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Abstract: Convolutional neural networks (CNNs) have recently shown outstanding capability for
hyperspectral image (HSI) classification. In this work, a novel CNN model is proposed, which is
wider than other existing deep learning-based HSI classification models. Based on the fact that very
deep residual networks (ResNets) behave like ensembles of relatively shallow networks, our proposed
network, called multipath ResNet (MPRN), employs multiple residual functions in the residual blocks
to make the network wider, rather than deeper. The proposed network consists of shorter-medium
paths for efficient gradient flow and replaces the stacking of multiple residual blocks in ResNet with
fewer residual blocks but more parallel residual functions in each of it. Experimental results on
three real hyperspectral data sets demonstrate the superiority of the proposed method over several
state-of-the-art classification methods.

Keywords: hyperspectral image (HSI) classification; convolutional neural network (CNN);
deep learning; residual network (ResNet); ensemble

1. Introduction

Remote sensing hyperspectral images (HSIs) usually contain information about hundreds of
spectral bands spanning from visible to infrared spectrum. Each pixel in HSIs is a high-dimensional
vector whose entries correspond to the spectral reflectance in a specific wavelength, providing rich
spectral information for distinguishing land covers of interest [1]. Recently, HSI classification with the
aim of identifying the land-cover type of each pixel has become one of the most active research fields
in the remote sensing community, because it is an essential step in a wide variety of earth monitoring
applications, such as environmental monitoring [2] and precision agriculture [3].

The spectral and the spatial information of HSIs are two major characteristics that can be exploited
for classification [4]. Traditional classification methods such as random forest [5], support vector
machine (SVM) [6] and multinomial logistic regression [7], mainly focus on making use of the abundant
spectral information for classification. To improve classification performance, methods such as
morphological profiles [8], multiple kernel learning [9], superpixel [10] and sparse representation [11]
have been introduced to combine the spatial information with the spectral information for HSI
classification [12,13]. For instance, Benediktsson et al. utilized extended morphological profiles (EMPs)
to obtain spectral-spatial features of HSIs [8]. Fang et al. proposed a multiscale adaptive sparse
representation (MASR) model to exploit the multiscale spatial information of HSIs [11]. Fauvel et al.
proposed a morphological kernel based SVM classifier to jointly use the spatial and the spectral
information for classification [14]. Nevertheless, the common limitation of these methods is that they
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heavily rely on hand-crafted features, which require experts’ experiences and massive efforts in feature
engineering, limiting their applicability in difficult scenarios.

Recently, deep learning-based methods have made great breakthroughs in many computer
vision tasks, for example, image classification [15,16], semantic segmentation [17], natural language
processing [18] and object detection [19], for they can automatically extract robust and discriminative
features from original data in a hierarchical way. Deep learning models have also been introduced
for HSI classification and have achieved a remarkable progress [20,21]. In Reference [22], a stacked
auto-encoder (SAE) was first proposed for HSI spectral classification. Next, deep learning models,
including deep belief network (DBN) [23] and convolutional neural network (CNN) [24–26],
were introduced as deep spectral classifiers for HSI classification. To make use of both the spectral
and spatial information of HSIs, a series of improved CNN-based spectral–spatial classifiers were
then proposed [27–29]. Zhao et al. proposed a spectral-spatial feature-based classification (SSFC)
framework in which the CNN was used to extract spatial features and the balanced local discriminant
embedding method to extract spectral features [30]. To simultaneously extract the spectral-spatial
features of HSIs, 3-D CNNs were proposed for HSI classification [31,32]. Due to the joint utilization
of the spectral and spatial information of HSIs, spectral-spatial classifiers usually achieve better
classification performance than spectral classifiers. To extract deeper discriminative spectral-spatial
features, residual learning [33], which helps to train CNNs up to thousands of layers without suffering
gradient vanishing, was introduced for HSI classification [34–39]. For instance, a fully convolutional
neural network was proposed for HSI classification in which multiscale filter bank was used to
exploit both spectral and spatial information embedded in HSIs and residual learning to enhance the
learning efficiency of the network [34]. Song et al. proposed a deep feature fusion network in which
multiple-layer features extracted from a deep CNN were fused for classification and residual learning
was utilized to alleviate gradient vanishing problem [35].

Although residual learning helps to extremely increase the network depth, recent studies pointed
out that deep ResNets actually behave like a large ensemble of much shallower networks, instead of a
ultra deep network [40,41]. By rewriting ResNets as an explicit collection of paths of different length,
Veit et al. revealed that although these paths are trained together, they exhibit ensemble-like behavior,
that is, different paths are not strongly dependent on each other [40]. For example, the removal of a
layer during the testing phase has a modest impact on the performance of a ResNet. Furthermore,
deep paths do not contribute any gradient during training. For instance, most of the gradient in a
110-layer ResNet comes from paths between 10 to 34 layers deep, demonstrating that the effective
paths are relatively shallow. Furthermore, a ResNet trained only on some effective paths can achieve a
comparable performance to that of a full ResNet [40].

In this paper, inspired by the above observations, a novel multipath ResNet (MPRN) model that
employs multiple residual functions in each residual block is proposed for HSI classification, utilizing
both spectral and spatial information. Different from the previous networks used in HSI classification,
the proposed network is wider and consists of shorter-medium paths for efficient gradient flow.
The proposed network is more efficient than conventional ResNet, since deep paths, which do not
contribute any gradient during training, are abandoned. The main contributions of this paper can be
summarized as follows: (1) The increase of the number of residual functions in each residual block
can enhance the performance of ResNet and can lead to a better performance than the increase of the
network depth; (2) To the best of our knowledge, the idea of balancing network width and depth for
accurate and efficient HSI classification is proposed for the first time in this paper; and (3) Experimental
results on three real hyperspectral data sets demonstrate that the proposed method can achieve a better
classification performance than several state-of-the-art approaches.

The remainder of this paper is organized as follows. Section 2 introduces the general framework
of CNN-based HSI classification and reviews the ResNet briefly. In Section 3, the details of the
proposed method are described. Experimental results conducted on three real hyperspectral data sets
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are then presented and discussed in Section 4. Finally, some conclusions and suggestions are provided
in Section 5.

2. Related Work

2.1. CNN-Based HSI Classification

Let U ∈ RH×W×C be an HSI data set, where H and W represent the height and the width of the
spatial dimensions, respectively and C is the number of spectral bands. Instead of directly classifying
each hyperspectral pixel vector, in CNN-based models an image patch centered at each pixel is
generally taken for classification. In this way, the spatial and spectral information contained in such
patches are combined in the task of classifying pixels, resulting in a reduction of the label uncertainty
and intraclass variability [42].

Convolutional (Conv) layers are the key parts of a CNN model in which the input HSI patches or
feature maps are convolved with convolution filter banks (also called convolution kernels) to produce
feature maps as follows:

Xl = Xl−1 ∗Wl + Bl , (1)

where Xl−1 and Xl represent the input and output of the lth Conv layer, respectively, Wl and Bl refer
to the weights and biases of the Conv layer, respectively and ∗ stands for convolution operator.

To alleviate the gradient vanishing problem and speed up the training process in a deep CNN,
a batch normalization (BN) layer [43] is placed behind each Conv layer to reduce the internal covariance
shift by imposing a Gaussian distribution on each batch of feature maps, allowing a more independent
learning process in each layer. The BN layer can be expressed as

BN(Xl) =
Xl −mean[Xl ]√

Var[Xl ] + ε
· γ + β, (2)

where γ and β are learnable parameter vectors, respectively and ε is a parameter for numerical stability.
Following the BN layer, an activation layer is added to improve the nonlinearity of the network.

To effectively avoid the vanishing gradient problem, a rectified linear unit (ReLU) is used as a nonlinear
activation function [15]. In addition, a pooling layer is periodically placed behind several Conv layers
in the CNN to reduce the size of feature maps, decreasing the amount of computation of the network.
Then, fully connected (FC) layers are adopted to transform the size-reduced feature maps into a
one-dimensional vector z, which is input to a softmax function to compute the class probability
distribution for each pixel

pi =
ezi

∑n
j=1 ezj

, i = 1, 2, . . . , n, (3)

where n refers to the number of classes. Finally, the predicted category of each pixel is determined by
the maximal probability

class = arg max
i=1,2,...,n

pi. (4)

2.2. ResNet

It is well known that deeper networks usually lead to a better performance over shallower ones.
However, training very deep networks is difficult due to the vanishing gradient problem, that is,
gradient signals fade slightly when passing through each layer during the backpropagation process
and become close to zero in shallower layers, hampering the convergence of the network from the
beginning [44]. In addition, based on approximation theory, the hypothesis space “drifts” away from
the true solution when adding more layers [45]. As a consequence, when extremely increasing network
depth, the classification accuracy first saturates and then degrades rapidly. Deep ResNets avoid
this problem by employing identity skip-connections, which help the gradient flowing back to the
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shallow layers without vanishing and facilitate the training of very deep networks up to thousands of
layers [33].

ResNet is constructed by stacking multiple fundamental structural elements called residual blocks.
Figure 1 illustrates the architecture of a typical residual block, called bottleneck residual block [46].
The residual block performs the following computation:

xl = fl(xl−1) + xl−1, (5)

where xl−1 and xl are the input and output of the lth residual block, respectively and fl(·) denotes
the residual function to be learned. As can be seen from the Figure 1, fl(·) consists of 3 convolutional
(Conv) layers each of which is preceded by a batch normalization (BN) layer [43] and a ReLU activation
function, which is known as the pre-activation [46]. The kernel size of three Conv layers are 1× 1,
3× 3 and 1× 1, respectively. Here the first 1× 1 layer is used to reduce feature dimension and the
second 1× 1 layer to expand it back.
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Figure 1. Architecture of a residual block.

3. Methodology

This section is structured as follows. First, the phenomenon that deep ResNet behaves like a large
ensemble of relatively shallow networks is described. Then, the proposed MPRN model is introduced.
Finally, the HSI classification framework based on MPRN is described.

3.1. Deep ResNets Behave Like Ensembles

To better understand ResNets, Veit et al. interpreted them in an unraveled view and conducted
a detailed experimental study revealing that ResNets act like ensembles of relatively shallow
networks [40]. Consider a ResNet consisting of 3 residual blocks from input x0 to output x3. Its
conventional graphical representation is shown in Figure 2a. Based on Equation (5), the computation
process can be expressed as

x3 = f3(x2) + x2

= f3( f2(x1) + x1) + [ f2(x1) + x1]

= f3( f2( f1(x0) + x0) + f1(x0) + x0) + [ f2( f1(x0) + x0) + f1(x0) + x0]. (6)

The graphical view of Equation (6) is illustrated in Figure 2b. It can be clearly seen that there are
many paths that can be chosen when data flowing from the input to the output. Each path denotes
a unique configuration that decides which residual function to perform and which to skip. For a
ResNet consisting of m residual blocks, there will be 2m number of possible paths from the input to
the output (also known as the multiplicity of the network), which is different from classical networks
such as AlexNet [15] or VGGNet [47], where input flows along a single path from input to output.
Moreover, in classical networks, each layer depends only on the output of its previous layer. As for
ResNets, each residual function fl(·) receives data with 2l−1 different distributions generated from
every possible path of the previous l − 1 residual blocks.
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Figure 2. Illustration of a 3-block ResNet. (a) The conventional representation based on Equation (5).
(b) The unraveled view with 23 implicit paths connecting input to output based on Equation (6).
Circular nodes denote additions.

Note that paths in a ResNet are of differing length and the distribution of all possible path
lengths follows a Binomial distribution. For instance, there is one path that passes through all residual
functions and are m paths that only pass through one residual function. During training, shallow paths
contribute more gradient than deep paths [40]. For example, for a 110-layer ResNet, only paths between
10 and 34 layers depth have significant contributions towards the gradient updates. These paths are
called effective paths, which are relatively shallow compared with the network depth. Additionally,
paths in a ResNet exhibit ensemble-like behavior, that is, they are not strongly depend on each other.
In addition, the performance of a ResNet smoothly correlates with the number of effective paths.
Moreover, deep paths are indeed not needed as they do not contribute any gradient during training,
for example, a ResNet trained only on the effective paths can obtain comparable performance with a
full ResNet [40].

3.2. MPRN

In previous methods, usually the depth of ResNets is increased for extracting deeper
discriminative features to improve the classification performance [33,46]. However, every percentage
of improvement demands significantly increase of the number of layers, for example, a 164-layer
ResNet was with a test error rate of 5.46% and a 1001-layer ResNet of 4.92% on the CIFAR-10 image
classification data set, whereas the latter model has six times more computational complexity than
the former [33]. One possible reason for this problem is that the increase of depth cannot improve the
network performance in an efficient manner, since deep paths do not contribute any gradient during
training. In addition, wide ResNets that have 50 times few layers can outperform the original ResNet,
indicating that the power of ResNet arises from the identity skip-connections rather than the extreme
increase of the network depth [48].

To further improve the classification performance, in this work, a multipath ResNet (MPRN) is
proposed in which each residual block consists of multiple residual functions, as shown in Figure 3b.
By introducing multiple residual functions to Equation (5), the output of the lth block in MPRN can be
computed as:

xl = f 1
l (xl−1) + f 2

l (xl−1) + · · ·+ f n
l (xl−1) + xl−1, (7)

where f n
l (·) denotes the nth residual function in the lth residual block. In MPRN, all the residual

functions have the same architecture as the residual function in the bottleneck residual block. Consider
a MPRN with 3 residual blocks each of which has 2 residual functions. For the lth block, there are 4
possible paths for gradient flow: (1) performing f 1

l and skipping f 2
l ; (2) performing f 2

l and skipping
f 1
l ; (3) performing both f 1

l and f 2
l ; and (4) skipping both f 1

l and f 2
l . Therefore, the multiplicity of each

block is 4 and the multiplicity of the whole network is 43. Giving a MPRN with m residual blocks and
n residual functions in each block, the multiplicity of each block is 2n since every residual function can
be either performed or skipped and the total multiplicity of MPRN is 2mn.
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Figure 3. Different residual block architectures. (a) Original residual block containing one residual
function. (b) Multipath residual block consisting of multiple residual functions.

Now consider a baseline ResNet with m residual blocks and let c be a constant integer. To improve
its classification performance, a deeper network can be constructed by increasing the number of residual
blocks to cm. In addition, a wider network, that is, MPRN, can be constructed by increasing the number
of residual functions in each block to c while keeping the number of residual blocks to m. Note that
the two improved networks have the same number of residual functions, that is, cm and thus the same
number of parameters. In addition, the multiplicity of both networks are 2cm. However, compared
with the deeper ResNet, MPRN has more shorter-medium paths that can significantly contribute
gradient during training. This way not only enhances the efficiency of parameters utilization but also
improves performance.

Let [a, b] be the range of effective paths’ length (also known as the effective range) of the baseline
ResNet. Due to the exponential reduction in the gradient magnitude during back propagation,
the deeper ResNet is shifted and/or scaled toward a shallower network [40]. Therefore, the effective
range of the c times deeper ResNet does not increase linearly, that is, not in [ca, cb]. In fact, the upper
bound is lower than cb, which means every percentage of improvement in ResNet requires significantly
increasing the number of layers. For MPRN, the distribution of all possible path lengths follows a
multinomial distribution [41]. When increasing the number of residual functions in each block,
the number of paths of each length is increased and the effective range of MPRN can increase linearly.
Therefore, two networks with the same multiplicity, MPRN will reach better performance than ResNet.

3.3. MPRN for HSI Classification

Now we consider the Indian Pines data set as an example, Figure 4 shows the framework of the
proposed MPRN for HSI classification. From the framework, one can see that MPRN takes image
patch as input and the patch size is set to 11× 11× 200. In this way, both the spectral and spatial
information embedded in HSI can be utilized for classification. First, a 1× 1 Conv layer is employed
to compress the input and extract features for the rest of the network. Through several multipath
residual blocks, deep spectral-spatial features can be extracted. Next, the feature extracted by the last
block is transformed into a 1-D vector using a global average pooling layer. The vector is fed to a
fully connected (FC) layer followed by a softmax function. Finally, the predicted label of the center
pixel is determined by the maximal probability. The detailed structure of MPRN is summarized in
Table 1. The K refers to the size of the convolving kernel. The NIn and NOut denote the number of
input and output channels, respectively. In addition, convolution stride is set to one and padding
to zero and one for 1× 1 and 3× 3 Conv layers, respectively, in order to keep the size of output
feature maps unchanged in convolution. The initialization method [49] is employed to initialize the
network parameters and the Adam algorithm [50] is used to optimize the parameters by minimizing
cross-entropy loss. Note that the proposed network is trained in an end-to-end manner and hence the
parameters and effective paths can be learned automatically.
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Figure 4. Framework of multipath ResNet (MPRN) for hyperspectral image (HSI) classification.

Table 1. The detailed network architecture of MPRN for the Indian Pines data set.

Layers K NIn NOut Structure Output Size

Input - - - - 11× 11× 200
Conv1 1× 1 200 128 Conv 11× 11× 128

Multipath Residual Block 1


1× 1
3× 3
1× 1

128 32 BN-ReLU-Conv 11× 11× 32
11× 11× 32
11× 11× 128

× 932 32 BN-ReLU-Conv
32 128 BN-ReLU-Conv

Multipath Residual Block 2


1× 1
3× 3
1× 1

128 32 BN-ReLU-Conv 11× 11× 32
11× 11× 32
11× 11× 128

× 932 32 BN-ReLU-Conv
32 128 BN-ReLU-Conv

Multipath Residual Block 3


1× 1
3× 3
1× 1

128 32 BN-ReLU-Conv 11× 11× 32
11× 11× 32
11× 11× 128

× 932 32 BN-ReLU-Conv
32 128 BN-ReLU-Conv

Global Average Pooling 11× 11 128 128 BN-ReLU-Pooling 128
FC 1× 1 128 16 FC-Softmax 16

4. Experiments

4.1. Hyperspectral Data Sets

To demonstrate the effectiveness of our proposed method, now we consider three real
hyperspectral data sets including Indian Pines, Houston University and Kennedy Space Center (KSC)
data sets. These data sets are openly accessible online [51,52]. The number of samples per class of the
three data sets are summarized in Table 2.

Table 2. Number of samples per class of the Indian Pines, Houston University, and Kennedy Space
Center (KSC) data sets.

Indian Pines Houston University KSC

Class Color Name Number Class Color Name Number Class Color Name Number

1 Alfalfa 46 1 Healthy grass 1251 1 Scrub 761
2 Corn-notill 1428 2 Stressed grass 1254 2 Willow swamp 243
3 Corn-mintill 830 3 Synthetic grass 697 3 CP hammock 256
4 Corn 237 4 Trees 1244 4 Slash pine 252
5 Grass-pasture 483 5 Soil 1242 5 Oak/Broadleaf 161
6 Grass-trees 730 6 Water 325 6 Hardwood 229
7 Grass-pasture-mowed 28 7 Residential 1268 7 Swamp 105
8 Hay-windrowed 478 8 Commercial 1244 8 Graminoid marsh 431
9 Oats 20 9 Road 1252 9 Spartina marsh 520

10 Soybean-notill 972 10 Highway 1227 10 Cattail marsh 404
11 Soybean-mintill 2455 11 Railway 1235 11 Salt marsh 419
12 Soybean-clean 593 12 Parking Lot1 1233 12 Mud flats 503
13 Wheat 205 13 Parking Lot2 469 13 Water 927
14 Woods 1265 14 Tennis court 428 Unlabeled 309157
15 Buildings-Grass-Trees 386 15 Running track 660
16 Stone-Steel-Towers 93 Unlabeled 649816

Unlabeled 10776

Total Samples 21025 Total Samples 664845 Total Samples 314368

The Indian Pines data set was collected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over the agricultural Indian Pines test area with a spatial resolution of 20 m. This HSI
consists of 145 × 145 pixels with 224 spectral bands ranging from 400 to 2500 nm. After removing 20
water absorption bands and four null bands, 200 channels were used for the classification. Its ground
reference map covered 16 classes of interest.
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The Houston University data set was captured by the Compact Airborne Spectrographic Imager
(CASI) sensor over the Houston University campus and its neighboring region with a spatial resolution
of 2.5 m. It was used in the 2013 GRSS Data Fusion Contest. The image consists of 349 × 1905 pixels
with 144 spectral bands ranging from 380 to 1050 nm. The ground reference map of this data set
includes 15 classes of interest.

The KSC data set was captured by the AVIRIS sensor over KSC, Florida. This HSI is composed of
512 × 614 pixels with a spatial resolution of 18 m. After removing noisy bands, 176 spectral bands
were used for the classification. Its ground reference map covered 13 classes of interest.

4.2. Experimental Setup

For each data set, the labeled samples were split into training, validation and testing sets.
The training set was used to tune the model parameters. The validation set was utilized to evaluate the
interim trained models created during training and the model with the highest validation accuracy was
preserved. The testing set was employed to assess the classification performance of the saved model.
For the Indian Pines and Houston University data sets, 10%, 10% and 80% of the labeled data per class
were randomly selected to form the training, validation and testing sets, respectively. As for the KSC
data set, the split ratio was 2%, 2% and 96%, respectively. Note that each data set was standardized to
mean value with unit variance.

To assess the classification performance of the proposed method, the overall accuracy (OA),
the average accuracy (AA), the Kappa coefficient, the F1-score and the Precision were adopted as
evaluation metrics [53]. To avoid biased estimation, the metrics obtained by averaging of five repeated
experiments with randomly selected training samples were reported.

The proposed network was trained for 100 epochs with an L2 weight decay penalty of 0.0001.
The batch size was set to 100 and a cosine shape learning rate was employed which starts from 0.001
and gradually reduces to 0 [54]. In addition, our implementation was based on Pytorch framework [55]
and conducted on a PC with AMD Ryzen 7 2700X CPU, 16 GB of RAM and a NVIDIA RTX 2080 GPU.

4.3. Parameters Discussion

It is well known that increasing the network depth can enhance the model representation capability
and lead to a better classification performance. In this section, we will show that depth is not the only
factor for achieving high classification accuracy. In addition, the increase of network width is able to
obtain a better performance than the increase of network depth. In the following experiments, network
depth (i.e., m) is represented by the number of residual blocks and network width (i.e., n) is denoted by
the number of residual functions in each block. Note that conventional ResNets have a single residual
function in each block, that is, n = 1.

First, the network depth m and width n of MPRN are analyzed together. In our experiments,
the m ranges from 1 to 5 with step 1 and n from 1 to 21 with step 2. Consider the fact that extremely
shallow networks, compared to deep ones, tend to be difficult in capturing higher level features,
which are beneficial for deep semantic feature extraction. However, over-deeper structure will spend
great running time. Therefore, a proper network depth should be set to balance classification accuracy
against timeliness. As can be observed from the left column of Figure 5, when m and n are respectively
larger than 3 and 7, MPRNs achieve relatively stable high accuracy for all data sets, demonstrating the
robustness of MPRN to different m and n values. Meanwhile, with m and n values rise, the parameters
of the corresponding models and thus the computing time will increase rapidly, as shown in the right
column of Figure 5. Therefore, to effectively leverage the overall performance, we set m to 3 for all
data sets.
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Figure 5. Classification performance and execution time of MPRN with different m and n values on
the (a) Indian Pines, (b) Houston University, and (c) KSC data sets.

To clearly show the impact of network width n on the classification performance of MPRN, we fix
m = 3 and show the effect of n with value ranging from 1 to 20 with step 1. In addition, we further give
a contrastive evaluation of our method with ResNets (n = 1) with different network depth. To make a
fair comparison, for ResNet, the m ranges from 3 to 60 with step 3. In this way, each pair of the MPRN
and ResNet have the same number of parameters, for example, MPRN with m = 3 and n = 9 has the
same number of parameters as ResNet with m = 27. In addition, when m = 3 and n = 1, MPRN and
ResNet have the same network architecture.

Figure 6 shows the effects of network width n on the performance (on AA) of the proposed MPRN
method over the three data sets, while Figure 7 demonstrates the impacts of network depth m of the
ResNet method. From Figures 6 and 7, one can see that increasing any dimension of network, width or
depth, will improve classification accuracy. Clearly, when the network depth goes beyond a certain
level, increasing the depth become less effective. In contrast, increasing the width can further improve
the classification performance. Table 3 summarizes the optimal network architectures of MPRN and
ResNet for each data set. Compared to the ResNet, our MPRN achieves better performance and
with fewer parameters on the three data sets. For example, MPRN achieves 98.73% AA with 0.51 M
parameters on the Indian Pines data set, while the ResNet achieves 98.60% with 1.10 M parameters.
For the Houston University data set, MPRN achieves 98.36% AA with 0.39 M parameters, while the
ResNet achieves 98.28% with 0.55 M parameters. For the KSC data set, MPRN achieves 92.30% AA with
0.45 M parameters, while the ResNet achieves 92.23% with 0.83 M parameters. In addition, with the
increase of the model size, MPRN obtains better performance (98.48% and 93.27%) on the Houston
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University and KSC data sets, which further validate the effectiveness of our method. This is because
paths in MPRN are relatively shallow, which have significant contribution towards the gradient
updates during training. For ResNet, the increase of the depth will not only introduce more deeper
paths that do not contribute significant gradient during training but also results in the overfitting
phenomenon (see Figure 7b,c). In the following experiments, the optimal architectures of ResNet and
MPRN are employed for comparison (see Table 3).
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Figure 6. The average accuracy of MPRN with various network width n on the (a) Indian Pines,
(b) Houston University and (c) KSC data sets.
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Figure 7. The average accuracy of ResNet with various network depth m on the (a) Indian Pines,
(b) Houston University, and (c) KSC data sets.

Table 3. Average accuracy comparison between ResNet and MPRN with different model sizes. The best
results are highlighted in bold font.

Data Set Method AA Parameters (m, n)

Indian Pines
ResNet 98.60% 1.10M (60, 1)
MPRN 98.59% 0.35M (3, 6)
MPRN 98.73% 0.51M (3, 9)

Houston University
ResNet 98.28% 0.55M (30, 1)
MPRN 98.36% 0.39M (3, 7)
MPRN 98.48% 0.98M (3, 18)

KSC
ResNet 92.23% 0.83M (45, 1)
MPRN 92.30% 0.45M (3, 8)
MPRN 93.27% 1.04M (3, 19)

4.4. Comparison Results of Different Methods

The proposed method was compared with several state-of-the-art classification methods available
in the literature: (1) 3-D CNN [32]; (2) fully convolutional layer fusion network (FCLFN) [56]; (3) deep
feature fusion network (DFFN) [35]; (4) DenseNet [57]; and (5) ResNet [46].
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More specifically, 3-D CNN, FCLFN, DFFN, DenseNet, ResNet, together with the proposed
MPRN, are spectral-spatial classifiers. 3-D CNN utilizes 3-D convolutional kernels to simultaneously
extract the spatial and spectral features from HSIs. FCLFN combines features extracted from each
Conv layer for classification. DFFN fuses multiple-layer features from a deep ResNet for classification.
DenseNet employs shortcut connections between layers, in which the outputs of the previous layers
are concatenated as inputs into all subsequent layers and hence can combine various spectral-spatial
features across layers for HSI classification. ResNet is constructed by stacking multiple conventional
residual blocks (with a single residual function in each block). In addition, some parameters of
the compared methods had been set in advance. For the 3-D CNN, FCLFN, DFFN and DenseNet,
the parameters were set according to the default values in the corresponding references. For ResNet
and MPRN, the optimal architectures were used according to the Table 3. In addition, they were
trained under exactly the same experimental setting, for example, using the same optimizer and L2
weight decay penalty.

The first experiment was conducted on the Indian Pines data set and 10% of the labeled
samples in each class were randomly selected for training. The quantitative classification results,
that is, classification accuracy of each class, OA, AA, Kappa, F1-score and Precision values obtained
by different approaches are reported in Table 4. It can be seen that MPRN achieves the best results
in terms of the five overall metrics, that is, OA, AA, Kappa, F1-score and Precision. From Table 4,
one can observe that MPRN improves the performance of 11 classes out of 16 compared with ResNet,
indicating that MPRN is more effective than ResNet. Moreover, the false-color composite image,
ground reference map and the classification maps obtained by the six considered methods in a single
experiment are shown in Figure 8.

Table 4. Classification accuracies (%) obtained by different methods on the Indian Pines data set.
The improvement of MPRN over ResNet is also provided. The best results are highlighted in bold font.
In addition, the positive and negative improvements are marked in blue and red, respectively.

Class Color 3-D CNN [32] FCLFN [56] DFFN [35] DenseNet [57] ResNet [46] MPRN Improvement

1 92.78 92.78 96.67 97.22 98.33 98.89 +0.56
2 98.25 98.77 98.51 99.23 99.28 99.51 +0.23
3 97.17 98.07 97.05 97.77 98.80 98.92 +0.12
4 96.72 99.05 98.52 99.15 98.20 98.52 +0.32
5 96.10 96.47 97.19 97.35 97.97 97.92 –0.05
6 98.87 98.90 98.70 99.28 98.80 99.08 +0.28
7 83.64 74.55 90.91 92.73 100 98.18 –1.82
8 100 99.74 99.58 100 100 100 +0.00
9 96.25 82.50 91.25 98.75 97.50 97.50 +0.00
10 95.28 98.71 97.76 98.43 97.99 98.14 +0.15
11 97.20 98.98 98.93 98.20 99.27 99.38 +0.11
12 96.28 96.66 97.93 97.46 98.35 98.69 +0.34
13 99.39 97.91 98.40 99.75 99.14 98.90 –0.24
14 99.11 99.58 99.72 99.43 99.88 99.98 +0.10
15 97.73 98.51 98.83 99.22 99.55 99.68 +0.13
16 96.71 90.41 90.41 98.90 94.52 96.44 +1.92

OA 97.53 98.47 98.43 98.64 99.01 99.16 +0.15
AA 96.34 95.10 96.90 98.30 98.60 98.73 +0.13

Kappa 97.19 98.25 98.21 98.45 98.87 99.04 +0.17
F1-score 97.53 98.45 98.43 98.64 99.01 99.16 +0.15
Precision 97.58 98.49 98.45 98.66 99.02 99.17 +0.15

The second and third experiments were conducted on the Houston University and KSC data
sets, respectively. For the Houston University data set, 10% of the labeled samples in each class were
randomly selected for training. For the KSC data set, 2% of the labeled samples per class were randomly
chosen for training. Tables 5 and 6, respectively, show the quantitative classification results obtained
by different approaches on the two data sets. It can be seen that the proposed MPRN improves the OA
value from 98.53% to 98.88% for the Houston University data set and 95.24% to 96.00% for the KSC
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data set compared with the ResNet. In addition, the proposed method obtains the best classification
performance in terms of the five overall metrics (the OA, AA, Kappa, F1-score and Precision) among
all the six methods on the two data sets, which demonstrates the effectiveness of the proposed method.
The corresponding classification maps are respectively illustrated in Figures 9 and 10.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Indian Pines data set. (a) False-color composite image. (b) Ground reference map.
The classification maps obtained by the (c) 3-D convolutional neural network (CNN) (97.53), (d) fully
convolutional layer fusion network (FCLFN) (98.47), (e) deep feature fusion network (DFFN) (98.43),
(f) DenseNet (98.64), (g) ResNet (99.01) and (h) MPRN (99.16). Note that the overall classification
accuracies (in %) are shown in brackets.

Table 5. Classification accuracies (%) obtained by different methods on the Houston University data
set. The improvement of MPRN over ResNet is also provided. The best results are highlighted in bold
font. In addition, the positive and negative improvements are marked in blue and red, respectively.

Class Color 3-D CNN [32] FCLFN [56] DFFN [35] DenseNet [57] ResNet [46] MPRN Improvement

1 98.80 90.29 95.50 99.38 99.10 99.38 +0.28
2 99.20 97.49 99.26 98.82 99.24 99.42 +0.18
3 99.61 98.64 98.71 99.78 99.61 99.53 –0.08
4 99.13 94.12 94.81 93.06 97.02 99.46 +2.44
5 99.96 99.94 99.86 100 100 100 +0.00
6 93.05 90.04 92.12 91.81 93.59 93.28 –0.31
7 96.27 96.65 96.94 94.00 97.89 97.99 +0.10
8 93.56 95.33 94.47 95.23 97.36 97.65 +0.29
9 96.10 97.40 98.02 94.68 97.36 98.54 +1.18

10 98.67 100 99.84 99.88 99.86 100 +0.14
11 98.40 98.44 99.21 98.91 99.41 99.70 +0.29
12 97.30 98.64 97.46 99.23 98.98 98.92 –0.06
13 92.96 93.28 92.05 91.15 94.72 93.28 –1.44
14 99.88 100 99.77 100 100 100 +0.00
15 99.81 98.52 99.39 100 100 100 +0.00

OA 97.73 96.81 97.44 97.31 98.53 98.88 +0.35
AA 97.51 96.58 97.16 97.06 98.28 98.48 +0.20

Kappa 97.54 96.55 97.24 97.09 98.42 98.79 +0.37
F1-score 97.72 96.81 97.43 97.30 98.53 98.87 +0.34
Precision 97.75 96.90 97.50 97.39 98.56 98.90 +0.34



Remote Sens. 2019, 11, 1896 13 of 19

Table 6. Classification accuracies (%) obtained by different methods on the KSC data set.
The improvement of MPRN over ResNet is also provided. The best results are highlighted in bold font.
In addition, the positive and negative improvements are marked in blue and red, respectively.

Class Color 3-D CNN [32] FCLFN [56] DFFN [35] DenseNet [57] ResNet [46] MPRN Improvement

1 98.24 98.19 95.14 98.46 99.34 99.73 +0.39
2 66.09 33.56 56.31 81.29 84.29 86.18 +1.89
3 89.67 99.10 93.03 96.48 97.46 99.10 +1.64
4 44.67 57.92 56.83 41.08 85.58 72.50 –13.08
5 32.42 24.05 77.12 36.47 64.31 66.80 +2.49
6 84.93 85.30 82.37 89.22 79.91 96.53 +16.62
7 95.76 89.90 96.97 90.10 100 100 +0.00
8 84.70 80.48 70.94 91.57 98.31 99.95 +1.64
9 84.94 90.04 88.59 95.22 96.06 96.75 +0.69
10 98.08 97.77 98.91 97.41 99.95 99.74 –0.21
11 97.51 100 99.95 98.75 99.60 98.35 –1.25
12 88.44 100 96.84 92.18 94.14 96.92 +2.78
13 99.89 100 100 100 100 100 +0.00

OA 87.91 88.60 89.35 91.04 95.24 96.00 +0.76
AA 81.95 81.25 85.62 85.25 92.23 93.27 +1.04

Kappa 86.54 87.28 88.13 90.02 94.70 95.54 +0.84
F1-score 87.58 87.12 89.19 90.60 95.20 95.94 +0.74
Precision 88.39 88.24 90.60 92.02 95.98 96.38 +0.40

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Houston University data set. (a) False-color composite image. (b) Ground reference map.
The classification maps obtained by the (c) 3-D CNN (97.73), (d) FCLFN (96.81), (e) DFFN (97.44),
(f) DenseNet (97.31), (g) ResNet (98.53) and (h) MPRN (98.88). Note that the overall classification
accuracies (in %) are shown in brackets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. KSC data set. (a) False-color composite image. (b) Ground reference map. The classification
maps obtained by the (c) 3-D CNN (87.91), (d) FCLFN (88.60), (e) DFFN (89.35), (f) DenseNet (91.04),
(g) ResNet (95.24) and (h) MPRN (96.00). Note that the overall classification accuracies (in %) are shown
in brackets.

As shown in Table 7, the standardized McNemar’s test [58] was performed to demonstrate
the statistical significance in accuracy improvement of the proposed MPRN. When the Z value of
McNemar’s test is larger than 1.96 and 2.58, it indicates that the difference in accuracy between
classifiers 1 and 2 are statistically significant at the 95% and 99% confidence levels, respectively. The Z
value larger than 0 means that classifier 1 is more accurate than classifier 2 and vice versa. In this
experiment, the proposed MPRN is compared with five other methods, that is, 3-D CNN, FCLFN,
DFFN, DenseNet and ResNet. From Table 7, one can see that all the Z values are larger than 2.58,
demonstrating that the proposed MPRN can significantly outperform the compared methods.

Table 7. Statistical significance from the standardized McNemar’s test about the difference
between methods.

Indian Pines Houston University KSC

Z/Significant? Z/Significant? Z/Significant?

MPRN vs 3-D CNN

11.42/yes 11.29/yes 19.81/yes

MPRN vs FCLFN

7.45/yes 15.72/yes 19.16/yes

MPRN vs DFFN

7.67/yes 12.96/yes 17.97/yes

MPRN vs DenseNet

6.46/yes 13.66/yes 15.69/yes

MPRN vs ResNet

4.77/yes 6.29/yes 2.86/yes

Finally, the total number of parameters and computing time of the six considered methods on
the three data sets are reported in Tables 8 and 9, respectively. From Table 9, we can find that FCLFN
achieves the lowest training times on the three data sets. In addition, MPRN spends less time than
ResNet on the Indian Pines data set because it has fewer parameters compared with ResNet. For the
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Houston University and KSC data sets, the proposed method is the most time-consuming, which is
attributed to the processing of a large number of Conv layers.

Table 8. Total number of parameters in different models for the three HSI data sets.

Data Set 3-D CNN FCLFN DFFN DenseNet ResNet MPRN

Indian Pines 0.10 M 0.17 M 0.40 M 1.67 M 1.10 M 0.51 M
Houston University 0.07 M 0.17 M 0.40 M 1.66 M 0.55 M 0.98 M

KSC 0.08 M 0.16 M 0.40 M 1.66 M 0.83 M 1.04 M

Table 9. Running time (in second) of different methods on the three data sets.

Indian Pines Houston University KSC

3-D CNN Training 66.21 73.57 6.73
Test 1.65 1.89 0.88

FCLFN Training 24.88 36.30 3.96
Test 0.58 0.80 0.32

DFFN Training 27.61 40.92 4.94
Test 0.55 0.82 0.32

DenseNet Training 61.31 84.75 10.32
Test 1.33 1.79 0.77

ResNet Training 182.40 130.46 24.10
Test 2.45 2.11 1.17

MPRN Training 73.13 193.91 25.53
Test 1.38 2.78 1.26

4.5. Effect of Input Spatial Patch Size

In this experiment, we compare our MPRN method with the spatial-spectral ResNet (SSRN) in
Reference [37]. In this case, the Indian Pines and KSC data sets are considered. Following Reference [37],
20% of the available labeled samples are randomly selected to form the training set. In addition, input
patches with four different spatial sizes {5× 5, 7× 7, 9× 9 and 11× 11} have been considered. Since a
patch too large may contain pixels from multiple classes that detract from the target pixel. In addition,
it results in the degradation of intersample diversity, increasing the possibility of overfitting and
curse of dimensionality as well. Table 10 shows the overall accuracies obtained in this experiment.
From Table 10, one can see that MPRN achieves remarkable improvements in terms of OA regardless
of the sizes of the considered image patches. For example, the proposed MPRN reach 6.58 percent
higher OA than the SSRN with the same amount of spatial information (5× 5 patch size) on the Indian
Pines data set. Furthermore, all the OAs, obtained by MPRN with different patch sizes on the two data
sets, are higher than 99%, indicating the robustness of our MPRN method to input patch size.

Table 10. Overall accuracy (%) obtained by the proposed MPRN and the spatial-spectral ResNet
(SSRN) [37] method when considering different input spatial patch sizes.

Indian Pines KSC

Spatial Size SSRN [37] MPRN SSRN [37] MPRN

5× 5 92.83 99.41 96.99 99.52
7× 7 97.81 99.60 99.01 99.87
9× 9 98.68 99.64 99.51 99.95

11× 11 98.70 99.59 99.57 99.94
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4.6. Effect of Limited Training Samples

Since manual labeling of hyperspectral data is expensive and time demanding, labeled samples are
usually limited in practice. Therefore, it is necessary to assess the performance of the proposed method
when limited training data is available. Figure 11 illustrates the overall classification accuracies
achieved by different methods on the three data sets using limited numbers of training samples
(ranging from 0.1% to 0.5%, with a step of 0.1% per class). As can be seen in Figure 11, for each data
set, the proposed MPRN consistently performs the best among all methods under all different training
samples, demonstrating the effectiveness and robustness of the proposed approach.
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Figure 11. Overall classification accuracies (in %) obtained by 3-D CNN [32], FCLFN [56], DFFN [35],
DenseNet [57], ResNet [46] and MPRN when considering different percentages of training samples on
the (a) Indian Pines, (b) Houston University and (c) KSC data sets.

In the face of limited training data, deep networks with a large number of parameters tend to
overfit the training set and thus obtain poor accuracy on the testing set. However, MPRN can be
interpreted as an ensemble of exponential relatively shallow networks, each of which has a small
number of parameters to be optimized and thus avoids the overfitting problem naturally. Therefore,
the proposed method is able to provide superior performance when facing limited training data.

5. Conclusions

In this work, a novel network architecture named MPRN is proposed for spectral-spatial HSI
classification. The proposed model employs multiple residual functions in the residual blocks in order
to make the ResNet wider, rather than deeper. As a result, more shorter-medium neural connections
are learned, which can effectively contribute gradient during training. With our analysis, ResNets
integrated multiple residual functions in each residual block could achieve better performance than
those with much deeper layers and our proposed MPRN, further reduced training parameters, not only
achieves comparable or even better performance but spends less operation than ResNet. Experimental
results on three real HSI data sets demonstrate that the proposed method performs better than other
state-of-the-art methods in terms of both visual performance and quantitative metrics, especially in
the face of limited number of training samples.

Note that designing a proper deep learning architecture is important for accurate HSI classification.
However, it is a time-consuming and error-prone process. In our future work, neural architecture
search methods [59] will be considered to engineer neural architectures in an automatic manner.
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