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Abstract: How to efficiently utilize vast amounts of easily accessed aerial imageries is a critical
challenge for researchers with the proliferation of high-resolution remote sensing sensors and
platforms. Recently, the rapid development of deep neural networks (DNN) has been a focus in
remote sensing, and the networks have achieved remarkable progress in image classification and
segmentation tasks. However, the current DNN models inevitably lose the local cues during the
downsampling operation. Additionally, even with skip connections, the upsampling methods cannot
properly recover the structural information, such as the edge intersections, parallelism, and symmetry.
In this paper, we propose the Web-Net, which is a nested network architecture with hierarchical
dense connections, to handle these issues. We design the Ultra-Hierarchical Sampling (UHS) block to
absorb and fuse the inter-level feature maps to propagate the feature maps among different levels.
The position-wise downsampling/upsampling methods in the UHS iteratively change the shape of
the inputs while preserving the number of their parameters, so that the low-level local cues and
high-level semantic cues are properly preserved. We verify the effectiveness of the proposed Web-Net
in the Inria Aerial Dataset and WHU Dataset. The results of the proposed Web-Net achieve an overall
accuracy of 96.97% and an IoU (Intersection over Union) of 80.10% on the Inria Aerial Dataset, which
surpasses the state-of-the-art SegNet 1.8% and 9.96%, respectively; the results on the WHU Dataset
also support the effectiveness of the proposed Web-Net. Additionally, benefitting from the nested
network architecture and the UHS block, the extracted buildings on the prediction maps are obviously
sharper and more accurately identified, and even the building areas that are covered by shadows can
also be correctly extracted. The verified results indicate that the proposed Web-Net is both effective
and efficient for building extraction from high-resolution remote sensing images.
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1. Introduction

Large numbers of satellites and drones have been launched alongside the rapid development
of aerospace technology. Hence, high-resolution remote sensing images are getting easier to acquire.
An important use for remote sensing images is extracting and mapping artificial objects, such as
buildings [1], roads [2], and vehicles [3] at the pixel-level. Among them, building extraction is the
most critical task, and it is commonly applied to monitor the subtle changes in urban areas, urban
planning, and estimating the population. However, different from roads and vehicles, building areas
always contain complex scenic backgrounds. Meanwhile, in some areas, the visual features (shapes
and colours) of buildings and that of other natural objects (hills and lakes) are highly similar, which
makes the building extraction task greatly challenging, not only for designing auto-detection models,
but also for the artificial labelling tasks in the remote sensing field. In general, a high-quality image
provides more cues for identifying the building areas, whereas the abundant local information that is
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provided by the remote sensing images with higher resolution also raises higher requirements for the
models’ denoising and feature extraction abilities.

1.1. Building Extraction with Machine Learning

The building extraction task has drawn the attention of researchers over recent years. Before
the common application of deep learning, there were massive machine learning models that tried to
handle this task. In general, the pixel-wise labelling model consists of two sub-modules: the feature
descriptor for extracting the semantic features from the original images and the pixel-wise classifier for
determining the classes of the pixels. Some carefully designed feature descriptors were widely used in
early approaches. Tuermer et al. [4] firstly used the histogram of gradient (HOG) feature descriptor
in remote sensing for detecting vehicles. The Haar feature is applied in [5] for detecting buildings’
outlines and determining the location of buildings’ corners. Additionally, Yang et al. [6] applied the
Scale-invariant feature transform [7] (SIFT) for classifying objects in remote sensing images. Unlike
the artificially designed feature descriptors, the trainable models are the mainstream for the choices
of classifiers. In [8], Mountrakis et al. reviewed the early applications of Support Vector Machines
(SVMs) on remote sensing images. They stated that there are hundreds of relevant papers that apply
SVMs to remote sensing images for various tasks. Except for SVMs, [9] researched the Bayes classifier
and demonstrated that the naive Bayes can achieve comparable performance under most conditions.
In [10], an assembly model, called the Fuzzy Stacked Generalization (FSG), which combined the
detection results of multiple classifiers under a hierarchical architecture, was designed such that the
building extraction performance can be further boosted. Although models that were based on classical
machine learning methods achieved remarkable results in building extraction, how to properly and
automatically extract the building areas are still challenging and expensive due to the time consuming
artificial feature selections and the poor generalization abilities of the aforementioned classifiers.

1.2. Building Extraction with Deep Learning

Recently, with the rapid improvement of GPU computing, deep convolutional neural networks
have become cornerstone in computer vision and remote sensing areas due to their great capability of
extracting hierarchical features in an end-to-end fashion. Fully Convolutional Networks (FCNs) [11] are
the common choice for most current deep learning models for the pixel-level labelling task. Within the
framework of FCN, there are two keypoints affecting the performance with respect to the segmentation
accuracy. The first one is the feature extraction backbone network, and the other is the upsampling
design that preserves the features’ structural consistency. VGG [12], ResNet [13], Inception [14],
and their mutation models [15,16] are the most popular backbones because of their high structural
flexibilities and great generalization abilities. Recently, DenseNet [17] and its dense connection patterns
have become the mainstream backbones due to the efficiency of their feature reuse. By extending the
FCN architectures, U-Net [18] and SegNet [19] propose an encoder-decoder structure to compensate
the semantic features with local cues and enhance the structural consistency of the prediction map.
In addition, Deeplab [20] proposed Atrous Spatial Pyramid Pooling (ASPP) to encode the context
and scene information via a pyramid scene parsing (PSP) [21] structure and atrous convolution [22].
Deeplab made great progress on semantic segmentation tasks by embedding the ASPP into the
encoder-decoder architectures. In the remote sensing area, according to the mentioned properties
of high-resolution remote sensing images, some carefully designed models have been proposed
and optimized for building extraction tasks that are based on these above semantic segmentation
approaches. In early research, [23,24] used naive FCN architectures with deconvolutional layers
to extract buildings or roads, and these works demonstrated the effectiveness and efficiency of the
FCN architecture. [25,26] trained FCNs to extract the buildings using the patch-wise method. In [27],
Wu et al. built a multi-constraint network to sharpen the boundaries of artificial object predictions.
A trainable block, called the field-of-view (FoV), is proposed in [28] to boost the performance of the FCN.
With the successful applications of U-Net in the pixel-wise area labellings, most current models [28–33]
use encoder-decoder architectures. The mutation models enhance the buildings’ semantic boundaries
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by introducing a new loss or fusing features in more effective ways. Moreover, Yang et al. [29] proposed
an encoder-decoder network that was based on DenseNet and an attention mechanism, which is
called the dense-attention network (DAN), which achieves remarkable improvements in building
extraction. Meanwhile, Mou et al. analyzed and encoded the long-range relationships in remote
sensing images over sequences of time. Furthermore, [30,31] applied the recurrent neural networks
to fuse the hierarchical features from the different levels of the FCN. Audebert et al. [32] proposed
an efficient multi-scale approach to leverage both a large spatial context and the high-resolution data
and investigated the early and late fusion of Lidar and multispectral data to cover the scale variance
of buildings from different areas. In [33,34], the extra geographical information (DSM, DEM, and
Lidar images) are fed into a carefully designed FCN, together with high-resolution RGB images, and
the results indicate that abundant features always lead to sharper predicted building boundaries.
Moreover, post-processing methods, such as Guider Filter [1] and Conditional Random Field (CRF)
methods [35,36], have been heavily researched and attempted to preserve the structure consistency
between the building predictions and the original images.

1.3. The Motivation and Our Contribution

As mentioned in 1.2, the models that are based on the encoder-decoder framework have achieved
the best performance on building extraction tasks; however, there are three main dilemmas that remain
for the current building extraction tasks. (1) Early approaches easily classify non-buildings as buildings.
This is caused by the semantic feature maps that still contain noises and the long-range reliabilities not
being properly extracted. Generally, it is an inevitable problem for Convolutional Neural Network
(CNN)-based models, since its denoising operation, such as Max-pooling and Average-pooling,
is always accompanied by local cue losses. (2) The contours of the extracted building maps are blurred
and irregular. (3) The generalization abilities of the current building extraction models are weak,
as described in [37], since FCN-based networks only get high-quality predictions for areas where the
landforms are highly similar to that of the training areas; meanwhile, we found that the building
areas that are covered by shadows are likely to be labelled as non-buildings. To some extent, these
three dilemmas are partly conflictive. (1) requires less noises in the feature maps, while (2) needs
more local information to obtain the regular contours and retain the structural consistency. Although
(3) could be relieved by applying deeper networks, the deeper network that apparently needs many
more parameters also faces training difficulties and overfitting issues. In this paper, we propose a
novel nested encoder-decoder deep network, named Web-Net, to simultaneously overcome the above
conflicting obstacles that exist in the building extraction task. The main contributions of this paper can
be listed, as follows.

1. We first propose a cobweb-like fully nested and symmetric network architecture, named Web-Net.
Following the dense connection patterns, the output of every node layer is fed into all the subsequent
node layers in both the horizontal and vertical directions. The harmony nested and dense-connected
fashion leads to better features reuse abilities and generalization abilities.

2. We build a novel feature sampling and feature fusing block, named Ultra-Hierarchical Sampling
(UHS), which is applied to every node layer in the proposed Web-Net. The UHS block consists of a pair of
position-wise downsampling and upsampling sub-layers: an Ultra-Hierarchical Downsampling (UHDS)
sub-layer and an Ultra-Hierarchical Upsampling (UHUS) sub-layer. By iteratively feeding the feature maps
from different levels into the UHDS and the UHUS, they can be reshaped to a fixed size and then embedded
together. Benefitting from the fully position-wise operation in the down/upsampling, the number of the
feature map parameters and their spatial structure are preserved. Therefore, UHS achieves a better balance
between the preservation of local cues, the structural consistency, and feature denoising as compared
with normal downsampling and upsampling methods, which results in more accurate building extraction
contours and better classification accuracies.

3. We analyze the effects of the deep supervision methods on the nested Web-Net. Based on the
pruning of Web-Net, we propose the efficient mode, the balance mode, and the high-performance
mode for the proposed Web-Net to make it more flexible and easier to adopt in either time-sensitive
tasks or accuracy sensitive tasks.
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This paper is organized, as follows. After Section 1 introduced the building segmentation in
remote sensing image processing, Section 2 details the semantic segmentation frameworks that are
related to our work. Subsequently, Section 3 gives the proposed method, describes the architecture of
Web-Net, and lists the implementation details of the UHS block and the deep supervision method.
The experimental results and discussions are illustrated in Section 4. Finally, we provide a conclusion
in Section 5.

2. Related Work

In this part, we review the early classical network architectures and the state-of-the-art models for
object segmentation tasks. These architectures are widely applied to remote sensing object extraction
and other similar binary semantic segmentation tasks.

2.1. Fully Convolution Methods

In early research, the patch-based CNN was commonly used and it was the mainstream method
in the remote sensing building extraction field. In it, the images are firstly divided into several mini
patches and then fed into CNN networks to extract the semantic features. Afterwards, fully connected
(FC) layers are used to classify each pixel. The patch-based CNN is strictly restrained by the number
of parameters, and the extremely small patches (always less than 25 pixels) would consume a large
amount of memory. Therefore, the final prediction usually lacks structural integrity, especially in the
large scale building areas. The FCN [11] replaces all of the FC layers with convolution layers, and
this procedure is mainly based on the assumption that every patch in an image follows the same
probability distribution; hence, applying convolutional layers whose parameters are locally shared can
achieve comparable performance with FC layers with several orders of magnitude fewer parameters.
Therefore, when encountering fixed GPU memory, an FCN can achieve a larger image patch as its
input and better long-range reliabilities can be obtained, which significantly improves the prediction
quality with fewer structural errors. Meanwhile, fewer parameters also benefit the model’s robustness
and ease the difficulties of training.

2.2. Encoder-Decoder Architectures

The encoder-decoder structure is widely applied on pixelwise labelling tasks, such as semantic
segmentation, object segmentation, etc. [18], first built a highly symmetric architecture, called U-Net,
in which the structures and dimensions of the decoders mirror the encoders. The outputs of each
level from the encoder are directly linked to the corresponding level of the decoder as inputs through
the jump connection. When compared with FCN-based networks, U-Net built a more sophisticated
decoder to gradually upsample the semantic feature maps to the original image size, and the local
cues from the encoder are compensated at the corresponding decoder level, which enhances the
predicted contours. SegNet [19], which was further extended from U-Net, implemented a memorized
Max-pooling operation in the encoder model that stores the indices of the maximum pixel, and the
decoders in SegNet upsample its input feature maps while using the memorized max-pooling indices.
Rather than ordinary max-pooling, the memorized max-pooling preserves the location information
of the maximum pixel in an adjacent area, which allows for the upsampling in the decoder blocks to
better recover the lost local cues.

2.3. Nested Connected Architectures

Motivated by the idea of densely connected networks, the nested connected architectures are
designed to reuse more features. Nested architectures always have sophisticated and carefully
designed adjacent/jump connections, and different bundles of the inner layer can be explicitly assigned
to corresponding sub-networks architectures. To the best of our knowledge, GridNet [38] is the
first approach towards implementing a nested connected architecture in the semantic segmentation
area. The feature propagation paths in GridNet can be separately divided into the U-Net, the FCN,
the Fully Resolution residual Network [39], and other symmetric or asymmetric encoder-decoder
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architectures, which allow for the model to contain more complicated feature paths and extract deeper
semantic features. Furthermore, Unet++ [40] introduces the idea of nested architecture into U-Net;
there are various levels of U-Nets that are stacked in Unet++, and hence the entire structure of Unet++

looks similar to an equilateral triangle (the same number of layers on every edge). One of the most
critical contributions of Unet++ is introducing the Deep Supervision [41] method (DS) into the nested
architecture networks. Unet++ applies the DS method on every sub-U-Net. Benefitting from the DS
method, Unet++ can be easily trained and it achieves better performance on the segmentation task,
rather than early nested networks.

3. Proposed Method

3.1. Overview of the Proposed Networks

Figure 1 shows the high-level structure of the proposed Web-Net and its skip connection patterns.
Different from the encoder-decoder architectures, such as U-Net [18] and SegNet [19], the proposed
network consists of a backbone encoder and nests of node layers (decoders). These node layers absorb
the feature maps from the adjacent node layers (Figure 1a) and the long-range node layers (Figure 1b)
in the horizontal direction (red dotted line) and the vertical direction (green and blue dotted lines).
Benefitting from the nested connection pattern, the node layers can simultaneously work as parts of
the encoder and decoder in the proposed framework. Apparently, in the vertical direction, the input
hierarchical features from different levels of Web-Net need to be resized to the same size for further
processing for every node layer; therefore, we propose the carefully designed Ultra-Hierarchical
Sampling (UHS) block to accomplish this. Web-Net can be seen as the densest version of the nested
encoder-decoder networks by applying the UHS block in every node layer. The implementation of the
UHS blocks and then the abundance of message paths and the deep supervision method for Web-Net
will be described in Sections 3.2 and 3.3, respectively.
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Figure 1. Architecture of the proposed Web-Nets. (a) shows the structure of Web-Net with adjacent
connections. The five blocks in the grey areas represent the encoder backbone. The compression
blocks are linked behind each level of encoder blocks to reduce the dimensions, and the solid arrow
shows the normal downsampling (Max Pooling) operation. The light blue area is the decoder part
of Web-Net, and the outputs of every node layers in the decoder are only fed into the node layers of
upper levels in the vertical direction. The purple triangular area located at the corner of the Web-Net
architecture is the node layers, which work as both encoders and decoders. The node layers obtain the
features from their neighbouring layers, and then we simultaneously fuse the features and feed them
into the adjacent node layers. The green, blue and red dotted lines indicate the feature transfers in
the top-bottom, bottom-top and horizontal directions, respectively. (b) details the skip connections
in Web-Net. The red dotted line represents the horizontal skip connections among the same levels,
the green dotted lines denote the hierarchical top-bottom skip connections, and the blue dotted lines
show the hierarchical bottom-top jump connections. Apparently, each regular triangle with different
coloured edges constructs a mini encoder-decoder architecture.
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3.2. Node Layer and Ultra-Hierarchical Sampling Block

As the corner components of the proposed network structure, Figure 2 details the workflow of
Ultra Hierarchical Sampling (UHS) block in the node layer, which down-samples/up-samples the
dimensions of inputs by iteratively applying the position-wise reshape operation. At first, as shown in
Figure 1, the input features from both adjacent and long-range node layers are fed into the Feature
Gather block. Depending on which levels the inputs coming from, the inputs are divided into three
groups, which are top-bottom, bottom-top, and horizontal groups, and they are represented by green,
blue, and red dotted lines, respectively. Subsequently, these hierarchical features with the different
shapes are fed into Ultra-Hierarchical Sample (UHS) block to reshape them into the same size and
concatenate them together for further processing. Finally, the outputs of the UHS block are delivered
into the Feature Fusing sub-block, which contains two 3× 3 convolution layers with an Relu Activation
function and Batch Normalization Layer and a Squeeze and Excitation (SE) Block [42]. Here, the SE
block adaptively recalibrates features with channel dimensions through a simple gate mechanism.
For further convenient analysis, we define the necessary symbolic representations for the node layer in
priority. Assuming that the scale factor between two neighbored levels in Web-Net is d, in general d is
set to 2. The specified node layer is represented as N(i, j), where i, j ∈ [0, n− 1], i indicates which level
the node layer belongs to and j is the index of the node layers in the ith level. After the compression
block, the shapes of the feature maps in level i are (Ci, Hi, Wi). Moreover, the relationship of the feature
map shapes between the level a and the level b can be computed as in Equation (1):

(Cb, Hb, Wb) =
(
db−aCa, da−bHa, da−bWa

)
(1)
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Figure 2. The workflow of Node Layer for Node(1,2). C, H, W represent channel numbers, heights, and
widths, respectively, of the feature maps in level 1. For clear visualization, the intermediate feature
maps coming from intra-level and inter-level node layers are summarized with the dimension channels.

As mentioned above, the hierarchical input features need to be reshaped to the same shape.
The early methods usually apply the classical down-sampling methods (Max Pool, Mean Pool, et.al),
which simply select the maximum value or the averaged value from each pooling grid and the classical
up-sampling methods (Bilinear, Nearest, et.al), which complement the missing values in each pooling
grid through the Bilinear or Nearest interpolation methods. As analyzed in Section 1.3, the local
cues lose during pooling operation cannot be recovered in the up-sampling processing. There are
two keypoints in order to preserve the local cues: one is that every value in the feature map cannot
be directly dropped out, in another word, the total amount of the feature map parameters needs to



Remote Sens. 2019, 11, 1897 7 of 23

be unchanged. Another is that the structural consistency of the feature map must be kept. For this,
we design the position-wise operations to change the shape of the feature maps in the UHS block.
As shown in Figure 3, the position-wise here means the operation just acts on the positions of each pixel
in the feature map, the parameter amount and their corresponding values are unchanged. Assuming
that the feature maps of three dimensions (channel, height, width) of A (B) is the result of applying
the position-wise downsample (position-wise upsample) on B (A), c, i, and j are the indices of the
produced feature maps, the output of the position-wise downsample (position-wise upsample) can be
calculated as Equations (2) and (3), where | and % indicate the exact division and remainder operations.

A(c, i, j) = B(c|s2,s i+c%s2 |s, s j+c%s2%s) (2)

B(c, i, j) = B(cs2+(i+ j)%s2, i|s, j|s) (3)
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Figure 3. Diagram of the position-wise operations where the red, blue, green, and yellow cubes indicate
pixels of different positions in the feature map respectively. The position-wise Downsample operation
halves the size of the original feature map while the dimensions are stretched for four times. In contrast,
the position-wise Upsample operation doubles the size of the feature map and reduces the dimension
channel according to the position of every pixel.

As shown in Figure 4, the proposed UHS block involves a position-wise Downsample (PW-DS)
flow and a position-wise Upsample (PW-US) flow. In the PW-DS flow, we simultaneously use four
ordinary pooling layers with different hyperparameter initializations on the input features to simulate
the position-wise down-sampling operation. For the kernel size s, when s = 1, every pixel in the
feature map would be properly preserved. With the increasing of s, the larger pooling kernel size can
filter out noises but blur the local cues. The pooling stride is set to 2, while the padding is (0, 0, 0, 0),
(0, s− 1, 0, 0), (s− 1, 0, 0, 0), and (s− 1, s− 1, 0, 0) individually, and each pooling layer would reduce
the size of the feature maps by half, the results of four pooling layers would be concatenated together
as the final output. The PW-DS operation is iteratively applied on the input feature map until the
output is reshaped to the target size. Assuming that the scale factor between the input feature map
and the output target is f , the number of iterations is equal to log2 f . In simple terms, the PW-DS
squeezes the input feature maps into the target size, the local cues and structural information are
encoded into the dimension channels. In the PW-US flow, similar to Dense Upsampling Convolution
(DUC) [43], the position-wise up-sampling operation doubles the size of the input feature map and it
reduces the input channel number to a quarter in each iteration, the PW-US operation is looped on the
input feature map until the size of output is enlarged to the target. For example, if the input shape
and the target shape are

(
d4c, h, w

)
and

(
c, d2h, d2w

)
, respectively, the PW-US would be applied twice.

In the first iteration, every feature strip with the shape
(
d4c, 1, 1

)
is reshaped to

(
d2c, d, d

)
, therefore the

feature map after the first iteration of PW-US has a shape of
(
d2c, dh, dw

)
. Similarly, the output shape



Remote Sens. 2019, 11, 1897 8 of 23

of the second iteration of PW-US is changed to
(
c, d2h, d2w

)
. Corresponding to the PW-DS stream, the

PW-US stream can be seen as flattening the squeezed feature map back to a specific shape, it decodes
the local cues and structural information into the high-resolution feature maps.
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Figure 4. The workflow of the Ultra-Hierarchical Sampling (UHS) blocks. Similar to Figure 1, the green,
red, and blue cubes indicate the feature maps from the top, horizontal, and bottom levels respectively.
c, h, w represent the dimensions of the input for the position-wise Downsample (PW-DS) and the
position-wise Upsample (PW-US). The downsample and upsample rates for position-wise downsample
and position-wise upsample are initialized to 2. In the PW-DS flow, the yellow, dark green, bright red, and
purple cubes indicate the results of four individual pooling layers with different padding initializations.

3.3. Dense Hierarchical Pathways and Deep Supervision

As described in Section 3.1, the proposed Web-Net contains the dense skip pathways, both in
the horizontal and in the vertical directions. The horizontal connections just work like DenseNets,
where all the preceding feature maps in the same level would pass directly to the layers behind them
as part of the input feature maps. In the vertical direction, profiting by the proposed UHS block,
the encoder and decoder node layers can also gather the preceding hierarchical feature maps as the
inputs, the dense connection patterns can greatly shorten the message paths in both directions. Suppose
that the feature fuse function and outputs of the node layer (i, j) are H(i, j) and X(i, j), respectively,
the transform functions for the up stream and the down stream are defined as PWUS and PWDS,
respectively, and w, m, n are the indexs of feature maps from corresponding levels, the transform of
Node(i, j) is shown as Equation (4).

X(i, j) = H(i, j)(Cat([Xi,w
∣∣∣w ∈ [0, j− 1]], PWUS

(
Xm,i+ j−m

∣∣∣m ∈ [ j + 1, i + j]
)
,

PWDS(Xn, j
∣∣∣n ∈ [0, i− 1])))

(4)

It can be seen that the Web-Net is a densest connected, symmetric, and elegant architecture, where
the features can efficiently propagate to each node in every level within the shortest path. Additionally,
the nested architecture makes the Web-Net contain numbers of Web-Nets with smaller levels in it.
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In Figure 5, there are eight different encoder-decoder feature propagation paths in a basic 3 level
Web-Net, and each graph describes a special encoder-decoder structure. Specifically, the input features
of every node layer are coming from other small Web-Net architecture, therefore, the semantic feature
can be not only extracted in the nested pattern, but also compensated with the local cues by jump
connections, this results in a sharper and more accurate prediction. Moreover, in Web-Net, there are just
a few extra parameters when compared with the U-Nets architecture with the same encoder backbone,
because we share and reuse the feature maps rather than create new ones. Hence, as compared with
other complicated network structures, the proposed Web-Net can partly avoid the over-fittings that
are caused by the large parameter amounts of deeper encoder or wider decoder benefitting from the
elegant feature reuse manners.
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Figure 5. The 8 encoder-decoder structures in a basic 3-level Web-Net. The red lines in each graph
constitute an independent encoder-decoder structure.

Profiting from the nested design of Web-Net, all of the outputs of the node layers in level 0 have
full resolutions as Ground Truths; therefore, we can apply the deep supervision method on them.
For the prediction layer Node(i, j), we use ln to represent its loss function. ln is the fusion loss, which is a
linear weighted summary of the binary cross-entropy (BCE) and the Dice coefficient. The final loss L is
simply a combination of ln, as shown in Equations (5) and (6):

li = −(ω1
1
N

YlogŶi +ω2
2Y ∗ Ŷi + ε

Y + Ŷi + ε
) (5)

L =
4∑

i=1

li(Y, Ŷi) (6)

where Y and Ŷ denote the ground truth and prediction probabilities, respectively, and ε is set as 0.01 to
prevent the value of the denominator from being 0. ω1 and ω2 are the coefficients that balance the
Binary Cross-Entropy and Dice loss. As depicted in [13], the identity mapping that is constructed by
residual connections in the UHS blocks ensures that the optimization loss L is equal to the optimizing
series of encoder-decoder sub-networks; this indicates that the performance of Web-Net would not be
worse than anyone of sub-networks even in the worst case. Section 4,discusses pruning and ablation
studies that are applied to exploit the benefits of deep supervision methods.

4. Experiments and Discussions

In this section, to demonstrate the efficiency and effectiveness of the proposed Web-net, we have
evaluated it for the building extraction task on very high-resolution remote-sensing images among
different areas.
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4.1. Training Details

4.1.1. Datasets

We conduct all experimental evaluations on the challenging Inria Aerial Image Labelling
Dataset [37] and WHU Dataset [44]. The Inria dataset mainly contains five open-access land-cover
types from Austin, Chicago, Kitsap County, Vienna, and West Tyrol. There are 36 ortho-rectified images
that cover 81 km2 for each region. Additionally, the five areas cover abundant landscapes ranging
from highly dense metropolitan financial districts to alpine resorts, as shown in Figure 6.
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Figure 6. Visual close-ups of the Inria dataset images from five different regions and their corresponding
reference data.

The images in this dataset contain three bands (RGB) with very high spatial resolution (0.3 m).
There are just two semantic labels of building and nonbuilding, and the target area in the dataset is the
footprint of the roof. Therefore, it is completely suitable for our research purposes and convenient for
validating model performances. In our experiments, we split each image into 100 sub-images, with a
resolution of 500 × 500. In total, there are 18000 split images. Because the test set reference data is not
publicly released, we choose the first five unsplit images from each area as the test set (images 1–5
for the testing and images 6–36 for the training) following the official validation suggestions [37] to
achieve fair results and comparisons.

The WHU Dataset contains 8189 tiles of 512 × 512 pixels with more than 187,000 well-labelled
buildings in New Zealand as compared to the Inria Dataset. The dataset covers approximately 450 km2

and it has the same spatial resolution of 0.3 m as that of the Inria Dataset. This dataset was officially
divided into a train set, a validation set, and a test set, consisting of 4736 images, 1036 images, and
2416 images respectively.

4.1.2. Metrics

The intersection over union (IoU) of the positive class (building) and the overall accuracy are
applied as the evaluation criteria to evaluate the performance of the different building extraction
methods on the remote sensing images, which are also following the official guidance of the Inria
Dataset [37]. The Overall Accuracy can actually evaluate the percent of the correctly predicted pixels.
For the balanced dataset, the overall accuracy can objectively represent the model’s classification
ability. However, the buildings always cover small areas on the aerial imageries and they are easy to
be ignored. In the extreme situation, only one small building is located in a large area. Regardless of
whether the model can correctly extract the building or not, there are few differences in the overall
accuracy metric. The Intersection over Union (IoU), which is a widely used non-linear measure that
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robustly evaluates how close two distributions are, is introduced in the segmentation task to overcome
the effect of the unbalanced phenomenon.

4.1.3. Implement Details

We build the proposed Web-Net based on the PyTorch library [45]. We train the models both from
scratch and fine-tune the encoder backbones using the pretrained parameters from ImageNet [46].
We apply the Adam algorithm [47] with the default settings (β1 = 0.9, β2 = 0.999, and the weight
decay is 0) to optimize the model parameters during training. We follow the popular polylearning rate
schedule that is computed as Equation (7) to adjust the learning rate:

lr = lrinit(1−
iter

max_iter
)

power
(7)

where the initial learning rate lrinit is 0.001, power = 8, and the max iterations is set to 30. In addition,
in each iteration, the whole training set is sequentially fed into the model. It takes approximately 27
hours to train our model with the Inria dataset on one NVIDIA GTX1080Ti.

4.2. Ablation Evaluation

In this section, we aim to study how the proposed Web-Net works with the different backbones
and the sampling methods. For convenient analysis, we build all the ablation experiments on the Inria
Aerial Dataset.

4.2.1. Backbone Encoder Evaluation

In this section, we evaluate the performance of the proposed Web-Net with different backbone
encoders that are trained from scratch. VGG [12], ResNet [13], [17], ResNext [15], Xception [16], and
DenseNet [17] are applied as the encoders; in addition, the pooling size in the UHS is set to 2 and the
batch size is fixed as 4 in each model in order to obtain fair comparisons. The other hyperparameter
settings follow the description of Section 4.1.3. Table 1 lists the results.

Table 1. The Intersection over Union (IoU) and Acc.. of various backbone encoders for the validation set.

Backbones IoU (%) Acc. (%) 1 TT(Min) 2 MS(GB)

VGG-16 75.10 96.10 50 6.86
Res-50 75.33 96.06 62 5.88

Res-101 75.58 96.17 70 7.07
ResNext-50 76.23 96.25 52 5.91
ResNext-101 76.39 96.30 87 7.68
Dense-121 75.93 96.20 - -
Dense-161 76.58 96.38 - -
Xception 75.58 96.14 58 7.72

1 Training time per epoch, 2 Memory space cost on a GPU.

From Table 1, it can be seen that even the encoder with a very basic VGG-16 can acquire
a quite good result on the validation dataset, which proves the effectiveness of the proposed
Web-Net architecture. Furthermore, ResNet achieves comparable metric scores as the VGG network,
but it requires considerably fewer parameters, since it benefits from the residual learning method.
A significant performance boost comes from the ResNxet network that replaces the convolution layers
in it with aggregated sets of sub-convolution layers, which is also known as group convolution.
Similar to ResNext, Xception also applies group convolution operations, but it obtains lower metrics
than ResNext due to the lake of residual transform. Unexpectedly, there is little improvement when
we apply the widely used DenseNet as the encoder backbone in Web-Net. We believe that it is because
the proposed nested hierarchical structure has applied the dense connection patterns among the node
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layers, and so the dense connections in the encoder backbone blocks are not as critical and necessary.
The original DenseNet that is implemented in deep learning platforms is computationally expensive,
since the high frequency concatenating operations exponentially expand the memory costs, and the
Efficient-DenseNet [48] may save memory, but it decreases the training efficiency. Therefore, we do
not test their training time and memory costs in Table 1. Furthermore, we apply deeper backbones to
evaluate time and memory consumptions. The deeper networks, such as Xception, Dense-161, and
ResNext-101 obtain less than a 1% improvement with respect to the IoU, while they take much more
training time and consume more GPU memories. Therefore, we choose ResNext-50 as the backbone in
further experiments to retain the best balance between the model’s performance, time and memory
costs. At the same time, an oracle model (best performance) is proposed in Section 4.3.

4.2.2. Ultra-Hierarchical Samplings Evaluation

As mentioned in Section 3.2, the size of the pooling kernels in the PWDS flow is vital to the
performance of the UHS block, since the pooling size determines the capability to balance the
denoising and information preservation. Meanwhile, we create four comparable down-up sampling
blocks by replacing the PWDS and the PWUS with max pooling/average pooling and a bilinear
interpolation/Deconv layer, respectively, in order to evaluate the effectiveness of the proposed UHS
block. These four blocks are named the Max-Bilinear, Avg-Bilinear, Max-Deconv, and Avg-Deconv.
The best results for each model are given in Table 2, and Figure 7 shows how the IoU scores vary with
the kernel sizes of the downsampling operations.

Table 2. Evaluation of Web-Net for the validation set.

Models IoU (%) Acc. (%)

Max-Bilinear 75.96 96.19
Avg-Bilinear 75.82 96.16
Max-Deconv 76.20 96.25
Avg-Deconv 76.23 96.25

UHS 76.50 96.33
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From Table 2, the proposed Web-Net with the UHS blocks achieves the best results with an IoU
of 76.50% and an Acc. of 96.33%, which are observably higher than those the other four comparable
models. Additionally, the learnable upsampling method deconvolution reaches nearly 76.20% with
respect to the IoU. The Web-Nets with the naive Max-Bilinear and Avg-Bilinear acquire the worst
performance with respect to both the IoU and Acc. These results in Table 2 verify that the structure of
the UHS block, as well as the position-wise down/upsample operations in Web-Net, play pivotal roles
on boosting the model’s performance. In Figure 7, it can be seen that the IoU of the UHS increases
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as the kernel size increases from 1 to 5 and then slowly decreases as the kernel size further increases.
In addition, with the increase of the pooling size, the IoU curves of the other four models fluctuate
more and are more chaotic. Meanwhile, the optimal kernel size of the UHS is 5, which is nearly
twice as large as those of other models. These observations support the assumptions that the highly
symmetric structures of the down/upsampling methods in the UHS blocks generate better and more
stable denoising and local cue preservation abilities. Figure 8 lists some representative predictions
from the Bilinear, Deconv, and the UHS-based Web-Net. It can be seen that the Web-Net with the UHS
acquires sharper boundaries for larger buildings, and buildings with surrounding vegetation, which
are easy to misclassify, are correctly extracted. All of these observations prove that the UHS block has
better denoising and feature preservation abilities.
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In this section, we prune the Web-Net into four scales according to the depth level to prove the efficiency
and adaptability of the proposed Web-Net for both time-sensitive task and performance-sensitive task.
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Due to the highly symmetric structure of Web-Net, we can partly supervise the outputs of
Node(0,1), Node(0,2), Node(0,3), and Node(0,4) to individually simulate the Web-Net with different
depths, which are represented as Web-Net-Ln, where n is the depth.

Table 3 reports the metric scores of each sub-Web-Net on the Inria Dataset. Web-Net-L0 is much
worse than the others due to the different numbers of parameters and network depth. Web-Net-L1

achieves a 6.18% higher IoU than Web-Net-L0, and the further improvements of the depth gradually
increase the IoU to 76.50%. From Figure 9, it can be seen that the feature map of Web-Net-L0 obtains
significant low-level information, and the object maps are incomplete while lots of non-building areas
are detected. The deeper and more complicated structures of Web-Net can efficiently extract the
semantic information and involve fewer local features and details. It should be noted that the contours
of the feature map from Web-Net-L3 are not blurred, which proves that the proposed Ultra-Hierarchical
Upsampling sub-block is effective for completely eliminating the local cues from the features that are
encoded in the channel dimension. Meanwhile, Table 3 lists the time costs of each pruned model.
Apparently, except for L0, every five extra seconds of inference time can increase the IoU by at least
1.2%. Therefore, there are three modes that are involved in Web-Net to make inferences balanced with
different accuracies and time costs, which are efficient (L1), balanced (L2), and effective (L3) modes.

Table 3. Model Pruning.

Models IoU (%) Acc. (%) Time(s)

Web-Net-L0 67.90 94.73 15.4
Web-Net-L1 74.02 95.94 18.7
Web-Net-L2 75.20 96.14 23.2
Web-Net-L3 76.50 96.33 28.8
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4.3. Best Performance and Comparisons with Related Networks

In this part, we investigate the best performance of the proposed Web-Net using four NVIDIA
GTX1080Tis, and we then compare the Web-Net and the related state-of-the-art models to verify the
effectiveness and efficiency of the proposed Web-Net.

4.3.1. Best Performance Model

A series of ablation experiments are built to determine the best performance of the proposed
model. We just start with the basic encoder-decoder model (ResNext-50) and iteratively improve
the performance by applying the proposed UHS blocks, nested structures, and learning strategies.
Moreover, we apply the parameters that are pretrained on ImageNet to initiate the model. Bigger
training sample sizes and deeper basic encoder structures are also used to obtain a better performing
model with respect to the metrics. Table 4 shows the results.

Table 4. Various Design Results.

Web-Net

Unet++ (ResNext50 × 32 × 4d)
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and the Acc. by 0.58%. The pretrained encoder backbone (ResNext-50) also results in a 1.87% 
improvement compared with training from scratch. The deep supervision method obtains small but 
consistent improvements of 0.32% and 0.07% for the IoU and Acc., respectively. Applying the deeper 
ResNext-101 as the encoder backbone could further obtain additional 0.83% and 0.14% improvements 
in the IoU and Acc, respectively, over ResNext-101. Finally, a large batch size (16) results in the best 
performance of the proposed Web-Net with an IoU of 80.10% and an Acc. of 96.97%. 

4.3.2. Comparison Experiments on the Inria Aerial Dataset 

Next, we provide the performance comparisons of the proposed Web-Net and other 
aforementioned state-of-the-art models on the Inria Aerial Dataset, and the results are listed in Table 
5. Compared with the FCN-based baselines in [37], Web-Net outperforms the FCN and multi-layer 
perceptron (MLP) by 26.28% and 15.43%, respectively, for the IoU. Moreover, the result of Web-Net 
is 6.10% higher than that of the recurrent network in fully convolutional network (RiFCN), which 
applies a time consuming recurrent backward stream to fuse the hierarchical features in the time 
sequence. Web-Net achieves a 20.57% higher IoU when comparing the proposed Web-Net with the 
Mask R-CNN, which is a popular framework that simultaneously conducts instance detection and 
semantic segmentation tasks. The naive SegNet acquire a 70.14% IoU and a 95.17% overall accuracy, 
which indicates that the mainstream encoder-decoder architecture can work well on the extracted 
building areas. Including the latest nested Unet++, we can observe an improvement of at least 7.1% 
among all Unet and SegNet models with respect to the IoU. By combining the encoder-decoder 
architecture with dense connection patterns into the Dual-Resolution U-Net, the two-level U-Net 
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1 Deep supervision.

Rather than the basic U-Net architectures, the Web-Net architecture improves the IoU by 3.54% and
the Acc. by 0.58%. The pretrained encoder backbone (ResNext-50) also results in a 1.87% improvement
compared with training from scratch. The deep supervision method obtains small but consistent
improvements of 0.32% and 0.07% for the IoU and Acc., respectively. Applying the deeper ResNext-101
as the encoder backbone could further obtain additional 0.83% and 0.14% improvements in the IoU
and Acc, respectively, over ResNext-101. Finally, a large batch size (16) results in the best performance
of the proposed Web-Net with an IoU of 80.10% and an Acc. of 96.97%.

4.3.2. Comparison Experiments on the Inria Aerial Dataset

Next, we provide the performance comparisons of the proposed Web-Net and other aforementioned
state-of-the-art models on the Inria Aerial Dataset, and the results are listed in Table 5. Compared with
the FCN-based baselines in [37], Web-Net outperforms the FCN and multi-layer perceptron (MLP)
by 26.28% and 15.43%, respectively, for the IoU. Moreover, the result of Web-Net is 6.10% higher
than that of the recurrent network in fully convolutional network (RiFCN), which applies a time
consuming recurrent backward stream to fuse the hierarchical features in the time sequence. Web-Net
achieves a 20.57% higher IoU when comparing the proposed Web-Net with the Mask R-CNN, which is
a popular framework that simultaneously conducts instance detection and semantic segmentation
tasks. The naive SegNet acquire a 70.14% IoU and a 95.17% overall accuracy, which indicates that the
mainstream encoder-decoder architecture can work well on the extracted building areas. Including the
latest nested Unet++, we can observe an improvement of at least 7.1% among all Unet and SegNet
models with respect to the IoU. By combining the encoder-decoder architecture with dense connection
patterns into the Dual-Resolution U-Net, the two-level U-Net acquires remarkable performance for
the building extraction task. When compared with them, Web-Net acquires 5.88% and 5.55% higher
IoUs, respectively. The recent GAN [49]-based approaches, Building-A-Net, acquire the state-of-the-art
results on the Inria Aerial Dataset. Benefiting from the great generalization abilities of the GAN,
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the original Building-A-Net with 52 layers achieves a 74.75% IoU, and the deeper version further
acquires an impressive IoU and Acc. of 78.73% and 96.71%, respectively. Although it is not fair to
compare Web-Net with Building-A-Net, the Web-Net architecture can be easily embedded into the
GAN framework. Thus, we build the corresponding Web-Net-ResNext50 and Web-Net-ResNext101,
where the numbers of parameters are similar to the generated Building-A-Net with 52 and 152 dense
layers, respectively, to verify the effectiveness of Web-Net. Compared with the Building-A-Net-52, The
50-layer Web-Net obtains 1.75% better performance, while the 101-layer Web-Net with the pretrained
parameter initialization achieves an 80.10% IoU, which is 1.37% higher than the performance of
the 152-layer pretrained Building-A-Net. Figure 10 lists some randomly chosen prediction maps
from the MLP, SegNet, Unet++, and Web-Net, in order to provide a more intuitive view. It can be
seen that there is a vital performance improvement from Web-Net on the large-sized building areas.
The MLP and SegNet frequently misclassify the building pixels that are located in shadows into
non-buildings, and therefore there are many “holes” in their prediction maps due to their weak abilities
for extracting long-range correlations. Although the nested connections in Unet++ can partly relieve
this phenomenon, the shadows in the building areas still have negative effects on the accuracy of the
building extraction. The proposed Web-Net achieves a surprising prediction quality for large-sized
building areas and shadow areas (red circle areas). Additionally, the false extractions and missed
extractions of Web-Net are significantly reduced (yellow circle areas), and the boundaries of the
extracted building maps are sharper than those of the other models. In Table 5, we also compare the
efficiency of Web-Net with the other models.

Table 5. Numerical Results of the State-of-the-art models on the Inria Dataset.

Methods Acc. (%) IoU (%) Time (s)

FCN [50] 92.79 53.82
Mask R-CNN [51] 92.49 59.53 -

MLP [50] 94.42 64.67 20.4
SegNet (Single-Loss) [52] 95.17 70.14 26.0

SegNet (Multi-Task Loss [52] 95.73 73.00 -
Unet++ (ResNext-50) [40] 95.79 73.32 26.5

RiFCN [30] 95.82 74.00 -
Dual-Resolution U-Nets [53] - 74.22 -

2-levels U-Nets [54] 96.05 74.55 208.8
Building-A-Net (Dense 52 layers) [55] 96.01 74.75 -

Proposed (ResNext-50) 96.33 76.50 28.8
Building-A-Net (Dense 152 layers pretrained) [55] 96.71 78.73 150.5

Proposed (ResNext-101 Pretrained) 96.97 80.10 56.5

Although we apply the overlapping-tile strategy [18], the proposed Web-Net only takes 56.5 s to
process one 5000 × 5000 image, which is three times faster than the state-of-the-art building-A-Net
method. Meanwhile, the lighter version of Web-Net that applies ResNext50 as the encoder just takes
28.8 s and it also achieves a satisfactory extraction result. The efficiency of Web-Net mainly arises from
the efficient backbone encoders (ResNext) structure and a smaller number of layers in the decoder that
are built by the parameter-efficient UHS block. The run time of Web-Net is even similar to the FCN
with the same encoder structure.

We test the performance of the Web-Net and other models [30,37,40,52] on five areas with the
different landforms from the Inria Dataset to verify the performance of the Web-Net for buildings of
various styles. Table 6 shows the results.

When compared with the basic SegNet, the proposed Web-Net gains +7.68%, +21.07%, +2.65%,
+18.04%, and +10.59% better IoUs for Austin, Chicago, Kitsap Country, Western Tyrol, and Vienna,
respectively. Additionally, Web-Net outperforms Unet++ by +7.8%, +6.73%, +6.61%, +8.66%, and
+5.45% with respect to the IoU, respectively. From Figure 10, we can observe that the performance
boost of Web-Net mostly comes from the sharper building contours and the areas that are covered
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by vegetation and shadows. Furthermore, we find some inaccurate labels in Chicago and Vienna
according to the abnormally low IoUs and Accs., and some examples are shown in Figure 11.Remote Sens. 2019, 11, x FOR PEER  17 of 23 
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Figure 10. The images in each row are randomly chosen from Austin, Chicago, Kitsap, Tyrol, and
Vienna, and the patch size is 1000 × 1000. Columns 2–6 are the ground truth and prediction maps from
MLP, SegNet, Unet++, and Web-Net, respectively. The areas in red circles are correct predictions in
shadowed areas, and the yellow circles are correct classifications where other models fail.

Table 6. Numerical Results among Cities.

Methods Austin Chicago Kitsap
Country

Western
Tyrol Vienna Overall

SegNet (Single-Loss) [52] IoU 74.81 52.83 68.06 65.68 72.90 70.14
Acc. 92.52 98.65 97.28 91.36 96.04 95.17

SegNet (Multi-Task Loss [52] IoU 76.76 67.06 73.30 66.91 76.68 73.00
Acc. 93.21 99.25 97.84 91.71 96.61 95.73

Unet++ (ResNext-50) [40] IoU 74.69 67.17 64.10 75.06 78.04 73.32
Acc. 96.28 91.88 99.21 97.99 93.61 95.79

RiFCN [30] IoU 76.84 67.45 63.95 73.19 79.18 74.00
Acc. 96.50 91.76 99.14 97.75 93.95 95.82

Proposed (ResNext-101 Pretrained) IoU 82.49 73.90 70.71 83.72 83.49 80.10
Acc. 97.47 93.90 99.35 98.73 95.35 96.97
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Figure 11. Examples of some mismatched ground truth labels on Inria Aerial Image Labelling Dataset,
mislabelled areas are annotated by the red circles.

4.3.3. Comparison Experiments on WHU Dataset

We construct a comparison between the Web-Nets and a number of state-of-the-art encoder-decoder
architectures on the WHU Dataset, where the distribution is different from that of the Inria Aerial
Dataset, in order to test the generalization abilities and robustness of the proposed Web-Net, which has
shown great performance on the Inria Aerial Dataset. All the models are trained from scratch and
Table 7 lists the results.

Table 7. Numerical Results of the State-of-the-art models on WHU Dataset

Methods Acc. (%) IoU (%)

SegNet [51] 98.12 84.47
U-Net [18] 98.45 86.80

Unet++ [41] 98.48 87.30
Web-Net(Proposed) 98.54 88.76
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It can be seen from Table 7 that the very simple encoder-decoder architecture such as SegNet,
can achieve a satisfying result (98.12% and 84.47% on Acc and IoU, respectively) on WHU Dataset.
With the more complicated encoder-decoder architecture, Unet achieves 2.33% higher scores than
SegNet on the IoU metric. The naive nested encoder-decoder architecture Unet++ also works well on
the WHU Dataset and gains an improvement of 2.83% on the IoU against SegNet. When compared
with the aforementioned architectures, the proposed Web-Net shows great building extraction ability
where the Acc. and IoU of the Web-Net is 98.54% and 88.76%, respectively, which is even 0.06% and
1.46% higher than the Acc. and IoU of the state-of-the-art Unet++. In addition to the quantitative
analysis, we also perform a visual analysis on WHU Dataset, illustrating some randomly chosen
prediction maps that are listed in Figure 12.
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aerial imageries and ground truths employing the WHU Dataset.

Apparently, the prediction maps of naive encoder-decoder architectures such as SegNet and
Unet, implemented on the WHU Dataset achieves better performance than that employing the Inria
Labelling Dataset benefitting from the lower image complexities and higher labelling accuracies.
However, the nested encoder-decoder architecture Unet++ still outperforms the naive encoder-decoder
architecture on the visual effect such that the consistency of the prediction maps of Unet++ is much better
than that of SegNet and Unet; in other words, there are fewer holes and discrete small misclassified
areas on the prediction maps. When compared with Unet++, the proposed Web-Net obviously
enhances the visual result of building extraction with much sharper and more accurate contours and
higher accuracy in extracting the small scale buildings. The quality and visual analysis both prove the
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generalization abilities of the proposed Web-Net, which can robustly achieve state-of-the-art building
extraction results on imageries from different areas.

5. Conclusions

In this paper, we proposed a novel fully convolutional network, called the Web-Net, which uses the
UHS block to perform the building extraction on high-resolution remote sensing images. In particular,
the architecture of the proposed model looks similar to a spider web, and except for the encoder nodes,
every node is connected to its neighbours, highlighting our reason for naming it Web-Net. Inspired by
DenseNet, we designed the dense jump connections in both the vertical direction and in the horizontal
direction to efficiently extract and utilize more abundant features. To fuse the hierarchical features from
the different levels, we also designed the UHS block to iteratively change the shape of the feature maps
while using position-wise upsampling/downsampling operations, and the UHS block is applied on
every node of the Web-Net. The key benefit of the UHS block is that the local cues can be preserved and
encoded into the channel dimension during the downsampling, while no extra parameters are added
during upsampling. This is helpful for retaining the consistency of the semantic cues and the structural
information. Within the highly symmetric and harmonious architecture of Web-Net and the UHS block,
the proposed method can extract and propagate the low-level and high-level features throughout
the network in an efficient way. With the benefits that are outlined above, the proposed Web-Net
can significantly improve the ability to fuse the high-level semantic features and the boundary-aware
low-level features and achieve a higher quality building extraction result. Moreover, by replacing
the encoder with other backbones, further improvements of the deep neural networks can be easily
embedded into the proposed Web-Net architecture to further boost the performance. The experiments
that were executed on the Inria Aerial Image Labelling Dataset have demonstrated that the proposed
Web-Net outperforms other encoder-decoder-based models on both the IoU and Acc metrics and it
extracts sharper and more accurate building predictions. In addition, the time costs of the proposed
Web-Net are significantly shorter than those of other state-of-the-art models. Moreover, the proposed
Web-Net performed well in the extraction of buildings that were mixed with vegetation or shadows.
Nevertheless, the buildings in high-resolution aerial imageries have extremely complex morphological
characteristics, such as straight lines, curves, and orientations. These characteristics cannot be directly
extracted by the FCN-based networks, and determining how to embed morphological characteristics
into CNN structure is an open and urgent problem.
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