed framework was further investigated in the second experiments.
In these experiments, four LCCD methods, namely PCA_Kmeans [40], CVA_FCM [41], Semi_FCM [42],
and LSELUC [43], which also consider contextual information to improve the detection accuracy and
have been applied successfully in practice, were used. The landslide Site B aerial and Ji’Nan QuickBird
satellite images were employed for comparisons in each experiment. The optimized parameter settings
of these approaches and datasets are given in Table 3.

Table 2. Parameter settings for spatial feature extraction methods.

Spatial Extraction Methods Parameter Settings

EMPs SE = “disk”, size of AE is 5 × 5.

APs λ = “49, 169, 361, 625, 961, 1369, 1849, 2401”, and threshold is “0.2,0.3,0.4, 0.5,
0.6, 0.7, 0.8, 0.9”, standard deviation = “10, 20, 30, 40, 50, 60, 70, 80

RGF δs = 2.0, δr = 0.03, integration = 4

Three post-processing LCCD methods (MV [49], GPCF [50], and OBEM [51]) were employed and
compared with the proposed framework based on the Site B and Ji’Nan datasets to further demonstrate
the advantages of the proposed framework. The optimal parameters of the post-processing LCCD
methods are presented as follows.

First, as the proposed approach concentrated on detecting the land cover change and guarantee
the fairness of comparison, the parameters of the spatial feature extraction methods were fixed for
each dataset, as shown in Table 2. Moreover, the generation of CMI and BCDM for all post-processing
approaches was also based on the MD distance and Otsu binary threshold method. Second, in addition
to the parameter settings for spatial feature extraction, the parameters for each post-processing approach
were optimized using the trial-and-error approach. The optimized parameters of each post-approach
and dataset are detailed in Table 4.
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Table 3. Parameter settings for the comparison between the proposed framework and the state-of-the-art
pre-processing LCCD approaches for the different datasets.

Methods Parameter Settings for
A Site Dataset

Parameter Settings for
B Site Dataset

Parameters Settings for
Ji’Nan Quick Bird Image

PCA_Kmeans H = 9, s = 3 H = 9, s = 3 H = 3, s = 3

CVA_FCM - - -

Semi_FCM c = 3, T = 100, δ = 0.00001 c = 4, T = 200, δ = 0.00001 c = 2, T = 100, δ = 0.00001

LSELUC S = 9 S = 9 S = 3

Table 4. Optimized parameter settings of the comparison between the proposed framework and the
post-processing methods for different datasets.

Spatial–Spectral Features Methods A Dataset B Dataset Ji’Nan Dataset

EMPs

MV (w) 7× 7 7× 7 5× 5

GPCF (w) 7× 7 9× 9 5× 5

OBEM
(scale, shape, compactness) 30, 0.8, 0.9 40, 0.8, 0.9 40, 0.8, 0.9

Proposed
(scale, shape, compactness) 30, 0.8, 0.9 30, 0.8, 0.9 40, 0.8, 0.9

APs

MV(w) 7× 7 11× 11 7× 7

GPCF (w) 9× 9 11× 11 7× 7

OBEM
(scale, shape, compactness) 30, 0.8, 0.9 20, 0.8, 0.9 35, 0.8, 0.9

Proposed
(scale, shape, compactness) 25, 0.8, 0.9 30, 0.8, 0.9 40, 0.8, 0.9

RGF

MV(w) 7× 7 11× 11 7× 7

GPCF (w) 7× 7 11× 11 7× 7

OBEM
(scale, shape, compactness) 25, 0.8, 0.9 20, 0.8, 0.9 25, 0.8, 0.9

Proposed
(scale, shape, compactness) 25, 0.8, 0.9 30, 0.8, 0.9 25, 0.8, 0.9

Note: The parameters’ requirement of each approach is presented in the “(.)”.

4. Results and Analysis

Various measuring indices were considered in the quantitative assessment of the proposed
framework: the ratio of false alarms (FA), the ratio of missed alarms (MA), the ratio of total errors
(TE), overall accuracy (OA), and Kappa coefficient (Ka). All performance measuring indices were
considered for a comparative analysis of the experiments.

As mentioned in the above sections, evaluation of the effectiveness of the proposed method, raw
spectral feature, three spatial-spectral feature fusion approaches (layer stacking [35], mean-weight [60],
and adaptive weight [61]), and the proposed framework was applied on the Site A VHR bi-temporal
images for comparison. Table 5 shows that compared with methods that use the raw spectral feature
alone, the spatial feature coupled with the spectral feature could clearly improve the cover detection
accuracies. For instance, the improvement of FA was about 5.98% in terms of the layer stacking fusion
approach [35] and the EMPs spatial feature extraction approach [57]. Furthermore, the proposed
approach achieved the best detection accuracies when compared with the spatial–spectral feature
fusion-based approach and that of using the raw spectral feature alone. Figure 4 demonstrates that
the proposed framework clearly smoothened the salt-and-pepper noise in the results using the raw
spectral feature alone and each spatial–spectral feature fusion-based approach.
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Table 5. Quantitative comparisons (%) between the proposed framework, the raw spectral feature,
and different spatial–spectra features fusion methods for the Site A VHR bi-temporal remote
sensing images.

Spatial–Spectral Feature Fusion Methods FA MA TE OA Ka

Raw spectral feature - 14.60 19.45 14.84 85.16 0.849

EMPs + Spectra

Layer Stacking 8.62 11.02 8.74 91.26 0.912

Mean Weight 9.49 21.40 10.08 89.92 0.898

Adaptive Weight 9.65 19.8 10.15 89.85 0.897

Proposed 1.23 9.27 1.62 98.38 0.984

Aps + Spectra

Layer Stacking 8.05 20.36 8.65 91.35 0.912

Mean Weight 9.23 19.48 9.74 90.26 0.901

Adaptive Weight 8.63 19.87 9.18 90.82 0.907

Proposed 0.729 14.62 1.41 98.59 0.986

RGF + Spectra

Layer Stacking 3.36 19.72 4.17 95.83 0.958

Mean Weight 3.77 19.24 4.53 95.47 0.954

Adaptive Weight 3.21 19.37 4.00 96.00 0.959

Proposed 0.469 15.15 1.19 98.81 0.988

Note: the bold number in the table shows the best accuracy in terms of the corresponding measurement.
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The proposed approach was compared with state-of-the-art LCCD methods including
PCA_Kmean [40], CVA_FCM [41], Semi_FCM [42], and LSELUC [43] to further outline the advantages
of the proposed framework. For experimentation, two pairs of VHR remote sensing images were
considered for comparison. Table 6 shows the results of the comparison of the Site B landslide aerial
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remote sensing images with state-of-the-art methods. The advantages of the proposed approach can be
found in three ways: (1) The results showed that among the state-of-the art methods, the relatively new
LSELUC approach achieved better accuracies because reliable local spatial information was considered
through local uncertainties in the developed LSELUC approach. However, the detection accuracies
of the proposed framework achieved the best accuracies in terms of FA, MA, TE, OA, and Ka; (2)
Different spatial–spatial feature fusion methods that may have different effects on the performance of
the proposed framework were adopted in the proposed framework; however, the best accuracy could
be achieved by the proposed framework regardless of which spatial–spectra feature fusion method was
adopted; and (3) For the Site B aerial images, EMPs [57] coupled with spectral feature in the proposed
approach acquired the best accuracies.

Comparisons among the approaches were performed as shown in the bar charts of Figure 5.
The figure clearly presents the advantages of the proposed approach. The visual performance of the
comparisons further verified the conclusion of comparisons of the Site B landslide aerial images as
shown in Figure 6. The comparisons on the Ji’Nan QuickBird satellite images for detecting land cover
and land use change were conducted and similar conclusions were reached. The details can be found
in Table 7 and Figures 7 and 8. From the quantitative comparisons and visual performance, it can be
seen that the proposed approach achieved the best accuracies in terms of FA, MA, and TA, regardless of
the utilized spatial feature extraction approach that was employed.

Table 6. Quantitative comparisons (%) between the proposed approach and state-of-the-art methods
for Site B VHR bi-temporal remote sensing images.

Methods FA MA TE OA Ka

PCA_Kmeans 1.83 12.61 2.27 97.73 0.977

CVA_FCM 24.79 16.34 24.44 75.56 0752

Semi_FCM 15.10 11.37 14.95 85.05 0.849

LSELUC 2.57 9.60 2.86 97.14 0.971

Proposed (EMPs + Spectra) 0.785 3.47 0.895 99.1 0.991

Proposed (Aps + Spectra) 1.15 2.91 1.22 98.78 0.988

Proposed (RGF + Spectra) 1.08 2.99 1.16 98.84 0.988

Note: the bold number in the table shows the best accuracy in terms of the corresponding measurement.
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Figure 6. Change detection maps obtained for the Site B landslide aerial images through (a) PCA_kmeans;
(b) CVA_FCM; (c) Semi_FCM; (d) LSELUC; (e) Proposed_EMPs + Spectra; (f) Proposed_APs + Spectra;
(g) Proposed_RGF + Spectra; and (h) ground refence map.

Table 7. Quantitative comparisons (%) between the proposed approach and state-of-the-art methods
for Ji’Nan QuickBird satellite images.

Methods FA MA TE OA Ka

PCA_Kmeans 11.04 4.60 9.95 90.05 0.898

CVA_FCM 13.59 3.84 11.95 88.08 0.878

Semi_FCM 13.23 3.65 11.61 88.39 0.881

LSELUC 10.94 4.15 9.79 90.21 0.900

Proposed (EMPs + Spectra) 6.95 5.27 6.67 93.33 0.932

Proposed (Aps + Spectra) 9.27 3.88 8.36 91.64 0.915

Proposed (RGF + Spectra) 9.29 3.74 8.36 91.65 0.915

Note: the bold number in the table shows the best accuracy in terms of the corresponding measurement.
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The proposed approach was compared with MV [49], GPCF [50], and OBEM [51] to further investigate
the advantages of the proposed approach as designed in the third experiment. The comparative results
for the Site B landslide aerial images are shown in Table 8. From these comparisons, the proposed
approach appears to have achieved a competitive detection accuracy when compared with that of MV [49],
GPCF [50], and OBEM [51]. In addition, while visual performance was observed as shown in Figure 9,
the proposed approach (the fourth column in Figure 9) presented less noise than the others. This finding
was further verified in the quantitative comparison in Table 9. A similar conclusion can be reached
from the comparisons conducted on the Ji’Nan QB satellite remote sensing images shown in Table 9 and
Figure 10.

Table 8. Quantitative comparisons (%) between the proposed approach and three post-processing
methods with different spatial-spectral feature fusion strategies in the Site B landslide aerial images.

Spatial–Spectral Methods FA MA TE OA Ka

EMPs + Spectra

MV 1.38 8.8 1.69 98.31 0.983

GPCF 1.43 7.03 1.66 98.34 0.983

OBEM 0.837 3.61 0.952 99.05 0.991

Proposed 0.785 3.47 0.895 99.10 0.997

Aps + Spectra

MV 1.69 7.28 1.92 98.08 0.981

GPCF 1.93 6.49 2.11 97.89 0.979

OBEM 1.67 2.38 1.69 98.30 0.983

Proposed 1.15 2.91 1.22 98.78 0.988

RGF + Spectra

MV 1.52 6.73 1.74 98.26 0.983

GPCF 1.69 6.28 1.88 98.12 0.986

OBEM 1.32 2.61 1.37 98.63 0.986

Proposed 1.08 2.99 1.16 98.84 0.988

Note: the bold number in the table shows the best accuracy in terms of the corresponding measurement.
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The caption on the left shows which spatial–spectral feature was adopted in this row, and the caption
at the top shows which post-processing approach the column adopted.
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Table 9. Quantitative comparisons (%) between the proposed approach and three post-processing
methods with different spatial–spectral feature fusion strategies in the Ji’Nan QB satellite images.

Spatial–Spectral Methods FA MA TE OA Ka

EMPs + Spectra

MV 8.38 4.24 7.68 92.32 0.922

GPCF 8.49 4.33 7.79 92.21 0.921

OBEM 7.07 5.27 6.77 93.24 0.931

Proposed 6.95 5.27 6.67 93.33 0.932

Aps + Spectra

MV 10.22 3.92 9.15 90.84 0.907

GPCF 10.23 4.09 9.19 90.81 0.906

OBEM 9.28 3.94 8.38 91.62 0.915

Proposed 9.27 3.88 8.36 92.64 0.915

RGF + Spectra

MV 10.28 3.97 9.22 90.79 0.906

GPCF 10.28 3.98 9.22 90.78 0.906

OBEM 9.35 3.72 8.40 91.60 0.914

Proposed 9.29 3.74 8.36 91.65 0.915

Note: the bold number in the table shows the best accuracy in terms of the corresponding measurement.

Remote Sens. 2019, 7, x FOR PEER REVIEW  16 of 22 

 

Table 9. Quantitative comparisons (%) between the proposed approach and three post-processing 
methods with different spatial–spectral feature fusion strategies in the Ji’Nan QB satellite images. 

Spatial–Spectral Methods FA MA TE OA Ka 

EMPs + Spectra 

MV 8.38 4.24 7.68 92.32 0.922 
GPCF 8.49 4.33 7.79 92.21 0.921 
OBEM 7.07 5.27 6.77 93.24 0.931 

Proposed 6.95 5.27 6.67 93.33 0.932 

Aps + Spectra 

MV 10.22 3.92 9.15 90.84 0.907 
GPCF 10.23 4.09 9.19 90.81 0.906 
OBEM 9.28 3.94 8.38 91.62 0.915 

Proposed 9.27 3.88 8.36 92.64 0.915 

RGF + Spectra 

MV 10.28 3.97 9.22 90.79 0.906 
GPCF 10.28 3.98 9.22 90.78 0.906 
OBEM 9.35 3.72 8.40 91.60 0.914 

Proposed 9.29 3.74 8.36 91.65 0.915 
Note: the bold number in the table shows the best accuracy in terms of the corresponding measurement. 

 
Figure 10. Visual comparison of the detection maps between the post-processing and the proposed 
approaches with different spatial–spectral feature fusion methods in the Ji’Nan QuickBird satellite 
images. The caption on the left shows which spatial–spectral feature was adopted in this row, and the 
caption on the top shows which post-processing approach the column adopted. 

The sensitivity of the detection accuracy and the parameters of the proposed approach are 
discussed in this section with the aim of extending the potential application of the proposed approach. 
We only observed the relationship between scale and detection accuracies. Parameter scale indicates 
the size of the segmental object and a larger scale will generate larger segments and the ground details 

Figure 10. Visual comparison of the detection maps between the post-processing and the proposed
approaches with different spatial–spectral feature fusion methods in the Ji’Nan QuickBird satellite
images. The caption on the left shows which spatial–spectral feature was adopted in this row, and the
caption on the top shows which post-processing approach the column adopted.
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The sensitivity of the detection accuracy and the parameters of the proposed approach are
discussed in this section with the aim of extending the potential application of the proposed approach.
We only observed the relationship between scale and detection accuracies. Parameter scale indicates
the size of the segmental object and a larger scale will generate larger segments and the ground details
of a target may be smoothened. In contrast, a smaller scale will yield a smaller segment and more
ground detail will be preserved. However, more noise will be introduced to the detection results.
Therefore, an appropriate scale should be adjusted according to the given images.

Figure 11 shows that MA, TE, and FA decreased as the scale increased. Furthermore, MA and TE
decreased gradually when the scale ranged from 10 to 30. However, when the value of the scale was
larger than 30, MA and TE remained at a horizontal level. These results can be attributed to the size
of the segments being large enough to obtain optimum accuracy because the scale has less effect on
the size of the segments as the other parameters (compactness and shape) are fixed. In addition to
MA and TE, FA also decreased as the scale increased and then fluctuated in the range of 2.99 to 3.91.
This fluctuation may be caused by the uncertain distribution of spatial heterogeneity.

The relationship between the segmental scale and the detection accuracy in the Ji’Nan QB satellite
images was also investigated. Figure 12 shows that for the Ji’Nan dataset, FA and TE decreased as the
scale increased, and MA first increased then decreased. These findings are helpful in determining the
parameters of the proposed approach.
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Figure 11. Relationship between the detection accuracies and the scale of the multi-scale segmentation
in the proposed approach for the Site B landslide aerial remote sensing images.
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Figure 12. Relationship between the detection accuracies and the scale of the multi-scale segmentation
in the proposed approach for the Ji’Nan Quick Bird Satellite images.

5. Conclusions

In the present work, a novel framework for detecting land cover change using spatial–spectral
feature fusion and multi-scale segmentation voting decision strategies was proposed. Instead of using
a single feature to obtain the binary change detection map directly, spatial features were extracted and
coupled with the raw spectral feature through different fusion strategies. Different spatial–spectral
features were provided with different initial BCDMs. Finally, a multi-scale segmentation voting
decision strategy was proposed to fuse the initial BCDMs into the final change detection map. The main
contribution of the proposed approach was that it provides a comprehensive framework for more
accurate land cover change detection using bitemporal VHR remote sensing images. Multi-spatial
features and different feature fusion strategies were introduced to generate the initial BCDMs.
In addition, multi-scale segmentation voting decision was first promoted to fuse the initial BCDMs
into the final change detection map. The advantages of multi-scale segmentation voting decision have
two aspects: (1) the different performance of the initial BCMDs, which are obtained from different
spatial–spectral features, can be utilized together to avoid the bias detection; and (2) majority voting
with the constraint of a multi-scale object can consider the uncertainty of the ground target such as the
shape and size of a target, which is helpful in improving the voting accuracy.

Experiments were carried out on three pairs of datasets to confirm the effectiveness of the
proposed approach. The results of the experiments showed that the proposed approach achieved better
performance than using the raw spectral feature alone and other state-of-the-art LCCD techniques.
However, one limitation of the proposed framework is that it requires many parameters in practical
application, and the optimized parameter setting for a specific dataset is time-consuming. In the
future, an extensive investigation of the proposed approach will be conducted on additional types of
images and land cover change events such as unmanned aerial vehicle images and forest disasters.
Theoretically, further investigations on a method with various sourcing image and land cover change
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events will improve the robustness of the method. A comprehensive investigation will also broaden
the applicability of the proposed approach.
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