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Abstract: Saturn’s largest moon, Titan, is believed to have a ~100 km thick ice shell above a global
ocean of liquid water. Organic materials, including liquid hydrocarbon lakes and seas in its polar
terrain, cover Titan’s surface, which makes it a world of two oceans. The RADAR instrument on board
Cassini, was able to probe lakes and seas during few dedicated altimetric observations, revealing its
capability to work as a sounder. Herein, we describe the design of, and scientific motivation for, a dual
frequency X/Ka-band radar system that is able to investigate Titan’s subsurface liquid water ocean, as
well as the depth and composition of its surface liquid hydrocarbon basins. The proposed system,
which could take advantage of the telecommunications dish, can operate as a sounder, as Synthetic
Aperture Radar (SAR) able to map the surface at tens meters of scale resolution, and when data are
acquired from close-adjacent orbits, as a repeat-pass SAR interferometer (InSAR). The instrument,
which is based on the architecture of the Cassini RADAR, can also characterize Titan’s interior by
using geophysical measurements of the tidal amplitude to derive high accuracy estimates of the Love
number h2 from a 1500 km circular orbit.
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1. Introduction

Titan, the second largest moon in our solar system, has been repeatedly observed by the Cassini
spacecraft during its 13 years exploration of the Saturnian system (2004–2017). The Cassini RADAR
instrument was capable of operating in multimode as a Synthetic Aperture Radar (SAR) for surface
imaging, as a radar altimeter for topography measurements, as a scatterometer for surface composition
and, in passive mode, as a radiometer for brightness temperature [1]. The instrument has provided
imaging at 300 m/pixel for about 20% of the surface of the moon and ~50% has been mapped at
1500 m/pixels, as well as 40 topographic profiles have been acquired in altimetry mode. This dataset
enabled the identification and characterization of several geomorphologic features.

Hundred meters high dunes fields [2], which are spread across the equator (±30◦ in latitude),
covering about 15% of the whole surface [3,4] have been observed by the instruments in different modes
(i.e., SAR, altimetry, radiometry). Their shape is believed to be the result of a general eastward transport
of cohesive organic solids [5], their morphology being similar to the terrestrial dunes seen in Namib,
Sahara, and Arabian deserts [6], and their material is likely to be composed by solid hydrocarbons,
mixed with water ice at interdune [7–10]. Instruments on board Cassini also revealed the presence
of mountains [11–13], craters [14] with possible cryovolcanic origin [15], in addition to a complex
hydrological system that is made of liquid hydrocarbons with possible subsurface connection [16].
Other features, interpreted as empty lakes, have been mapped by Cassini and have been object of
several works [17–19]. Their formation is still the object of studies, although some hypothesis regarding
their endogenic origin has been recently proposed [20].
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The presence of standing hydrocarbons liquid bodies on Titan was revealed by Cassini on 22 July
2006, during the fly-by T16, when the radar mapped a collection of 10–100 km diameter lakes present
in the northern hemisphere [21]. Later observations revealed the existence of an active hydrological
cycle of methane [22], and the presence of large northern basins identified as seas, or maria: Kraken
Mare, Ligeia Mare and Punga Mare [23]. A detailed description and mapping of the Titan’s polar
terrains is reported in [24]. Specific observations that were planned and executed over the major seas
and lakes in altimetry mode, made the direct measurements of depth—bathymetry and composition
of few hydrocarbon basins present on Titan possible [25–27], revealing the ability of Cassini to work
as a radar sounder despite the relative high operative frequency (13.7 GHz). The same observations
were also used to constrain the roughness of seas and lakes on Titan from surface amplitude analysis
returns [27–30] and to detect the presence of fluvial networks of channels and canyons filled with
liquid hydrocarbons [31].

Here, we propose a radar system that is able to provide three-dimensional high resolution
bathymetric maps of Titan seas and lakes at multiple frequencies, allowing for the investigation of any
possible spatial [32,33] or seasonal [34] variation in composition of the liquid and/or sea floor properties.
The system will additionally enable the investigation of any suspended particulates—material, density
heterogeneities of the liquid column within a resolution of few meters. The use of an X band frequency
could permit the detection of the seafloor of the largest Titan’s sea, Kraken Mare, which is either too
deep or too absorptive for being detected by the Cassini RADAR. Moreover, the radar system used in
off-nadir configuration can provide high resolution mapping and, when optimal orbit configurations
are met, repeated passes could be used for interferometric synthetic aperture radar (InSAR) processing
in order to obtain high resolution topography. After two years of operation, Titan global topography
could be available at km horizontal scale and meters scale vertical resolution, allowing much better
accuracy than the one available today from Cassini [35].

In addition, synthetic aperture algorithms that were applied to the altimetry data could provide
remarkable enhancement in spatial resolution when compared to the Cassini capabilities [36]. Further
applications could include the investigation of any ephemeral event on specific areas of Titan, as rarely
observed by Cassini [37,38], the estimation of the liquid level of seas and lakes, characterization of
rivers, sea and lake roughness, rain detection, atmosphere/clouds absorption, and dielectric properties
estimation of solid and liquid. Finally, the system can be used to estimates the tides for the investigation
of Titan’s internal ocean by using repeated passes observations in altimetry mode acquired over the
same location at different epochs. The selected radar frequencies and a suitable system design allow
for this radar multimode instrument to operate alternatively as an altimeter, SAR, sounder, and/or
radiometer by means of a programmable and adaptive on-orbit reconfiguration.

2. Materials and Methods

2.1. Bathymetric Measurements of Titan’s Seas

The possible presence of a hydrocarbon global ocean on Titan, its depth, and composition, have
been investigated prior to the Cassini arrival trough atmospheric-surface modelling [39–42] and ground
based radar observation [43]. However, Cassini revealed that a global ocean of liquid hydrocarbons is
not present, but large liquid filled basins are found to be mostly distributed at the northern hemisphere
in form of seas and lakes. Differently, the southern hemisphere only shows few small liquid filled basins,
in addition to the largest southern lake Ontario and a large number of basins that have been interpreted
as paleoseas [44]. The dichotomy of the northern and southern hemisphere lakes distribution has been
attributed to a long scale climate variation that is induced by the orbital configuration of Titan respect
to Saturn [45].

Since the Cassini arrival, the depth and composition of Titan’s seas and lakes have been an object
of interest for several studies [46–49], while the first opportunity to perform a direct measurements
of Titan’s seas was only possible during fly-by T91 on May 2013, across the second largest sea,
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Ligeia Mare [25]. This represented the first direct measurement of an extraterrestrial bathymetric
profile. The experiment that was conducted from 1500 km of altitude allowed for the radar on board
Cassini, to directly probe the sea down to a maximum depth of 170 m. Data that were acquired
from this observation were used to create a topographic profile of the seafloor of Ligeia Mare and
to constrain the liquid composition from signal attenuation [25,50]. Assuming a ternary mixture of
methane-ethane-nitrogen composition, while using the laboratory measurements of [51] and applying
the Lorentz-Lorenz formulation with nitrogen mixing ratios, as determined by [52], the measured
loss tangent (4 ± 1 × 10−5) was converted into a mixture of approximately 71% CH4, 12% C2H6, 17%
N2, which indicated that Ligeia was methane dominated at the time of observation. Moreover, by
combining the information relative to the areal extension that was obtained from SAR images and
assuming an average value of depth of 70 m, the authors were able to extrapolate the total liquid
volume of the basin, which resulted in ~104 km3 [25].

By means of the waveform fitting approach that was able to reproduce the saturation effects
at the receiver [50], Mastrogiuseppe and colleagues re-analyzed saturated altimetric data that were
acquired during fly-by T49 on 21 December 2008, to extract information regarding the depth and
composition of southern Ontario Lacus [53]. An optimized signal processing, which adopted super
resolution techniques [54,55], revealed the presence of lakebed signal reflections at ~50 m of maximum
depth, which was consistent with the indirect measurements of bathymetry as extrapolated from the
shorelines slope measured from altimetry [46]. Assuming a similar ternary composition, the best
fit loss tangent at Ontario Lacus (6 ± 3 × 10−5) was found to be consistent with ~47% CH4, ~40%
C2H6, and ~13% N2. Similarly to Ligeia, Ontario appeared methane dominated, but the measured
best fit loss tangent could indicate an increased abundance of higher order hydrocarbons, as observed
from spectral VIMS analysis [56]. A detailed description of Ontario lacus and its geomorphology is
described in [57,58].

Following the T91 observation of Ligeia Mare, other experiments, which aimed at investigating
Titan’s seas and lakes in sounding mode, have been planned and executed. Specifically, during the
fly-bys T104 on August 2014, T108 on January 2015 and T126 on April 2017, the Cassini RADAR
observed the largest sea Kraken Mare, Punga Mare and the northern Lake District, respectively. While
the seafloor was not detected at Kraken, which suggested that the sea was either too deep or too
absorptive, a clear detection of the subsurface of Punga Mare was observed with a maximum depth of
120 m. Similarly, during fly-by T126 the RADAR was able to probe Winnipeg Lacus down to 100 m of
depth from an altitude of 1200 km [27]. The loss tangent analysis of these two observations indicates
that the northern lakes and Punga Mare were similar in composition to Ligeia Mare during the time of
observation. Table 1 reports the composition and bathymetry of the observed seas and lakes.

Table 1. Depths and composition of Cassini altimetric observation of Titan’s seas and lakes.

Sea/Lake Estimated
Depths Tan Delta Latitude Composition 1

CH4/C2H6/N2

Epoch of
Observation Fly-By

Ligeia Mare 20–170 m 4 ± 1 × 10−5 77◦–82◦N 71/12/17% May 2013 T91

Punga Mare 20–120 m 3 ± 1 × 10−5 83◦–84◦N 80/20/0% January 2015 T108

Baffin Sinus 20–60 m 3 ± 1 × 10−5 80◦–81◦N 80/20/0% January 2015 T108

Winnipeg 20–100 m 4 ± 1 × 10−5 78◦N 69/15/16% April 2017 T126

Ontario 20–60 m 6 ± 3 × 10−5 72◦S 47/40/13% December 2008 T49

Kraken Mare Not Detected - 60◦–80◦N - August 2014 T104
1 Composition values are referred to best fit loss tangent and does not include errors.

In Figure 1, we report a SAR mosaic of the northern polar region and the T91, T104, T108 altimetric
tracks over the seas. The bottom part of the figure shows the relative radargram and bathymetric
products that were obtained after processing. Figure 2 shows the SAR images of Ontario and Winnipeg
Lacus and a waveform that was selected over the deepest portion of the track.
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Figure 1. (a) Synthetic Aperture Radar (SAR) image mosaic of Titan’s northern polar terrain and 
altimetric tracks acquired over seas during fly-bys T91, T104, and T108 over Ligeia, Kraken, and 
Punga, respectively. (b) Radargram obtained from T91 and relative bathymetry of Ligeia. (c) 
Radargram of Kraken Mare (T104) where no seafloor was detected. (d) Radargram of Punga Mare 
(T108) and relative bathymetry. 
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Cassini provided important information regarding Titan’s seas with only limited number of 
tracks. Radar investigation from an orbiter and in-situ measurements are envisaged in order to 
determine any spatial variability of sea composition, as well as the depth and composition of Titan’s 
largest sea (Kraken Mare) [59,60]. Herein, we propose a dual-frequency radar system operating at X 
(7.5 GHz) and Ka (32 GHz) bands from a 1500 km circular orbit. A 50 MHz bandwidth system 
capable to provide 3 m of vertical resolution on free space has been selected in order to achieve 
sufficient accuracy for bathymetric measurements, Titan’s imaging, and tides investigation. Data 

Figure 1. (a) Synthetic Aperture Radar (SAR) image mosaic of Titan’s northern polar terrain and
altimetric tracks acquired during fly-bys T91, T104, and T108 over Ligeia Mare, Kraken Mare, and Punga
Mare, respectively. (b) Radargram obtained from T91 and relative bathymetry of Ligeia. (c) Radargram
of Kraken Mare (T104) where no seafloor was detected. (d) Radargram of Punga Mare (T108) and
relative bathymetry.

2.2. Proposed System: Dual-Frequency Ka/X Bands Multimode Radar Orbiter

Cassini provided important information regarding Titan’s seas with only limited number of tracks.
Radar investigation from an orbiter and in-situ measurements are envisaged in order to determine
a detailed variability of sea composition, as well as the depth and composition of Titan’s largest sea
(Kraken Mare) [59,60]. Herein, we propose a dual-frequency radar system operating at X (7.5 GHz)
and Ka (32 GHz) bands from a 1500 km circular orbit. A 50 MHz bandwidth system capable to provide
3 m of vertical resolution on free space has been selected in order to achieve sufficient accuracy for
bathymetric measurements, Titan’s imaging, and tides investigation. Data volume reduction will be
accomplished through dedicate on board processing that will be applied to the specific radar mode.
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Figure 2. (a) Radar waveform acquired over Ontario Lacus during fly T49 and relative location over
SAR image (b) Radar waveform acquired during fly-by T126 and relative SAR image of Winnipeg Lacus.

The onboard processing should be designed according to the various operative mode of the
radar system. The Ka band has been designed for shallow bathymetry investigation and topographic
measurements taking advantage of the higher signal to noise ratio (SNR) and the reduced footprint.

While the deepest part of the hydrocarbons seas could be difficult to probe at this frequency due
to the high absorption, this band could provide high resolution bathymetry close to the shorelines or
the composition and depth of shallow lakes.

We report the SNR calculated according to the radar equation and while taking a pulse limited
geometry into account:

SNR =
Pt·G2

ant·λ
2
·σ ·B·T

(4π)3
·H4·K·Teq·B

√

N (1)

where all of the variables are reported in Table 2.
The radar cross section σ can be evaluated according to the scenario which is expected to be

observed. When considering an illuminated surface of area Asurf, reflectivity Γ and a roughness with
an rms slope equal to m, according to the Geometric Optics (GO) formulation, the radar cross section
can be expressed as:

σ = σ0
·Asur f =

Γ
2·m2 ·Asur f (2)

When considering the pulse-limited geometry, the illuminated area can be calculated as:

Asur f = 2·π·H·δr (3)

where δr is the range resolution, which is related to the radar bandwidth by the following:

δr = 0.88 ·
c

2B
(4)
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Table 2. Radar Parameters for the proposed system.

Symbol Quantity Unit Value

Pt Tx Power [W] 40
L Antenna size [m] 4

Gant Antenna Gain [dB] 54 (Ka)
42 (X)

T Tx Chirp Length [µs] 150
H Altitude [km] 1500

λ Wavelength [m] 0.009 (Ka band)
0.04 (X band)

N Pulses # 45
B Bandwidth [MHz] 50

Teq Eq. Temp. Rx [K] 1000
K Boltzmann constant [J/K] 1.38 × 10−23

δr Vertical res. [m] 3
Raz Horizontal res. [m] 6000
Vt Tangential Velocity [km/s] 1.5

In Figure 3, a plot of the SNR at Ka and X band is shown, which is calculated for different values
of the rms slope and Γ = −11 dB. In Table 2, we report the radar parameters and spatial resolution for
the proposed system.
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2.3. High-Resolution SAR and Interferometry Mode

Here, we discuss the design of the main parameters for the proposed radar system when operating
in off-nadir configuration as a SAR for high resolution mapping of Titan, and as an interferometer
while using repeated passes [61,62] in order to obtain three-dimensional (3D) topography of the moon.

In Table 3, we report the main requirements for the proposed system.

Table 3. SAR system main requirements.

Requirements Unit Value

Ground Resolution [m] ≤20
Height Measurements Accuracy [m] <5

Height Resolution [m] <50
Radiometric Resolution [dB] <1.2

Noise Equivalent [dB] <−15

The system can operate in strip map mode, allowing for collecting images over specific areas
of the moon with a pixel resolution better than 20 m and a radiometric resolution better than 1.2 dB,
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depending on the geometry of the observation. The horizontal resolution can be easily achieved via a
matched filter applied to each received waveform and a multi-look can be performed in the azimuth
direction, as well as in range when the off-nadir angle allows for sufficient ground resolution. The
azimuthal resolution will be obtained while using a SAR processing applied to the received echoes. The
pulse repetition frequency (PRF) of the system must be properly selected in order to correctly sample
the Doppler bandwidth and avoid overlapping of the received echoes with transmitted waveforms.
The off-nadir angle will vary according to the target of interest, however we will consider a values
between 10–30 degree for the present analysis.

According to (5), the maximum resolution achievable in cross track direction ranges from 6 to
17 m for off-nadir angles of 30◦ and 10◦, respectively:

Rrange =
c

2·B·sin(α)
(5)

The limit for the azimuth resolution is driven by the antenna system according to the physical
dimension of the antenna in along track (L):

Raz =
L
2

(6)

which for the proposed system reach a value of Raz = 2 m.
Based on the ground resolution requirements, a multi-look average by a factor of 10 can be

always performed, therefore according to (7), the radiometric resolution requirements in Table 3 can be
always achieved:

Rr = 10·log10 [ 1 +
(

1 +
1

SNR 2

)
·

1
√

NL
] (7)

The main parameter that remains to be set is the SAR PRF. A lower bound can be set to 0.8 KHz,
as obtained from the antenna physical dimension and tangential velocity Vt from:

PRFmin >
2Vt

L
(8)

It is worth noting that this limit does not depend on the operative frequency.
The upper bound can be calculated from (9) in order to avoid the overlapping of transmitted and

received waveforms.

PRFmax <
c·L· cos(α)

2·λ ·H·tg(α)
(9)

We found values of 66 KHz and 15 KHz for the Ka and X bands, respectively.
The calculated PRF only indicates the lower and upper limits and it should be adjusted for

accounting of the ambiguity of the returned echoes. For our proposal, we found as good choice a PRF
of 5 KHz, which is able to satisfy the PRF requirements at both frequencies.

2.4. Interferometric System

The proposed system can also operate as an interferometer by means of repeated passes when the
favorable orbital conditions are met. The height resolution can be defined as the value of the height,
which generates a phase rotation of the signal equal to 2π and it is defined by:

∆q ≈
λ·H·tg(α)
2Bs·cos(α)

(10)

where Bs is the spatial baseline (i.e., distance of repeated tracks).
Therefore, the baseline must be greater than 50 m in Ka and 220 m in X band in order to obtain

an height resolution better than the requirements in Table 3; these requirements are followed by an
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upper limit value of the baseline, which is dictated by the decorrelation of the signal when a scenario is
observed from different angles of view. Such an upper limit can be calculated using:

σ∆ϕ =
1
√

2NL

√
(1 + SNR−1)2

− ρ2

ρ
(11)

where ρ is the modulus of the complex correlation coefficient, which only depends on the
geometric parameters:

ρ = 1−
2ry·Bs·cos3(α)

λ·H
(12)

and ry is the along track ground resolution.
Assuming no co-registration errors, normalized errors can be calculated while using the following:

en =
√

NL·σq/ry (13)

where σq is the error on the estimated heights and it can be obtained combining the height resolution
in (10) and the phase error as reported in (11).

Optimum horizontal baseline can be calculated by imposing a limit on the error. In Figure 4, we
plot the error as function of the horizontal baseline for a system having 10 dB of SNR and NL = 10. We
found an optimal Bs ranging from 220 to 1200 m and 50 to 260 m for the X and Ka band, respectively
(see Figure 4), for example, while considering errors en < 0.2.
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2.5. Tides Measurements and Global Topography

Saturn’s largest moon, Titan, hosts a subsurface liquid water ocean that is likely composed of water
and ammonia [63–66]. Titan also hosts extensive organic deposits across its surface and a hydrological
cycle of hydrocarbons exchanged between the surface and atmosphere, making the environment of this
moon particularly attractive in terms of extraterrestrial habitability [67,68]. Titan’s ice shell is expected
to be ~100 km in thickness [69,70], therefore an investigation of the ocean performed while using
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typical radar sounding systems, such as MARSIS and SHARAD [71,72], becomes challenging due to
the limited penetration capability of such instruments. Alternatively, a radar altimeter can indirectly
characterize subsurface properties, such as density of the internal ocean and ice shell thickness, through
geophysical measurements of the tidal potential Love number k2 and h2. Such estimation can be
performed via tides and topography measurements, along with the support of gravitational data
through radio science instruments [73].

Tides models on Titan have been investigated for the solid surface [74] as well as for the polar
hydrocarbons liquids [75–79]. A detailed description of the effects of tides on Titan’s polar liquid
hydrocarbons is reported in [80]. The maximum vertical solid surface displacement is estimated to
range between 10 m and 30 m at the poles and equator, respectively, for a model that accounts for the
presence of an ocean [81]. The tidal Love numbers (h2 and k2) should be estimated with an accuracy
on the order of 1% and 0.1% in order to investigate the characteristics of the ocean and the thickness of
the ice shell, respectively, which requires centimeter-scale knowledge of the tidal amplitudes.

Altimetry satellites, such as POSEIDON [82], have provided centimeter scale accuracy of terrestrial
surface height measurements, which allows for a global ocean characterization and topography at
very high accuracy [83], obtained while using a radar system with hundreds MHz bandwidth, and
knowledge of the spacecraft ephemerids in order of ten centimeters. Radar altimetry has greatly
improved our knowledge of ocean tides on Earth [84]. Instruments, such as Jason1 and ERS, have
observed the Earth more than 15 years, providing information regarding the global changes in both
ocean circulation and sea level. A radar altimeter can measure tides using a network of single-point
crossovers or though repeat adjacent ground tracks (see Figure 5) separated by less than the cross-track
radar footprint [85]. Both of the methods provide differential measurements of the surface height (i.e.,
using the two-way travel time echo) acquired at the same location, but different true anomalies.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 

 

Tides models on Titan have been investigated for the solid surface [74] as well as for the polar 
hydrocarbons liquids [75–79]. A detailed description of the effects of tides on Titan’s polar liquid 
hydrocarbons is reported in [80]. The maximum vertical solid surface displacement is estimated to 
range between 10 m and 30 m at the poles and equator, respectively, for a model that accounts for 
the presence of an ocean [81]. The tidal Love numbers (h2 and k2) should be estimated with an 
accuracy on the order of 1% and 0.1% in order to investigate the characteristics of the ocean and the 
thickness of the ice shell, respectively, which requires centimeter-scale knowledge of the tidal 
amplitudes. 

Altimetry satellites, such as POSEIDON [82], have provided centimeter scale accuracy of 
terrestrial surface height measurements, which allows for a global ocean characterization and 
topography at very high accuracy [83], obtained while using a radar system with hundreds MHz 
bandwidth, and knowledge of the spacecraft ephemerids in order of ten centimeters. Radar 
altimetry has greatly improved our knowledge of ocean tides on Earth [84]. Instruments, such as 
Jason1 and ERS, have observed the Earth more than 15 years, providing information regarding the 
global changes in both ocean circulation and sea level. A radar altimeter can measure tides using a 
network of single-point crossovers or though repeat adjacent ground tracks (see Figure 5) separated 
by less than the cross-track radar footprint [85]. Both of the methods provide differential 
measurements of the surface height (i.e., using the two-way travel time echo) acquired at the same 
location, but different true anomalies.  

The estimation of tidal amplitudes can be performed while using an inverse model and the 
Love number h2 can be estimated with an accuracy that will mainly depend on the number of 
crossovers, the altimeter range accuracy, and the spacecraft positioning errors. When a large 
percentage of footprint superimposition is available, differential range measurements can be 
performed with an accuracy that is better than the radar resolution. While the crossover technique 
only allows few measurements for each pair of orbits, repeat ground tracks allows for multiple 
measurements while using a single pair of observations (see Figure 5). However, repeated ground 
tracks require the orbits to be close enough to have substantial overlap between footprints, and such 
a configuration is rarely met when compared to the crossovers that naturally occur in typical orbital 
geometries. The repeated ground track technique is particularly attractive, as long repeated ground 
tracks permit a large number of overlapped footprints to be collected and the potential Love number 
h2 can be estimated with high accuracy after acquiring only a few pairs of repeat passes. 
Observations should be planned in order to observe tides at different phases, for example, when the 
true anomaly of Titan is at 0 and 180 degree. 

 
Figure 5. (a) Tides estimation via repeated ground track. (b) The crossover technique allows for 
having one differential range measurement for each pair of observation. (c) Repeated adjacent track 
configuration is less frequent, but it allows for multiple measurements for each pair. 

3. Discussion and Results 

Figure 5. (a) Tides estimation via repeated ground track. (b) The crossover technique allows for
having one differential range measurement for each pair of observation. (c) Repeated adjacent track
configuration is less frequent, but it allows for multiple measurements for each pair.

The estimation of tidal amplitudes can be performed while using an inverse model and the Love
number h2 can be estimated with an accuracy that will mainly depend on the number of crossovers, the
altimeter range accuracy, and the spacecraft positioning errors. When a large percentage of footprint
superimposition is available, differential range measurements can be performed with an accuracy that
is better than the radar resolution. While the crossover technique only allows few measurements for
each pair of orbits, repeat ground tracks allows for multiple measurements while using a single pair of
observations (see Figure 5). However, repeated ground tracks require the orbits to be close enough to
have substantial overlap between footprints, and such a configuration is rarely met when compared to
the crossovers that naturally occur in typical orbital geometries. The adjacent ground track technique
(see Figure 5c) is particularly attractive, as long repeated ground tracks permit a large number of
overlapped footprints to be collected and the potential Love number h2 can be estimated with high
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accuracy after acquiring only a few pairs of repeat passes. Observations should be planned in order to
observe tides at different phases, for example, when the true anomaly of Titan is at 0 and 180 degree.

3. Discussion and Results

3.1. Sounding Mode Operative Frequency Optimization

The X band frequency has been designed to provide bathymetry and composition of the deepest
portion of the seas, taking advantage of the improved penetration capabilities at a lower frequency. The
trade-off for operative frequency selection has been investigated, as shown in Figure 6. The detection
capabilities of a radar system operating from 1500 km circular orbit and using a 4 m dish antenna
are shown as function of operative frequency for different values of liquid loss tangent (3 × 10−5 and
1 × 10−4) and depths (50, 100, 200, and 400 m).
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Figure 6. Detection capabilities of the proposed system for different values of liquid loss tangent
(3× 10−5 and 1× 10−4) and depths (50, 100, 200, and 400 m) as function of operative frequency. Note that
for shallow depths and low values of loss tangent ((a) panel), Ka performs better than the other bands
thanks to the higher SNR achieved from the increased antenna gain. For greater depths and larger
values of loss tangent, the SNR at higher frequencies decreases due to the column liquid attenuation
and lower frequencies are preferred.

The curves in Figure 6 are obtained by combining SNR, as calculated in Figure 3, and subsurface
power return Pss according to the following formulation:
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With
K|dB = 27 ∗ tanδ ∗ f ∗ ∆τ (15)

where tanδ is the loss tangent of the media, f is the central frequency expressed in MHz, and ∆τ is the
two-way travel time expressed in microseconds and related to the depth by the follow:

∆τ = 2d ∗ n/c (16)

where n is the index refraction of the media and c is the speed of light.
Terms Γs|dB and Γss|dB are the surface and subsurface reflectivity (in decibel) that are related to
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We can note that, for shallow depths and low loss tangent, the Ka system provides better
performance thanks to the higher signal to noise ratio that was achieved as the frequency is increased
(see Figure 3 panel (a)).

The two operative frequencies could be interlaced or selected according to the scientific target.
Specifically, the quasi-simultaneous use of the two frequencies can be used to improve the estimation of
liquid loss tangent from radar attenuation. Similar techniques that aim to estimate radar attenuation at
different frequencies and for increasing depths have been also applied to Martian sounders data [86–88]
as well as Cassini data [2,26,27]. The X band frequency could provide the detection of the sea floor
of Kraken Mare, allowing for mapping the overall seabed topography of Titan’s seas. If Kraken
has a similar loss tangent to Ligeia, the X band frequency would penetrate to depths of up to
800–900 m. Moreover, a three dimensional bathymetric map could be generated while using repeated
passes observations, and the liquid attenuation could be estimated with a high accuracy at both
frequencies and at different locations (both different lakes/seas as well as different locations within each
lake/sea), allowing for the investigation of spatial and temporal variation of the liquid composition
and depth. When combined with any radiometric measurements, the system could provide additional
information regarding the dielectric properties of Titan’s liquid, as well as sea floor and the exposed
solid surface [89,90]. A multilayer simulator [91] has been used to generate simulations for the proposed
system in order to present how radar products would appear when observing Titan’s seas. Specifically,
in Figure 7, a comparison between the radagrams of Ligeia Mare is shown that would be obtained by
adopting the system parameters of the Cassini radar and those of the proposed architecture. Please
note that loss tangent values that were adopted to generate Figures 6 and 7 are only indicative and
reliable relationship of loss tangent as a function of frequency for any specific materials deserves
further investigation by direct laboratory experiment.
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Figure 7. (a) Simulation Ligeia Mare T91 observation. Loss tangent of the liquid has been set at 4 ∗ 10−5,
εr1 and εr2 to 1.7 and 3.1, respectively. Subsurface roughness term fss has been set to match observed
radar amplitude. (b,c) Ka and X bands, respectively, simulations of T91 observation while using the
proposed radar system.

Note that these simulations are not intended to capture the full characteristics of the radar echoes
waveform (i.e., roughness and pulse- limited effects), but only to qualitatively show the effects of
attenuation as frequency increases and the radar parameters are kept constant.
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3.2. Tides Estimation Using Repeated Ground Tracks: Simulation and Results

Herein, we investigate tides amplitude estimation accuracy from radar data simulation. We
simulate the radar response of the proposed system using a fractal surface and a facets based
simulator [2]. Surface characteristics are chosen by taking into account the available information
regarding Titan’s topography and the backscattering at each facets is represented via Hagfors scattering.
Each overlap of ground tracks is simulated over a 4000 × 100 km surface, which represent the observed
topography that was acquired from the pole to equator at true anomalies of 180 and 0 degrees. Tidal
effects are included while using the model that was reported by [81], in which it allowed the vertical
surface displacement to vary as a function of the latitude for a fixed longitude of 0 degrees. Figure 8a
reports the result of the surface displacement due to tides. A PRF of 5 KHz, a 32 GHz Ka frequency,
and a bandwidth of 50 MHz have been used to simulate 1330 bursts that were acquired along 4000 km
surface. The same realization of the fractal surface is used twice, including tidal surface variation while
assuming an h2 equal to 1.45 and different values of horizontal baselines for the two adjacent ground
tracks. In Figure 8b, we show the result of the application of an OCOG tracking algorithm [92] applied
to the two products, in which blue and red indicate the first and second acquisition at opposite true
anomalies and horizontal baseline of 2 km. It is possible to note that the effects of tides are already
notable in the retrieved altimetry.
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Figure 8. (a) Tidal surface displacement at opposite true anomalies 0 and 180 degree, and for latitudes
varying from the Pole to the Equator at 0 degree of longitude. (b) Over plot of the result of OCOG
algorithm applied to the first (blue) and second (red) repeated ground tracks. (c) Detected signal from
repeated passes, 2 km adjacent ground tracks. In blue is the results of the OCOG algorithm, and in
black is the cross correlation method. The red curve indicates the actual difference of the model.

We use two different methods for the estimating the Tidal Love number h2 from synthetic data.
While the first method uses the difference of the altimetry from the two passes while using the OCOG
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algorithm, the second method exploits the knowledge of the offset between the two altimetry profiles,
which were obtained by using the cross-correlation technique applied to the individual pairs of echoes
(i.e., echoes of the two ground tracks at minimum distance). Figure 8c shows the detected tidal signal
that was obtained while using the proposed methods. From our results, the cross correlation technique
results are more accurate than the OCOG method, especially when the horizontal baseline (i.e., distance
between the repeated ground tracks) is moderate, for example, less than 1 km for the proposed system.

The tidal Love number h2 can be estimated while using a least square solution to solve the linear
system that relates the observable tidal surface displacement to the Love number [82].

The results in Table 4 shows that estimation of h2 can be performed with an accuracy of 0.1–0.2%
from a single pair of repeated ground tracks when the cross-track separation is close enough to keep the
received signal correlated. Table 4 shows the same scenario that we evaluated, except for varying the
cross-track spacing between the two ground tracks and the RMS height of the simulated fractal surface.

Table 4. Accuracy of the estimate Love number h2.

Bh
[km]

sigmaH
[m]

Mean
OCOG

Err
OCOG

OCOG
(%)

Mean
xcor

Err
xcor

XCOR 1

(%)

3 20 1.50 0.027 1.79 1.50 0.026 1.72
3 30 1.41 1 0.040 2.86 1.42 0.04 2.83
2 20 1.42 0.025 1.77 1.44 0.017 1.21
1 20 1.45 0.012 0.84 1.45 0.005 0.32

0.6 30 1.47 0.012 0.83 1.45 0.004 0.25
0.3 30 1.44 0.008 0.57 1.45 0.002 0.13

1 xcor calculates shifts using cross-correlation of waveforms.

We can note that, for baselines smaller than 0.5 km, the Love number can be estimated within
0.2% of accuracy while only using a single pair of repeated orbits. Using only a few observations that
were dedicated to the repeated adjacent track mode, this modeling shows that h2 can be estimated to
within the required accuracy that is necessary to characterize the density of the internal ocean (~0.1%).
Similarly, when considering cross-overs, a distance that is smaller than 0.5 km and a number of them
close to one-thousand is sufficient to allow for a very accurate estimate of Titan’s Love number.

4. Conclusions

The Cassini mission, and in particular its RADAR instrument, have revealed the presence of
several geological features and landscapes which have greatly improved our understanding of Titan’s
complex environment [93]. Here, we have described the design and the scientific motivation of a dual
frequency radar system for the exploration of Titan seas and tides from a 1500 km circular orbit. The
proposed system could provide new insights and help to answer the scientific questions that were
raised during and after the Cassini mission [94]. The orbiter could provide information regarding the
global composition and topography of the moon by combing data that were acquired from future in
situ mission such as DragonFly, the robotic rotorcraft lander designed to explore Titan on 2034. The
studies presented here have general validity and they could be used in the framework of terrestrial
applications, as well as future missions. Specifically, tides are an object of interest for the exploration of
the interior of the Galilean moons and the techniques presented here could be proposed for next coming
missions, such as Europa Clipper and RIME [95]. Moreover, the bathymetry and composition studies
reported here could benefit the interpretation of ground penetrating radars, which are becoming an
attractive tool for the exploration of shallow terrestrial lakes and rivers [96].
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