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Abstract: The amount of freely available satellite data is growing rapidly as a result of Earth
observation programmes, such as Copernicus, an initiative of the European Space Agency. Analysing
these huge amounts of geospatial data and extracting useful information is an ongoing pursuit.
This paper presents an alternative method for flood detection based on the description of
spatio-temporal dynamics in satellite image time series (SITS). Since synthetic aperture radar (SAR)
satellite data has the capability of capturing images day and night, irrespective of weather conditions,
it is the preferred tool for flood mapping from space. An object-based approach can limit the necessary
computer power and computation time, while a graph-based approach allows for a comprehensible
interpretation of dynamics. This method proves to be a useful tool to gain insight in a flood event.
Graph representation helps to identify and locate entities within the study site and describe their
evolution throughout the time series.
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1. Introduction

Increasing amounts of satellite data are available for monitoring spatial phenomena on the Earth’s
surface. Radar sensors are, unlike optical sensors, practically unaffected by weather conditions
or daytime, and can therefore be used to detect water bodies in rainy circumstances. A lot of
research is being done on single date radar image analysis (flood delineations, classifications, etc.)
or bi-temporal change detection (image differencing, post-classification comparison, etc.) [1–10].
However, increasing quantities of geospatial data demand a different approach of analysis. In the
current big data environment, data veracity, volume, accessibility, and the rate of change imposes new
approaches to understand, analyse, consume, and visualise geospatial data solutions [11].

Satellite image time series (SITS) are collections of satellite images that consider the same spatial
extent on different timesteps. Data mining tools for SITS, based on object-based image analysis
(OBIA), are currently confined to a few authors [1,12,13]. Guttler et al. [12] created a methodological
framework to automatically detect and extract spatio-temporal information from SITS. They combine
an OBIA with a graph-based representation. Khiali et al. [13] developed this approach further with an
object-clustering goal to obtain a supervised classification. Their approach is restricted to the visible
spectrum, treating a multi-class spatio-temporal analysis.

This paper explores the applicability of combining OBIA with a graph-based representation on
synthetic aperture radar (SAR) data for single class spatio-temporal analysis.
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2. Data

2.1. Study Area

2.1.1. Geographical Location

Schulensbroek is a nature reserve in north-eastern Belgium, located within the water catchment
area of the river Demer. Other waterways, namely the Herk, the Velpe, the Gete, and the Mangelbeek
merge here in the Demer. Since the 1970s, the nature reserve has functioned as a flood control area
(FCA), which consists of 95 ha permanent basin, the Schulensmeer, and a surrounding area of 190 ha
with natural borders. The current water management, including the flooding regime, is largely artificial.
During peak discharge, the Demer water is actively pumped into the Schulensmeer. Emptying is
done gravitationally.

For the purpose of this research, two regions of interest are delimited within the study area, i.e.,
the dynamic zone and the static zone (Figure 1). The FCA Schulensmeer/Schulensbroek is located in
the ’dynamic zone’, and this zone is expected to display high dynamics during a flood event. As a
reference, the dynamics of Schulensbroek will be compared to the dynamics of a part of the Albert
Canal, situated within the ’static zone’ on Figure 1. The static zone is expected to display low dynamics.

Figure 1. Study area with Schulensbroek nature reserve and its surroundings. Regions of interest:
Dynamic Zone and Static Zone.

2.1.2. Flood Event

During the end of May and the beginning of June 2016, large amounts of precipitation led to the
flooding of the FCA on 7 June 2016. The closest available weather information was found in a weather
station in Alken [14], which is located at 15 km from Schulensbroek. Daily precipitation measured in
this station is depicted in Figure 2. Other information from this weather station, such as mean and
maximum wind speed, can be used for interpretation of the results (Section 2.3).
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Figure 2. Daily precipitation measured in Weather Station Alken [14] leading to the flood event on
7 June 2016.

2.2. Satellite Imagery

Sentinel-1, part of ESA’s Copernicus project, is an imaging radar mission providing continuous
all-weather, day-and-night imagery at C-band (4 to 8 GHz wavelength). These properties allow the
Sentinel-1 products to be used for flood monitoring [15]. Depending on the size and location of the
study area, the Sentinel-1 mission can provide a temporal resolution of three to six days. The data used
for this research is Level-1 Ground Range Detected (GRD), which consists of focused SAR data that
has been detected, multi-looked and projected to ground range using an Earth ellipsoid model [16].
Pixel values represent detected amplitude, while phase information is lost. The spatial resolution of
the data amounts to 10 m × 10 m.

Because of different viewing directions, comparing imagery captured during an ascending orbit
with imagery captured during a descending orbit can result in geometric distortions caused by
foreshortening and layover [15]. For this reason, the imagery is processed separately depending on its
capture direction. Capture dates in the period of the flood are listed in Table 1 [17].

Table 1. Available Sentinel-1 Ground Range Detected (GRD) imagery before, during, and after the
flood event of 7 June 2016.

Date Cycle Number Orbit Number Relative Orbit Pass Direction Timestep

26 May 2016 T17:32:36.879Z 79 11433 161 ASCENDING 1
2 June 2016 T17:24:20.972Z 80 11535 88 ASCENDING 2
7 June 2016 T17:32:30.230Z 80 11608 161 ASCENDING 3
14 June 2016 T17:24:21.752Z 81 11710 88 ASCENDING 4
1 July 2016 T17:32:31.635Z 82 11958 161 ASCENDING 5

23 May 2016 T05:58:14.315Z 79 11382 110 DESCENDING 1
30 May 2016 T05:50:02.415Z 80 11484 37 DESCENDING 2
4 June 2016 T05:58:25.425Z 80 11557 110 DESCENDING 3
11 June 2016 T05:50:03.148Z 81 11659 37 DESCENDING 4
16 June 2016 T05:58:26.140Z 81 11732 110 DESCENDING 5
28 June 2016 T05:58:26.823Z 82 11907 110 DESCENDING 6
5 July 2016 T05:50:04.559Z 82 12009 37 DESCENDING 7

2.3. Contextual Data

In order to interpret the results, extra information on the prevailing weather conditions at the
time of satellite image capture were gathered from the Alken weather station [14]. This data holds
information on maximum and mean wind speed and precipitation amounts during satellite image
capture. These factors can significantly influence the backscatter of water bodies in radar imagery.
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Smooth water surfaces usually appear black in SAR imagery due to the specular reflection, while
wind-ruffled water surfaces can induce large backscatter signals, complicating the detection of water
surfaces on SAR images [18].

3. Method

In this paper, we propose an exploratory data mining approach based on the technique of
Guttler et al. [12], with a focus on the evolution of water bodies during a flood event. While the
research of Guttler et al. [12] focuses on analysis in the visible spectrum, the current paper explores the
possibilities of this object-based graph representation for SAR imagery. Moreover, this research, focuses
on a binary problem, i.e., evolution of water/non-water surface area, with no need for classification.
After preprocessing the SAR data (Section 3.1), object delineation is done by an active contour model
(Section 3.2) and object characterisation is based purely on radar backscatter. Objects are then grouped
in graphs according to their spatio-temporal overlap, and resulting evolution graphs summarize the
temporal profiles of the extracted spatio-temporal phenomena (Section 3.3 and Figure 3). The temporal
profiles can be used to synthesize entity evolution and temporal behaviours. This approach allows to
delineate zones of high spatio-temporal dynamics and to quantify these dynamics.

Figure 3. Framework for object-based graph representation adapted from Khiali et al. [13].

3.1. Preprocessing

The Sentinel Application Platform (SNAP), containing all Sentinel Toolboxes, is used for the
preprocessing of the GRD data, obtained from SentinelHub (see Figure 4) [17,19]. This section describes
the preprocessing steps depicted in Figure 4.

The orbit file, providing accurate satellite position and velocity information, is applied on the
GRD data. Based on this information, the orbit state vectors in the abstract metadata of the product are
updated. Thereafter thermal noise removal is executed following a noise look-up table (LUT) file which
exists for each Sentinel-1 Level-1 data set. The values in the de-noise LUT, provided in linear power,
can be used to derive calibrated noise profiles matching the calibrated GRD data. Calibration is the
next step in the preprocessing, converting digital pixel values to radiometrically calibrated backscatter
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in order to provide imagery in which the pixel values are directly related to the radar backscatter of
the scene. For most applications, applying the same calibration type to all of the data (Sigma-0, Beta-0,
Gamma-0) is more important than the selected calibration type itself [20]. Small [20] suggests that the
Gamma-0 signal is less influenced by the incidence angle (and thus by the orbit) than Sigma-0. In
that regard, we opted to calibrate the data to the Gamma-0 signal. Considering the polarisation factor,
both co-polarised data (VV) and cross-polarised data (VH) have the potential for classification errors.
Because VH produces a wider range of backscatter values from vegetated land surfaces compared to
VV, low backscatter values of land surface can be confused with the low backscatter values associated
with water [15,18], leading to misclassification of land as flood. Twele et al. [15] concluded that the VV
polarisation provides a slight advantage for flood delineation, yet this polarisation in more susceptible
to roughening of the water surface caused by rain or wind [18]. In this research, both VV and VH
signals were processed and respective results are compared.

Figure 4. The Sentinel Application Platform (SNAP) preprocessing steps. SAR = synthetic
aperture radar.

Due to topographical variations of a scene and the tilt of the satellite sensor, distances can be
distorted in the SAR images. Range Doppler Terrain Corrections are intended to compensate for these
distortions so that the geometric representation of the image will be as close as possible to the real
world. In order to establish a correct pixel mapping between the different rasters, a stack is created.
The geographical position of a master sample is used to find the corresponding sample in the slave
raster. The collocation algorithm requires accurate geopositioning information for both master and
slave products. In this way, pixel values are resampled into the same geographical raster. A spatial
subset is obtained based on the geographical coordinates of the region of interest. And finally, a speckle
filter is applied, because SAR images display a speckled texturing which impedes interpretation of
features. For this research the ’refined Lee filter’ is chosen, which is a minimum mean square error
(MMSE) filter, based on the multiplicative noise model [21]. The refined Lee Filter is an adaptive filter
and such a type of filter is required in order to maintain the edges in the scene [22]. This filter shows
an improved performance when compared with the original Lee filter, and moreover, it requires a
minimum of input parameters compared to other filters [23].

3.2. Active Contour Model Segmentation

Delineating floods in SAR imagery is a much studied research topic and different approaches have
been developed over the years [6,24–30]. For this research, different approaches were tested for finding



Remote Sens. 2019, 11, 1883 6 of 25

an optimal delineation of water bodies in the radar images, namely ’Minimum error thresholding’ by
Kittler and Illingworth [25], ’Threshold Selection Method from Gray-Level Histograms’ by Otsu [30],
and ’Tiled Thresholding’ by Martinis et al. [31]. However, none of the aforementioned methods resulted
in a robust segmentation over the different timesteps, leading to enormous over- or underestimations
of the present surface water.

Landuyt et al. [32] compared available SAR-based flood mapping algorithms and concluded that
active contour models (ACM) are suited for flood mapping in smaller regions. ACM is a framework in
computer vision which groups pixels from preprocessed raster images into objects [33]. It produces, to
a certain extent, consistent results, and it requires little parameters and postprocessing. This allows for
a fast classification of present surface water leading to a fast segmentation. The model is based on an
energy minimization problem, defined by weighted values corresponding to the sum of differences
from the average backscatter values outside the segmented region, the sum of differences from the
average backscatter values inside the segmented region, and a term which is dependent on boundary
length of the segmented region [27].

The ACM requires an initial contour position [33]. For this research, the backscatter of water pixels
is expected to be much lower then of non-water pixels, due to the specular effect. The 5% ’darkest’
pixels, i.e., with the lowest backscatter, are chosen as seeds to initialize the contours for the ACM.
This amount of seed pixels was chosen by trial and error, as were the other parameters: smoothing
factor µ equals 0.99 for ill-defined contours, λ1 > λ2 for quite uniform water bodies and varying
backscatter outside the water bodies, and the maximum number of iterations is set to 200.

3.3. Graph Representation

Guttler et al. [12] proposed a methodology to track entity evolutions in a time series of satellite
images. Their research, however, is developed in order to make a supervised classification of different
land use classes. In order to obtain this goal, they introduce the concept of reference objects, which
are described by other objects in the time series. Since this research focuses on a binary problem
(i.e., water/non-water), the use of reference objects becomes superfluous. Objects are defined as
detected water polygons at each image capture date. The capture dates form the timesteps of the
time series. Objects (polygons) are then grouped into entities (water bodies) according to their
spatial overlap. For each entity a graph is built representing the spatio-temporal overlap of this
selection of polygons over the time series. This paper implements a refined version of the methodology
as described by Khiali et al. [13]. The entities to be monitored are water bodies as detected by the
active contour modelling on SAR imagery (Figure 3).

The evolution of each entity is described by means of a selection of polygons in the time
series. A Directed Acyclic Graph (DAG), G0∗ = (V0∗, E0∗), is built for each entity where the nodes
represent polygons which are classified as water bodies by the ACM, and the edges represent their
spatio-temporal overlap (Equations (1) and (2) from Khiali et al. [13]).

V0∗ = {o|o ε ϑ, |Pix(o∗) ∩ Pix(o)| ≥ 0} . (1)

E0∗ =
{
(oi, oj)|oi ε Ot ∩Vo∗, oj ε Ot+1 ∩Vo ∗ and Pix(oi) ∩ Pix(oj) 6= ∅

}
. (2)

According to Equations (1) and (2), polygons are grouped in an entity if they display a spatial
overlap, and edges are created between overlapping polygons of consecutive timesteps. In this way,
each entity o∗ is described by an evolution graph Go∗. The graph can be organized by layers where
each layer corresponds to a timestep from the SITS. If radiometric information, i.e., mean backscatter
values, is represented on a second axis, a temporal profile is obtained.

Visual inspection of temporal profiles gives an idea of the homogeneity and dynamics of the
entity. While backscatter values are also dependent of incidence angle (or orbit) and prevailing weather
conditions, these values give an indication on dynamics within the entity. In order to quantify these
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dynamics within each graph, the variation (Var) between two consecutive timesteps is calculated as
follows (Equation (3)) [12] :

Var(Gi, Gi+1) = ∑
oj∈Gi

size(oj)

size(Gi)
.
∑ok∈Gi+1

wj,k.dist(oj, ok)

∑k wj,k
. (3)

Equation (3) describes the variation within one entity (graph) between timestep i and timestep
i + 1 as the weighted sum of variations of all polygons at timestep i, where as these polygon variations
are defined by the difference in backscatter with overlapping polygons from the next timestep (i + 1),
weighted by their amount of spatial overlap.

The global variation (GlobalVar) for a graph represents the sum of the variations on each timestep
(Equation (4)). The value of GlobVar reflects the temporal behaviour of the entity, where high values
indicate high spatio-temporal dynamics.

GlobalVar(G) =
n−1

∑
i=1

Var(Gi, Gi+1). (4)

Processing the spatio-temporal data in graphs results in evolution graphs, temporal profiles and
global variation maps. The evolution graphs describe the spatial evolution of the entities. The graphs
indicate which polygons overlap with each other on consecutive timesteps. Connected polygons are
assumed to form a spatio-temporal entity, in this case, a water body. Temporal profiles are composed
by adding radiometric information to the evolution graphs. The evolution graph is placed in a
2-dimensional plane, where the x-axis represents the timestep on which the radar image was captured,
and the y-axis shows mean backscatter of the polygon which the node represents. Temporal profiles
can depict any object attribute for the nodes in a given graph. For this research, the mean backscatter
attribute is displayed in the temporal profiles.

Within each temporal profile, variation to the next timestep is calculated according to Equation (3).
For the whole study area, global variation is calculated with Equation (4). Plotting these global
variation values for each entity yields a global variation map for the whole study site.

4. Results

All calculations were processed on Intel(R) Core(TM) i7-4770 CPU @ 340GHz with 16.0 GB of
RAM. The time necessary for running through all steps in the methodology amounted to up to 45 min
for the longest time series (7 timesteps). Preprocessing was done with SNAP GUI. The remaining part
of the workflow was programmed in Python.

The computation time is mostly dependent of the total number of polygons involved in each time
series, ranging from 423 polygons in the descending SITS with VH polarisation to 745 polygons in the
descending time series with VV polarisation.

In order to evaluate the proposed framework, firstly the results for the entire study site were
interpreted. Thereafter, the dynamics at a local scale were evaluated and analysed.

4.1. Global/Study Site Level

Comparing the segmentation results for the different signals for the whole study site (Figure 5),
the VH signal appears to result in a higher overall estimation of the water area. Since the capture dates
differ for the ascending and the descending SITS, the flood peak appears to be shifted between the
different SITS, yet a comparable flood evolution manifests itself.
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Figure 5. Water surface area evolution for the different SITS. VV = co-polarised data; VH =
cross-polarised data.

After aggregating the polygons according to their spatial overlap with other polygons on
consecutive timesteps, three types of graphs arise. Full graphs, spanning all timesteps, are obtained
for permanent entities, i.e., they exist from the first timestep throughout the whole time series to the
last timestep. Incomplete graphs represent temporary entities. They exist for a part of the time series
(at least two timesteps). Finally, unconnected polygons form one-node graphs, because they have no
spatial overlap with other polygons on the previous or following timestep.

In Figure 6 we compare the distribution of these different entities over the time series for the
different signals. High amounts of unconnected polygons indicate unstable boundaries of the graph
objects and can be related to high dynamics. However, this behaviour might as well be the result
of an unstable segmentation [12], thus the amount of disconnected polygons can be employed as an
indicator to estimate the quality of the time series segmentation.

V
V

V
H

(a) (b)
Figure 6. Area evolution of unconnected polygons, temporary entities, and permanent entities.
(a) Ascending time series. (b) Descending time series.
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Temporary entities can be expected around the flood peak (timestep 3 for the ascending SITS and
timestep 4 for the descending SITS, see also Table 1). If they occur at another point in the time series,
this might as well be an indication of unstable segmentation. Figure 6 shows that the signals with VV
polarisation result in higher areas of unconnected polygons and temporary entities, which leads us to
believe these segmentations are less stable than for the SITS with VH polarisation.

The global temporal profiles, showing the evolution graphs of the entire study site, are depicted
in Figures 7 and 8. Colour codes indicate the type of entity the nodes (polygons) belong to, x-values
indicate the timestep on which the node (polygon) exists and y-values represent backscatter values.
Generally, permanent entities (blue nodes in Figures 7 and 8) display a lower mean backscatter, while
unconnected polygons (red nodes) display a higher mean backscatter. Global backscatter variation
is induced by varying weather conditions and differing orbits (e.g., timestep 2 versus timestep 3 in
Figure 7).

Global variation values are calculated for each graph (Equation (4)), and thus for each entity.
For variation values to be calculated, the water bodies should be present for least two consecutive
timesteps. No variation can be calculated for unconnected polygons because variation is a function
of the spatio-temporal overlap. The dynamics of these objects is too high to describe its variation.
These objects are comparable with objects that only exist in between two timesteps, these objects will
not be detected and hence no variation values will be calculated.

(a)

(b)
Figure 7. Global temporal profiles for VV polarisations. Unconnected polygons (red nodes), temporary
entities (green nodes), and permanent entities (blue nodes). (a) Ascending time series VV polarisation.
(b) Descending time series VV polarisation.
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(a)

(b)
Figure 8. Global temporal profiles for VH polarisation. Unconnected polygons (red nodes), temporary
entities (green nodes), and permanent entities (blue nodes). (a) Ascending time series VH polarisation.
(b) Descending time series VH polarisation.

The other categories, i.e., permanent entities and temporary entities, are treated separately
because the magnitude of variation depends on the number of timesteps involved. Global variation is
mapped for permanent entities in Figure 9 and for temporary entities in Figure 10 (different scales!).
For permanent water bodies, the canal in the static zone displays a high GlobVar when captured by
the VV signals. This is unexpected and possible explanations are treated in the discussion section.
Moreover, part of the flood in the dynamic zone is for some signals described by the permanent
entity, while the same area is part of a temporary entity for other signals, e.g., descending VV versus
descending VH (Figure 9).
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(a)

(b)

(c)

(d)
Figure 9. Global variation for permanent entities. (a) Ascending time series VV polarisation.
(b) Ascending time series VH polarisation. (c) Descending time series VV polarisation. (d) Descending
time series VH polarisation.
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(a)

(b)

(c)

(d)
Figure 10. Global variation for temporary entities. (a) Ascending time series VV polarisation.
(b) Ascending time series VH polarisation. (c) Descending time series VV polarisation. (d) Descending
time series VH polarisation.
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Table 2 presents the global variation values for the whole study area, the dynamic zone and flood
zone. Because the descending time series cover more timesteps than the ascending time series (7 versus
5), higher GlobVar values are expected for the descending time series since GlobVar is calculated as
the sum of variations to the consecutive timesteps. Moreover, higher GlobVar values are expected for
the dynamic zone in comparison with the static zone. The total number of polygons in the SITS, which
is a result of the ACM, is also displayed in Table 2.

Table 2. Number of polygons in the SITS and global variation for the whole study area and regions
of interest.

Number of Polygons GlobVar

Study Area Dynamic Zone Static Zone
Ascending VV 568 1582.92 103.61 86.67
Ascending VH 434 350.62 72.39 19.00

Descending VV 745 1260.16 54.07 194.83
Descending VH 423 987.85 309.54 106.53

4.2. Local/ Graph Level

Two subregions are selected within the study site (Figure 1). The first region, the ’Static zone’
contains the Albert Canal, which is assumed to maintain static surface area throughout the flood event.
The second region, the ’Dynamic zone’ contains the FCA and is assumed to display high dynamics
during the flood event. Segmentation results and the evolution of variation are examined separately
for the static zone and the dynamic zone.

4.2.1. Static Zone: Canal

Ascending SITS

ACM segmentation results for the static zone are depicted in Figure 11 for the ascending time
series. The canal is, for both VV and VH polarisations, captured by two permanent entities (two full
graphs), separated by a bridge in the south east of the static zone (Figure 12). The associated temporal
profiles and variation of the biggest entity within the static zone are shown in Figure 13. The canal
is highly fragmented on timestep 3 in the VV SITS and on timestep 2 in the VH SITS (Figure 11).
This fragmentation can be observed in the temporal profile and is reflected in the variation, i.e., a high
variation is displayed on the transition from highly fragmented entities to barely fragmented entities
(see variation peaks in Figure 13).
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(a) (b)
Figure 11. Active contour models (ACM) segmentation VV versus VH polarisation for ascending SITS
in the static zone. (a) Ascending VV. (b) Ascending VH.
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Figure 12. Bridge over Albert Canal in the static zone.

(a) (b)
Figure 13. Temporal profile and variation VV versus VH polarisation for ascending SITS in the static
zone. (a) Ascending VV. (b) Ascending VH.

Descending SITS

Segmentation results for the descending time series in the static zone are depicted in Figure 14.
The associated temporal profiles and variation are shown in Figure 15. A fragmentation of the canal is
observed on timesteps 1–3 for the VV time series, and on time step 3 for the VH time series. However on
timestep 7 in the VV time series, the ACM fails to split up the canal at the bridge in the south east of
the static zone (Figure 14). As a consequence, the VV SITS results in only one permanent entity for the
canal, which, in combination with high fragmentation in the beginning of the time series, results in
high variation values (Figure 15). For the VH SITS, the canal is split up into two permanent entities
because of the presence of the bridge in the south east of the static zone (similar to the result of the
ascending SITS, discussed before in Figure 12).
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(a) (b)
Figure 14. ACM segmentation for VV versus VH polarisation for descending SITS in the static zone.
(a) Descending VV. (b) Descending VH.
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(a) (b)
Figure 15. Temporal profile and variation VV versus VH polarisation for descending SITS in the static
zone. (a) Descending VV. (b) Descending VH.

4.2.2. Dynamic Zone: FCA

Ascending SITS

The dynamic zone, i.e., the region that contains the FCA, exhibits a different behaviour.
As mentioned in the global results section (Section 4.1), the flood area is not always captured within
one graph or entity. The dynamic zone is characterized by the occurrence of temporary entities. For
instance, on timesteps 2–5 in Figure 16, a significant water area is not included in the permanent entity
for the VV SITS while it is included for VH signal. This part of the flood is captured by a temporary
entity for the VV SITS. The VV SITS, however, includes a part of the flood in the east of the dynamic
zone within its permanent entity, while this area is part of a temporary entity in the VH SITS (Figure 16).
This dispersion of objects over different entities has to be taken into account when comparing variation
values. Temporal profile and variation of permanent entities within the dynamic zone are depicted in
Figure 17 for the ascending SITS.
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(a) (b)
Figure 16. ACM segmentation VV versus VH polarisation for ascending SITS in the dynamic zone. Blue
polygons represent permanent entities, and green polygons represent temporary entities. (a) Ascending
VV. (b) Ascending VH.
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(a) (b)
Figure 17. Temporal profile and variation VV versus VH polarisation for ascending SITS in the
dynamic zone. (a) Ascending VV. (b) Ascending VH.

Descending SITS

A similar dispersion of objects over different entities appears in the descending SITS (Figure 18).
Part of the flood south-west of the Schulensmeer in not captured by the graph in the VV polarisation
during timesteps 3–7. This part of the flood area is included in a temporary entity (green polygons in
Figure 18). Temporal profile and evolution of variation of this temporary entity is shown in Figure 19.
Similar to the ascending SITS, the VV polarisation includes a part of the flood in the east of the dynamic
zone within its permanent entity, while this area is part of a temporary entity in the VH SITS (Figure 18).
Again, this dispersion of objects over different entities implies that the global variation parameter,
calculated for the temporal profile of the permanent entity, does not represent the variation of the
whole flood zone, and that it is not possible to compare variation values for the dynamic zone over the
different polarisations. Temporal profile and variation of permanent entities within the dynamic zone
are depicted in Figure 20 for the descending SITS.
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(a) (b)
Figure 18. ACM segmentation for VV versus VH polarisation for descending SITS in the dynamic
zone. Blue polygons represent permanent entities, and green polygons represent temporary entities.
(a) Descending VV. (b) Descending VH.
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Figure 19. Temporal profile and variation VV polarisation in the descending SITS for the temporary
entity in the dynamic zone.

(a) (b)
Figure 20. Temporal profile and variation VV versus VH polarisation for descending SITS in the
dynamic zone. (a) Descending VV. (b) Descending VH.

5. Discussion

This method proves to be a useful tool to gain insight in a flood event. Because the framework
uses (freely available) Sentinel-1 images, it has operational potential. Graph-construction helps to
identify entities present in the study site, the global variation maps delineate zones of high dynamics,
while the temporal profiles describe the evolution of entities. This experiment confirms the findings of
Guttler et al. [12] and Khiali et al. [13] in how the extracted information can be deeply explored at the
evolution graph scale, as well as at the global study site scale.
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However, the quality of the temporal profiles and variation values are intertwined with the
quality of the segmentation results. Water body mapping is a complex topic on which much research
is being done. Difficulties include the inefficient identification of mixed water pixels, confusion with
background noise, and variation in threshold values according to the location and time of the image
acquisitions [2–8,10]. In this research, delineating water bodies is done by an active contour model
with parameters chosen by trial and error (Section 3.2). Optimal parameter values are dependent
of the spatial distribution of flood zones, e.g., when there are numerous small flood zones, it is
important to have pixel seeds within all these flooded zones [32]. This might be the problem in the
static zone (Figures 11 and 14), where the ACM fails to produce proper segmentation results at certain
timesteps (timestep 2 in the ascending SITS, and timestep 3 in the descending SITS). This consecutively
introduces variation in the evolution description which is not originating from changes on the ground.
Improvement of the segmentation would improve the overall results of the presented method. This
might be achieved by a more extensive trial and error phase, while choosing the parameters for the
ACM, or by opting for other, often more labour-intensive, segmentation algorithms, such as supervised
classifiers [34].

While the HH polarisation has the greatest potential for delineating floods consistently and
accurately [7,35], Sentinel-1 collects images only in VH and VV polarisation when in IW mode
(Interferometric Wide swath mode). For future research, it would be interesting to test the presented
method, including the ACM, on the HH polarised signal which is currently only acquired by few SAR
satellites (ALOS, Radarsat, TerraSAR-X) and not freely available. While VV polarisation provides a
slight advantage for flood delineation compared to the VH polarisation, the VV polarisation is more
susceptible to roughening of the water surface caused by rain or wind [15,18].

This is confirmed when the prevailing weather conditions (Figure 21) are compared with the
segmentation results. A combination of precipitation and high wind speeds (at timestep 2 in the
ascending SITS and at timestep 3 in the descending SITS), increases the roughness of the water surface
which leads to a higher amount of backscatter. This is also visible on the global temporal profiles
(Figure 7). In addition, different incidence angles due to different orbits during image capturing can
result in deviant backscatter values (see Table 1).

Graph representation of the SITS results in three graph categories. The full graphs describe water
entities which are present throughout the entire time series, incomplete graphs represent temporary
entities, and one-node graphs represent unconnected polygons. If comparing variations for consecutive
timesteps, one must keep in mind that the timesteps not always represent regular intervals (see Table 1).
For instance, the shortest timestep in the ascending time series represents five days, while the longest
timestep represents 17 days! In future research, it might be interesting to take the varying timestep
length into account when calculating the variation between timesteps.

Polygons in the category unconnected (one-node graphs) can represent false positives (faulty
detection of water) due to radar artefacts (such as double-bounce and vegetation interference) or faulty
segmentation (failing ACM), yet it is also possible that these polygons form highly dynamic flood
regions which are only present for a short period of time. This framework will not identify these
high dynamic zones as such. However, the possibility that unconnected polygons are misclassified
as water polygons increases, as they display high backscatter values (Figures 7 and 8). Comparing
these findings with ground truth or other classification/segmentation models could provide insight in
this phenomenon.

When evaluating the calculated variation values, with reference to Figure 9, high variation values
appear for the static zone in both ascending and descending VV signals, while the canal in the static
zone is expected to display low variation. This, again, is due to the unsatisfactory segmentation results,
particularly for the VV signals. The same trend appears in Table 2, which shows unexpected values for
the VV signals. The descending VV signal the GlobVar value for the dynamic zone is lower than the
GlobVar value for the static zone. This is due to the unstable segmentation in the static zone on the
one hand, and the fact that not the whole flood area is captured within one entity on the other hand
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(cfr. compare timestep 4 of both descending VV and VH signals in the dynamic zone in Figure 18).
Furthermore, GlobVar for the whole study site is higher for the ascending SITS, while it comprises
less timesteps. This can be partially explained by the number of polygons (see Table 2), i.e., a higher
number of polygons results in higher variation values.

Figure 21. Additional weather data for ascending and descending time series (SITS): precipitation,
maximum wind speed, mean wind speed.

Overall, the graph-representation has great potential for a fast analysis of a flood event, delineating
zones of high dynamics, and providing a relative quantification of local variations. Moreover,
the method generates different outputs (temporal profiles, global variation maps, area evolution)
that provide insights in the flood event. The presented method is, however, limited by its dependency
of the segmentation algorithm. Furthermore, unconnected polygons are not taken into account for the
calculation of the (global) variation, just as the timestep length is ignored in the current approach.

6. Conclusions

In this paper we have adapted an existing methodological framework that combines OBIA image
processing and data mining techniques to extract spatio-temporal information. An active contour
model is applied on SAR SITS generating separate sets of objects for each timestep. Subsequently,
a graph-based approach is employed to detect and define spatially coherent entities and describe
their spatio-temporal evolution through temporal profiles and global variation maps. The framework
produces good results when water body delineation generates consistent objects. This crucial step,
however, is affected by numerous intertwined factors, such as polarisation, prevailing weather
conditions, orbit, ACM parameters, etc.

Future research plans consist of upscaling this research framework. Edge-effects (such as
unconnected polygons, disconnection between flood areas, and noise effects) are expected to reduce
when working on a larger scale. While the current study area is about 70 km2, the detection of
spatio-temporal dynamics will be tested on an area of about 1000 km2, such as the flood event of 2019
in Beira, Mozambique.
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Abbreviations

The following abbreviations are used in this manuscript:

ACM Active Contour Model
FCA Flood Control Area
GRD Ground Range Detected
LUT Look-Up Table
MMSE Minimum Mean Square Error
OBIA Object Based Image Analysis
SAR Synthetic Aperture Radar
SITS Satellite Image Time Series
SNAP Sentinel Application Platform
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