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Abstract: Unmanned aerial vehicles (UAVs) equipped with multispectral sensors present an
opportunity to monitor vegetation with on-demand high spatial and temporal resolution. In
this study we use multispectral imagery from quadcopter UAVs to monitor the progression of a water
manipulation experiment on a common shrub, Baccharis pilularis (coyote brush) at the Blue Oak Ranch
Reserve (BORR) ~20 km east of San Jose, California. We recorded multispectral imagery at several
altitudes with nearly hourly intervals to explore the relationship between two common spectral
indices, NDVI (normalized difference vegetation index) and NDRE (normalized difference red edge
index), leaf water content and water potential as physiological metrics of plant water status, across
a gradient of water deficit. An examination of the spatial and temporal thresholds at which water
limitations were most detectable revealed that the best separation between levels of water deficit were
at higher resolution (lower flying height), and in the morning (NDVI) and early morning (NDRE). We
found that both measures were able to identify moisture deficit across treatments; however, NDVI was
better able to distinguish between treatments than NDRE and was more positively correlated with
field measurements of leaf water content. Finally, we explored how relationships between spectral
indices and water status changed when the imagery was scaled to courser resolutions provided by
satellite-based imagery (PlanetScope).We found that PlanetScope data was able to capture the overall
trend in treatments but unable to capture subtle changes in water content. These kinds of experiments
that evaluate the relationship between direct field measurements and UAV camera sensitivity are
needed to enable translation of field-based physiology measurements to landscape or regional scales.

Keywords: unmanned aerial vehicles; vegetation water status; drought; NDVI; NDRE;
Baccharis pilularis

1. Introduction

1.1. Ecohydrological Context

Plants play a key role in the hydrologic cycle where they are a dominant conduit for returning
water in, and on, the Earth surface to the atmosphere [1]. As they do, plants also impact ecosystem
productivity. Because water is so pivotal to plant resource acquisition strategies, a reduction or
complete depletion of water will induce several plant physiological effects including declines in plant
water potential, reduced tissue relative water content, loss of cell turgor, xylem cavitation, and eventual
tissue or whole plant death [1]. Water availability is often measured using “water potential” before
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dawn, when plants have largely equilibrated to soil water resources in the absence of transpiration,
but see [2]. When soil water supply is less than plant demand, plants can experience water limitation.
Plant water limitation can thus result in the down-regulation of plant water use, which also reduces
photosynthesis and therefore a reduction in plant productivity that has consequences for growth and
survival [3–6]. Such water limitation can result in a diversity of plant responses, such as reductions in
carbon fixation, growth, and even reproduction.

Early detection of water limitation in vegetated land surfaces is important for several reasons.
Water-limited plants are fuels for wildfire, and live fuel moisture, the ratio of water to dry material in
live plants, is a critical determinant of plant flammability and fire intensity [7,8]. Additionally, trees
experiencing water limitation throughout the western US have been shown to be at risk to infestations
from pests and disease [9]. Recent work in California suggests that long term water limitation may
contribute to changes in forest structure and function across large areas [10,11], and short-term drought
or water limitation increases the probability of mortality [12,13]. Unless hydrologically buffered in
some way [14], droughts can lead to marked vegetation changes, and such drought-induced changes
are predicted to occur more frequently in California as a consequence of climatic (hydrological)
change [15–18]. Additionally, water limitation in the form of reduced winter precipitation can affect
overall growth and reproduction of native plants. We focused on coyote brush (Baccharis pilularis), a
common shrub throughout California, where in late summer months, this evergreen chaparral species
commonly experiences severe water deficits [19].

1.2. Remote Sensing Context

Since the launch of the first Landsat satellite in the 1970s, a significant body of research has
shown the utility of satellite imagery in quantifying aspects of vegetation productivity, health, and
change. Using broadband multispectral remote sensing, it is common to utilize the visible portion
of the electromagnetic spectrum to assess leaf chlorophyll and pigment content, the near-infrared
(NIR) for cell properties, and the shortwave infrared for water content [20]. Most often this is done
through the development of simple band ratio indices such as the normalized difference vegetation
index, NDVI (normalized ratio of the red and NIR bands). NDVI is an indicator of photosynthetic
capacity of plants [21], and it correlates with leaf chlorophyll, green color, and plant vigor [22] and
is often used as a proxy for vegetation abundance, health, and growth [23–25], and to measure land
cover dynamics and evapotranspiration [26]. Newer satellite sensors (e.g., WorldView-3, Sentinel
and Planet RapidEye) include narrowband red-edge band or bands (in the region between 680 nm
to 730 nm). This area of the spectrum is particularly suitable for detecting differences in chlorophyll
content and leaf structure. The red-edge band has been used to measure plant productivity [27], leaf
chlorophyll [28–30], and to estimate biomass at varying canopy covers [1,21,31–33]. In particular, this
band has been useful for studying how experimental water deficits (such as those induced by girdling
trees) change characteristics of plant physiology (e.g., chlorophyll a/b ratio); as plants experiencing a
water deficit change their foliar chlorophyll composition, resulting in a shift of red-edge reflectance
towards shorter wavelengths [1,34]. Substituting the red band with a red-edge band in a vegetation
index (i.e., NDRE, or normalized difference red edge index) can show plant pigment changes [35] and
has been correlated with drought-induced variation in leaf photosynthetic rates [36].

Remote sensing has been used to map the spatial extent of water limitation and drought impacts
on vegetation, and many prominent examples come from agricultural experiments in greenhouses [37].
For example, Behman et al. [38] compared the ability of hyperspectral indices and NDVI (from imagery
covering 430 nm and 890 nm) to detect what they called “water stress” in barley experiments using
greenhouse potted plants under well-watered and drought conditions. Plant response to water
limitation was detected up to ten days earlier using a combined model of several hyperspectral indices.
In agricultural field applications, Wang et al. [39] found success using NDVI to predict water limitation
in a corn crop using a time series of NDVI from multiple years (2000–2010) of Landsat 5 TM imagery.
The red-edge band and moderate spatial resolution (20 m ground sampling distance (GSD)) of the
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Sentinel-2 and Sentinel-3 satellites have also shown great promise for agricultural work. Clevers and
Gitelson [40] showcase the potential of several red-edge indices to estimate canopy chlorophyll and
nitrogen content in regional agricultural applications.

In addition to agricultural applications of remotely sensed plant properties, recent studies in
natural environments have also used multispectral data for monitoring leaf and canopy moisture status,
including narrow bands in the shortwave infrared (SWIR) region as well as the red edge. For example,
Asner et al. [12] had success evaluating changes in canopy water content in the California Sierra Nevada
forests with narrow spectral features centered at 980 nm and 1160 nm in combination with LiDAR scans.
Eitel et al. [34] evaluated a time series of RapidEye scenes covering a piñon-juniper woodland in central
New Mexico acquired before and after water deficit was induced by girdling. They found that the
NDRE (normalized difference red edge index) detected changes in plant stress, as indicated by shifts in
chlorophyll a/b ratio, much earlier than NDVI and GNDVI. Red-edge information has the potential to
considerably improve monitoring of forest health from satellites and warrants further investigation in
other ecosystems. Pu et al. [41,42] used multispectral data (the 4 band CASI sensor) and hyperspectral
data from a spectrometer to predict moisture deficits in oaks infected with an emerging oak disease.
They found several band and band ratios in the SWIR (short-wave infrared) spectra (e.g., 975 nm,
1200 nm, and 1750 nm) that were useful in separating the water status of specific leaves, but the accuracy
of distinguishing differences in leaf water status using only 4 band multispectral imagery was difficult.

Satellite-based remote sensing information has and is clearly helping to advance many agricultural
and ecological research programs. Unmanned aerial vehicles (UAVs) present a new and potentially
very different opportunity to monitor protected and semi managed lands with on-demand high spatial
and temporal resolution [43]. Imagery from off-the-shelf multispectral cameras can be used to create
similar vegetation indices as mentioned above, but at much finer scales. Quantifying plant water
status using imagery from UAVs has been achieved in the agricultural domain including in vineyards,
orchards, and other crop systems [43–46]. Many of these UAV projects cover small study areas (<100 ha)
and often focus on commercial grade RGB and multispectral cameras. For example, Jorge et al. [47]
used UAVs equipped with commercial grade multispectral cameras (a DJI quadcopter Phantom 4
Pro with a Parrot Sequoia 4.0 camera) to map a 13 ha olive farm and compared it with olive groves
and vineyards in Spain. They evaluated four vegetation indices (NDVI, GNDVI, SAVI (soil-adjusted
vegetation index), and NDRE) from imagery and found that NDRE was the most useful in detecting
growth inhomogeneities in these trees. Wahab et al. [48] showcased the utility of UAVs for crop yield
monitoring on smallholding farms in Sub-Saharan Africa. They used an Enduro quadcopter, mounted
with two GoPro RGB cameras as well as a postconsumer modification to the red band with a special
filter to instead measure NIR, to monitor several smallholding farms in Ghana. They found that the
GNDVI (green and NIR index) could be used to accurately predict not just maize crop vigor but also
yields. Díaz-Delgado et al. [49] flew a DJI Phantom 4+ quadcopter equipped with an RGB camera as
well as a Parrot Sequoia multispectral camera over a 4 ha semi-arid perennial grassland study area
dominated by C3 bunchgrasses, which was the focus of a multiyear water limitation experiment. The
NDVI values retrieved from the imagery were significantly related to field-based measurements of
water status, although this relationship was stronger at coarser scales, and stronger for those plots
submitted to severe and moderate drought. Similar studies have been conducted with noncultivated
species. Dunford et al. [50] detected unhealthy and dead canopy areas in a Mediterranean riparian
forest, and Hernández-Clemente et al. [51] utilized narrowband multispectral and hyperspectral
imagery to examine evergreen chlorophyll, xanthophyll, and carotenoid features of forest health.
Aside from these studies, our literature review revealed that the majority of UAV-based water deficit
assessments are conducted using hyperspectral or thermal cameras in the field of precision agriculture.
Through optical detection of water status in a natural ecosystem, our study is the first to employ
multispectral UAV imagery for water deficit assessments of native California vegetation.

In this paper, we report on the use of multispectral imagery from quadcopter UAVs to monitor the
experimentally imposed progression of plant water status. We performed a manipulative experiment
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using the common California shrub coyote brush, Baccharis pilularis, at the Blue Oak Ranch Reserve
(BORR) outside of San Jose, in central California. In each manipulation, plants were completely cut
from their root systems and propped up vertically in their original orientation. These treatment cuttings
were staggered and occurred once every other day for one week. Therefore, the UAV images we
obtained were of the same plant species at various stages of desiccation. Control and watered plots were
also established for reference. We hypothesized that we would observe reduced NIR reflectance values
and increased red and red-edge reflectance values (indicating reduced photosynthetic capacity), along
with decreased relative water content and water potential values, due to immediate and severe water
limitation. To test these hypotheses, we had three main objectives. First, we explored the empirical
relationship between two common multispectral remote sensing indices (NDVI and NDRE) and water
content and water potential across experimental plots with a gradient of water limitation. Second, we
sought to understand the applicability of imagery from off-the-shelf cameras and UAVs to detect slight
variations in plant responses to water limitation across the gradient. As part of this objective, we tested
the effect of ground sample distance (GSD, i.e., flying height) and time of day on detectability of plant
stress. Finally, we explored how relationships between indices and the detectability of water limitation
changed when the imagery was scaled to coarser resolutions provided by PlanetScope imagery.

2. Materials and Methods

2.1. Study Area

Blue Oak Ranch Reserve (BORR) is a 1319 ha (3259 ac) property and is one of 41 systemwide
natural reserves managed by the University of California Natural Reserve System (UCNRS), located
in the foothills of San Jose, California (37◦22′54”N, -121◦44′15”E). The reserve experiences a
Mediterranean-type climate with warm dry summers and cool wet winters (annual precipitation is
60.27 cm (23.7 in)). Annual minimum and maximum mean air temperatures occur in January and
September, with average temperatures of 9◦C (49◦F) and 18◦C (64◦F), respectively. The landscape has
rolling hills ranging from 454 to 870 m (1489–2855 ft) elevation, and is dominated by oak woodland
with blue, black, valley, and coast live oaks (Quercus douglasii, Q. kelloggii, Q. lobata, Q. agrifolia).
Additionally, chaparral and shrub communities (e.g., Artemisia spp., Arctostaphylos spp., Baccharis
pilularis.), as well as both native and nonnative grasslands (e.g., Nasella pulchra, Hordeum, Poa spp.) are
common on this reserve. The experiment described in this paper took place in a stand of coyote brush
(Baccharis pilularis), a native shrub (Figure 1) growing 1–3 m in height in dense stands.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 18 

 

Ranch Reserve (BORR) outside of San Jose, in central California. In each manipulation, plants were 
completely cut from their root systems and propped up vertically in their original orientation. These 
treatment cuttings were staggered and occurred once every other day for one week. Therefore, the 
UAV images we obtained were of the same plant species at various stages of desiccation. Control and 
watered plots were also established for reference. We hypothesized that we would observe reduced 
NIR reflectance values and increased red and red-edge reflectance values (indicating reduced 
photosynthetic capacity), along with decreased relative water content and water potential values, due 
to immediate and severe water limitation. To test these hypotheses, we had three main objectives. 
First, we explored the empirical relationship between two common multispectral remote sensing 
indices (NDVI and NDRE) and water content and water potential across experimental plots with a 
gradient of water limitation. Second, we sought to understand the applicability of imagery from off-
the-shelf cameras and UAVs to detect slight variations in plant responses to water limitation across 
the gradient. As part of this objective, we tested the effect of ground sample distance (GSD, i.e., flying 
height) and time of day on detectability of plant stress. Finally, we explored how relationships 
between indices and the detectability of water limitation changed when the imagery was scaled to 
coarser resolutions provided by PlanetScope imagery. 

2. Materials and Methods 

2.1. Study Area 

Blue Oak Ranch Reserve (BORR) is a 1319 ha (3259 ac) property and is one of 41 systemwide 
natural reserves managed by the University of California Natural Reserve System (UCNRS), located 
in the foothills of San Jose, California (37°22′54”N, -121°44′15”E). The reserve experiences a 
Mediterranean-type climate with warm dry summers and cool wet winters (annual precipitation is 
60.27 cm (23.7 in)). Annual minimum and maximum mean air temperatures occur in January and 
September, with average temperatures of 9°C (49°F) and 18°C (64°F), respectively. The landscape has 
rolling hills ranging from 454 to 870 m (1489–2855 ft) elevation, and is dominated by oak woodland 
with blue, black, valley, and coast live oaks (Quercus douglasii, Q. kelloggii, Q. lobata, Q. agrifolia). 
Additionally, chaparral and shrub communities (e.g., Artemisia spp., Arctostaphylos spp., Baccharis 
pilularis.), as well as both native and nonnative grasslands (e.g., Nasella pulchra, Hordeum, Poa spp.) 
are common on this reserve. The experiment described in this paper took place in a stand of coyote 
brush (Baccharis pilularis), a native shrub (Figure 1) growing 1–3 m in height in dense stands. 

 
Figure 1. Experimental plot at Blue Oak Ranch Reserve (BORR): (a) study area location near San Jose, 
California, and range of B. pilularis; (b) experimental site from the ground; (c) detailed aerial depiction 
of experiment. 

Figure 1. Experimental plot at Blue Oak Ranch Reserve (BORR): (a) study area location near San Jose,
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2.2. Field Data and Experimental Design

Over the course of a week, water limitation treatments were applied to Baccharis pilularis plots,
and coincident spectral, chemical, and physiological measurements were taken to discern responses to
desiccation and saturation. In a 25 m × 15 m study area (Figure 1), we cut a series of ~2.5 m2 sections
of coyote brush, and left the main stems standing in the pre-cut orientation. Each section was cut 48 h
apart, creating a total of four treatments, Tx1 was cut first on 19 July and Tx4 cut last on 25 July. The
surrounding brush was left alone and used as a control (C), and a section was watered (W) four gallons
per bushel every other day during the experiment.

Field Data Collection

Water content measurements of roughly 50 leaves per treatment were taken for multiple samples
of Tx1, Tx2, Tx3, Tx4, C, and W. Leaf water content samples were collected from shoots located adjacent
to leaf water potential sample locations. The fresh mass of each sample was measured to the nearest
0.001 g, and once brought back to the lab, all samples were oven-dried for 48 h at 60 C and measured
again for dry mass, measured to the nearest 0.001 g. The fresh and dry mass of each sample were then
used to calculate leaf water content as (fresh mass–dry mass)/dry mass. Water content samples were
taken on July 25 and July 26 for all treatments.

Pre-dawn and midday water potentials were measured using a Scholander pressure chamber [52].
Three samples for treatments Tx3, Tx4, C, and W were cut, sealed in plastic bags, placed into a cooler,
and then immediately measured. The pressure chamber allows for the addition of compressed nitrogen
gas to be added to a cut stem to measure water tension; the amount of pressure that it takes to cause
water to appear at the cut surface of the petiole is equal to the tension the leaf is experiencing. A high
value of pressure means a high value of tension and a high level of water deficit. Water potential
samples were taken on 25 July and 26 July only for treatments that had been removed from their roots
less than 2 days from sample collection (Table 2). Treatments that were cut from their roots more than
3 days prior were not sampled, as after three days the values obtained from the samples saturated.

2.3. UAV Data Acquisition and Processing

All imagery data were captured using a DJI Matrice 100 quadcopter platform equipped with a
MicaSense Red Edge camera. The MicaSense Red Edge has five sensors (blue: 465–485 nm, green:
550–570 nm, red: 663–673 nm, red edge: 712–722 nm, and near-infrared: 820–860 nm), and an external
irradiance sensor with GPS and inertial measurement unit (IMU) placed on top of the UAV to capture
sensor angle, sun angle, location, and irradiance for each image during flight. Physical radiometric
targets were imaged prior to flight for radiometric calibration. This camera can capture imagery at
8 cm of pixel GSD (per band) at 120 m (~400 ft) above ground level (AGL) flying height. Visually
contrasting white and black ground control points (0.25 m2) were surveyed using a Trimble GEO 7X,
and differentially corrected to <5 cm of horizontal accuracy. Mission planning was conducted using
Pix4Dcapture software and flown in a grid pattern. We flew over the treatment plots on two days with
clear conditions. On Day 1 (25 July 2018) we varied the altitude of flight from 30 m to 120 m during
one-hour pre and post solar noon (four flights). On Day 2 (26 July 2018) we flew at a constant altitude
(60 m) every hour from 8 am to 3 pm (eight flights). Overall, we captured the experiment 12 times
(Table 1).
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Table 1. Overview of UAV (unmanned aerial vehicles) flights flown on 25 July 2018 and 26 July 2018
with a MicaSense RedEdge multispectral camera at varying times and ground sampling distances
(GSDs).

Flight Date Time Altitude GSD RedEdge (cm)

F1 25 July 2018 12:00 120m 8.81

F2 25 July 2018 13:15 100m 7.29

F3 25 July 2018 14:10 30m 2.26

F4 25 July 2018 15:10 60m 4.45

F5 26 July 2018 08:17 60m 4.47

F6 26 July 2018 09:32 60m 4.42

F7 26 July 2018 10:13 60m 4.48

F8 26 July 2018 11:10 60m 4.49

F9 26 July 2018 12:10 60m 4.71

F10 26 July 2018 13:24 60m 4.42

F11 26 July 2018 14:10 60m 4.40

F12 26 July 2018 15:10 60m 4.36

The images were imported into Pix4Dmapper 4.3.31 [53] for processing. Camera correction
and calibration were applied to remove geometric distortions from images. A stitched orthomosaic
image was generated with a GSD resolution ranging from 2.2 cm (30 m altitude) to 8.7 cm (120 m
altitude). Each orthomosaic image was radiometrically calibrated with the image of the standard
white reflectance panel. Individual crowns from the experiment were delineated manually using
the highest resolution image (flown at 30 m altitude with a GSD of 2.2 cm). In this image, treatment
canopies are easily and precisely identified. The outlines of each plot (e.g., Figure 1) were used in
subsequent analyses.

2.4. Methods

2.4.1. Spectral Index Detection of Changes in Plant Status Across GSD and Time

Each geometrically and radiometrically calibrated orthomosaic was left at its native resolution, as
NDVI and NDRE were calculated from the multispectral bands. The values for all pixels within the
delineated boundaries of the treatment and control canopies were averaged, to provide a mean value
for each treatment block at each time period/flight. The pixels within the entire study area, formed by
a bounding box of the treatment and control areas were also averaged. We plotted the average NDVI
and NDRE across each ground sample distance (GSD) that correspond to the varying altitude at which
the UAV was flown (Figure 2). Further, using all flights flown on Day 2 at 60 m altitude (4.3 cm GSD),
we plotted the average NDVI and NDRE values for each treatment, flown every hour from 8 am to
3 pm (n = 8) (Figure 2).
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2.4.2. Relationship Between NDVI and NDRE and Leaf Water Content and Water Potential

NDVI and NDRE were calculated from each UAV image mosaic using standard formulas. All
data from all flights were clipped to the boundaries of the study area, described above, and either left
at their native resolution or resampled to a common resolution. The values for all pixels within the
delineated boundaries for each treatment were averaged to provide a mean value for each treatment at
each time period. For the control (untreated) plots, pixels were averaged within the boundary of each
plot, and then averaged overall (Table S1). NDVI and NDRE values for the 1 pm flight were plotted
with field-measured leaf water content measured at 1 pm for both Day 1 and Day 2. The average NDVI
and NDRE values for all flights (n = 12) were also plotted against the average of water content over
the two days. Correlations between these values were assessed with the nonparametric Spearman
correlation coefficient. Additionally, we assessed the relationship between leaf water content and
leaf water potential with a linear regression. Finally, to determine significant difference between the
treatment values, we ran a nonparametric Wilcox test to distinguish pairwise significant differences
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between each treatment. The Wilcox test is a statistical comparison of the average of two dependent
samples and a nonparametric version of a t-test that assesses the difference between observations [54].

2.4.3. Scaling Behavior of Spectral Indices

PlanetScope imagery for the area acquired on 26 July 2018 at 11:17 am was downloaded from the
Planet API [55]. PlanetScope Imagery is 16 bit with four bands: blue (455–515 nm), green (500–590
nm), red (590–670 nm), and NIR (780–860 nm). This imagery has a pixel resolution of 3.0 m with the
sun synchronous orbit [55]. We resampled each of the radiometrically calibrated bands from the UAV
flight on 26 July 2018 at 11:10am (the closest temporal match to PlanetScope Imagery), to 3 m to match
the native pixel resolution of PlanetScope imagery. Using the resampled UAV band values, we then
calculated NDVI. The PlanetScope Ortho Scenes Surface Reflectance product is a 16 bit GeoTIFF, with
reflectance values scaled by 10,000. We divided the pixel values by 10,000, to compare the reflectance
bands and NDVI index of the PlanetScope Imagery with those collected from the UAV [55]. Although
Planet Labs does have a satellite constellation that also collects information on the red edge portion
of the spectrum, RapidEye, we were not able to use it as it has a 5.5 day nadir repeat interval, a
coarser ground sampling distance (6.5 m), and did not capture our study site during key points in
the experimental treatments. We assessed the distribution of pixels within the study area between
resampled UAV NDVI data and the NDVI derived from PlanetScope (Figure 5a) and used a scatter
plot with a 1:1 reference line to determine agreement in NDVI values across platforms. Finally, we
calculated percent change in the treatment plot values from the control plot for the resampled UAV
data (3.0 m) and the native resolution PlanetScope data (3.0 m) and plotted their differences.

3. Results

3.1. Detectability of Plant Water Status Over GSD and Time

Leaf water content samples for all treatments (Tx1, Tx2, Tx3, Tx4, C, and W) and pre-dawn and
midday leaf water potential for treatments Tx3, Tx4, C, and W are shown in Table 2.

Table 2. Acquired water content (WC) and water potential (WP) samples and averages for Day 1
(25 July) and Day 2 (26 July) for each treatment.

Samples Day 1
WC

Day 2
WC

WC
Averages

Day 1
Midday

WP

Day 2
Midday

WP

Midday
WP

(average)

Day 1
Pre-dawn

WP

Day 2
Pre-dawn

WP

Pre-dawn
WP

(average)

Tx1 4.49 2.18 3.33 NA NA NA NA NA NA

Tx2 4.33 3.34 3.83 NA NA NA NA NA NA

Tx3 12.91 3.33 8.12 −5.20 NA −5.20 −2.72 −4.78 −3.75

Tx4 36.25 51.39 22.13 −2.83 −5.07 −3.95 NA* −4.02 −4.83

Control 56.29 52.82 56.05 −2.63 −2.43 −2.53 −0.50 −0.65 −0.61

Water 56.63 53.00 54.82 −2.30 −2.25 −2.28 −0.37 −0.52 −0.47

* NA Tx4 was conducted at 10am Day 1 and was not yet available for sampling.

The relationship between flying height (and GSD) and time of day on detectability of leaf water
status NDVI and NDRE values is plotted in Figure 2. Spectral indices vary with spatial resolution for
several reasons, including the fact that lighting changes throughout the day, as well as leaf moisture.
While it is possible to separate treatments and control at all resolutions (i.e., 2.2–8.7 cm GSD), the best
separation between all treatments, including the water and control was at 2.2 cm and 4.3 cm GSD flown
at altitude 30 m and 60 m, for both NDVI and NDRE (Figure 2a,b). At slightly coarser resolutions
(7.2 cm and 8.7 cm GSD) the difference between control and water was less pronounced. NDVI and
NDRE values by time of day are shown in Figure 2c. The best separation between treatments was
found in the morning imagery for NDVI (between 10:00 and 12:00), and in the early morning for NDRE
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(between 8:00 and 10:00). The drier plots (e.g., Tx1 and Tx2) were less separable as the day progressed
within both indices. The NDVI for Tx4 declined throughout the day, as we would expect, given this
treatment had been enacted one day prior to the flights represented.

3.2. Relationships Among NDVI, NDRE, Leaf Water Content, and Leaf Water Potential

NDVI showed a statistically strong positive correlation with leaf water content. NDVI values from
Day 1 and Day 2 correlated well with percent water content (rs = 0.94 for both days), and the average
of all flights and leaf water content was associated with a slightly weaker yet statistically significant
correlation of rs = 0.89 (Figure 3a). A weak correlation was found with NDRE and leaf water content (rs

for Day 1, Day 2, and overall were 0.77, 0.60, and 0.71, respectively) (Figure 3b), therefore we present
the rest of the results with NDVI. A simple linear regression was calculated to predict mid-day water
potential based on water content. A significant regression equation was found with an R2 of 0.546
(Figure 3c). Leaf water potential decreased by 0.0516 (MPa) for each percent of water content. The
regression was much stronger when Tx4 from Day 2 was removed as an outlier, resulting in an R2 of
0.921 (Figure S1).
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Figure 3. (a) Relationship ((R = spearman’s rho statistic (rs)) between NDVI and water content at: 1pm
on Day 1; 1pm on Day 2; and all values; (b) Relationship (R = spearman’s rho statistic (rs)) between
NDRE and Water Content at: 1pm on Day 1; 1pm on Day 2; and all values; and (c) relationship
(R-squared from linear regression) between plant water content and mid-day water potential (Note:
the data point at −5 MPa and 52% water content is an anomaly and likely due to the timing of the
treatment (immediately following cutting)).
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The distribution of NDVI and NDRE for all resampled flights (n = 12, 8.7 cm) by treatment and
in the overall study area is shown in Figure 4 and Figure S2 and Figure S3. Statistically significant
differences were found in the NDVI values between Tx2 and Tx3, between Tx3 and Tx4, and between
Tx4 and the control. Nonsignificant differences were found between Tx1 and Tx2, as well as the control
and the water treatment (see Figure S2 for NDRE).
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3.3. Scaling behavior of spectral indices

Our third objective was to explore how the relationship between indices and water status changed
when the imagery was scaled to the coarser resolutions provided by satellites (Figure S4). Because our
study area is small, only imagery from PlanetScope was used in the scaling experiment.

Assessing the distribution of pixels within the study area between the resampled UAV NDVI data
(n = 35) and the NDVI derived from Planet (n = 35) (Figure 5a), we found that the range in NDVI
values was much smaller for the PlanetScope data, with values across the study area ranging from 0.2
to 0.5. The resampled UAV NDVI pixel values contained more spectral information, suggesting higher
spectral sensitivity of the MicaSense RedEdge narrow-band sensor in comparison with PlantScope’s
sensor. A narrow-band sensor such as the RedEdge can provide more detailed information by capturing
a more precise measurement of specific wavelengths (see Figure S5). Therefore, the spectral sensitivity
of the sensor was preserved despite the change in spatial resolution. We found a positive correlation
between the UAV NDVI and Planet NDVI, spearman’s rho statistic (rs) = 0.64, p = < 0.001(Figure 5b,
Figure S6). The UAV NDVI values trended higher than the Planet NDVI values, which is consistent
with higher sensitivity in the MicaSense RedEdge red and infrared spectral bands (Figure S5). We
found that Planet data was able to capture an overall trend in treatments (i.e., able to detect healthy
green vegetation from dead dry vegetation), even when treatments were represented by single pixels
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(Figure 5c). However, PlanetScope data was not able to capture subtle changes in water content (e.g.,
the water treatment had lower NDVI than the control).Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 

 

 
Figure 5. Scaling results comparing UAV data and PlanetScope data: (a) boxplot of NDVI for 
PlanetScope and UAV resampled to 3 m; (b) correlation between UAV NDVI and PlanetScope NDVI; 
and (c) % change from control in NDVI value for UAS raw value and PlanetScope. 

4. Discussion 

UAVs are increasingly being used to map natural and agricultural vegetation [43] due to their 
precision and flexibility [56]: UAVs allow the use of a range of cameras, control over ground sample 
distance, and the ability to precisely control the timing of image acquisition. Because of the ability to 
acquire data throughout the day, imagery from UAVs can offer very precise and new insights into 
the dynamics of land surface behavior at detailed spatial scales. Scientific interests such as phenology, 
changes in transpiration, plant water status, and carbon fluxes can be studied at unprecedented 
temporal resolutions (e.g., hourly or daily), potentially creating hypertemporal vegetation products 
for input into ecosystem models and new insights into ecosystem behavior. For example, Malbéteau 
et al. [57] explored diurnal temperature dynamics of grass and maize canopies in Saudi Arabia with 
varying water status levels at ultra-high spatial resolution (0.02 m). The use of UAVs allowed for fine 
temporal characterization of plant–water relations, as leaf skin temperature is strongly coupled with 
stomatal conductance and related to transpiration rates [58]. Several papers focusing on orchards in 
Spain showcase the ability of UAV-based hyperspectral imagery (and the PRI index in particular) to 
relate diurnal changes in plant water content to measures in the field at the time of each image 
acquisition [59,60]. 

Despite increasing spatiotemporal resolutions to understand variations in plant water relations, 
capturing accurate and meaningful data from UAVs and their associated sensors can be difficult. Key 
error sources associated with UAV data collection and processing, such as solar angle, weather 
conditions, geolocation, and radiometric calibration, can all influence the accuracy of the calculated 
vegetation indices [61]. In our study we found variations in calculated indices of NDVI and NDRE 
over the course of a day and varying solar angles. We found that NDVI was best able to capture 
differences across our treatments between 10:00 and 12:00, while the best differentiation in NDRE 
slightly earlier in the day (9:00). Studies have reported minimum values for vegetation indices at solar 
noon in areas with LAI (leaf area index) of 0.5–2, and data collected during the traditionally used 
“high sun” condition with lower predictive capability than at oblique sun angles (solar zenith angle 
(SZA) > 40°) [62]. Our study didn’t observe the lowest vegetation index values at peak sun conditions; 
however, differences across treatments were more accurately captured at larger solar zenith angles 

Figure 5. Scaling results comparing UAV data and PlanetScope data: (a) boxplot of NDVI for
PlanetScope and UAV resampled to 3 m; (b) correlation between UAV NDVI and PlanetScope NDVI;
and (c) % change from control in NDVI value for UAS raw value and PlanetScope.

4. Discussion

UAVs are increasingly being used to map natural and agricultural vegetation [43] due to their
precision and flexibility [56]: UAVs allow the use of a range of cameras, control over ground sample
distance, and the ability to precisely control the timing of image acquisition. Because of the ability to
acquire data throughout the day, imagery from UAVs can offer very precise and new insights into the
dynamics of land surface behavior at detailed spatial scales. Scientific interests such as phenology,
changes in transpiration, plant water status, and carbon fluxes can be studied at unprecedented
temporal resolutions (e.g., hourly or daily), potentially creating hypertemporal vegetation products
for input into ecosystem models and new insights into ecosystem behavior. For example, Malbéteau
et al. [57] explored diurnal temperature dynamics of grass and maize canopies in Saudi Arabia with
varying water status levels at ultra-high spatial resolution (0.02 m). The use of UAVs allowed for fine
temporal characterization of plant–water relations, as leaf skin temperature is strongly coupled with
stomatal conductance and related to transpiration rates [58]. Several papers focusing on orchards
in Spain showcase the ability of UAV-based hyperspectral imagery (and the PRI index in particular)
to relate diurnal changes in plant water content to measures in the field at the time of each image
acquisition [59,60].

Despite increasing spatiotemporal resolutions to understand variations in plant water relations,
capturing accurate and meaningful data from UAVs and their associated sensors can be difficult.
Key error sources associated with UAV data collection and processing, such as solar angle, weather
conditions, geolocation, and radiometric calibration, can all influence the accuracy of the calculated
vegetation indices [61]. In our study we found variations in calculated indices of NDVI and NDRE
over the course of a day and varying solar angles. We found that NDVI was best able to capture
differences across our treatments between 10:00 and 12:00, while the best differentiation in NDRE
slightly earlier in the day (9:00). Studies have reported minimum values for vegetation indices at solar
noon in areas with LAI (leaf area index) of 0.5–2, and data collected during the traditionally used
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“high sun” condition with lower predictive capability than at oblique sun angles (solar zenith angle
(SZA) > 40◦) [62]. Our study didn’t observe the lowest vegetation index values at peak sun conditions;
however, differences across treatments were more accurately captured at larger solar zenith angles
earlier in the day. Additionally, the spatial resolution influences the detectability of changes in water
condition as well as differences between treatments, therefore, determining the appropriate resolution
imagery in which to disentangle these differences is important.

When focusing on plant water relations, commercial grade multispectral cameras are very useful,
particularly when they have both red edge and NIR bands. We found complementarity between and
nonredundant information content provided by both NDVI and NDRE. Both measures were able to
identify moisture deficit in plants and distinguish them from control and watered plants; however,
NDVI was better able to distinguish between treatments than NDRE and was more positively correlated
with field measurements of leaf water content than NDRE. These results highlight the consistent
utility of NDVI in water deficit and plant health studies. Despite these mixed results, it is likely that
applications for and evaluation of red edge sensors will grow. As recently as 2014, red-edge cameras
were not routinely used for vegetation mapping [63], however, now there are several satellite-based
sensors that include one or more red-edge bands: the Sentinel-2 satellite (3 bands between 700 and
790 nm, 20 m GSD), RapidEye (690–730 nm, 6.5 m GSD), and WorldView-3 (but not WorldView-4)
(705–745 nm, 1.4 m GSD), and UAV mounted commercial off-the-shelf multispectral cameras with red
edge sensitivity are increasingly popular [47]. Our results suggest a more thorough evaluation of the
application and underlying physiological responses to changes in the red-edge spectra is needed.

However, assessing the applicability of vegetation indices to represent physiological difference in
plants must be continually calibrated. Yan et al. [64] articulated the difficulty in using measures of
greenness including NDVI as a proxy for productivity. They concluded that because greenness changes
more slowly than plant physiological function, relationships between remotely sensed vegetation
indices of drought-tolerant species and gross primary productivity break down on short timescales
and decouple during periods of water deficit [64,65]. Consequently, there remains a critical need to
calibrate vegetation indices across ecosystems and across time to enable robust remote sensing of plant
physiology. Our experiment showed the potential for linking field-based water content and water
potential measurements to NDVI and NDRE, with particularly strong correlations between water
content and NDVI. Several studies linking plant water content to spectral indices focus on reflected
radiation in the 800 nm–2500 nm range from custom sensors or hyperspectral sensors [66,67]. However,
the use of such systems is limited due to their high cost and fewer platforms that carry them. With
the increased use of off-the-shelf multispectral sensors in environmental and agricultural research,
there is a need for continued evaluation of vegetation indices that can be derived from narrow-band
multispectral sensors such as MicaSense RedEdge and Sequoia. For good overviews of vegetation
indices derived from UAV data see [1,68].

Connecting relative water content, which is an indirect measurement of a change in water status,
to physiological determinants of water status such as water potential is still needed. Here we showed
that water potential can be derived from estimates of water content with an R2 of 54% (92% with outliers
removed), however this is a small sample size, and although the relationship appears encouraging,
we do not have enough information to conclude that water potential can reliability be inferred from
common vegetation indices such as NDVI or NDRE. NDVI does detect fine scale variations in water
deficit, as shown in Figure 4, apart from treatments that were extremely dry (e.g., Tx1 and Tx2) and
treatments with fine scale variation (control vs. water). Despite these limitations, UAVs appear to be a
useful tool for detecting small-scale changes in water status (content and water potential).

The retrieval of spectral signatures and their association with underlying physiological processes
remains a research challenge but also an opportunity, especially in scaling research. Calibration
experiments such as the one reported on here are critical to develop robust scaling relationships. In
this paper, we show that the derived NDVI values from UAVs and PlanetScope CubeSat imagery
across treatments are largely consistent with important differences, particularly in their sensitivity
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to subtle changes to water content (control and water). Studies have shown that vegetation indices,
such as NDVI, can be significantly affected by differences in spectral bandwidth [61,69]. The spectral
range of the red band has been found to be of importance to NDVI. Therefore, investment in increased
spectral resolution rather than increased spatial resolution in the development of CubeSats may be
more important for understanding patterns in vegetation health and water content. In line with our
results, several studies document a lower top of atmosphere NDVI compared with NDVI at the surface
due to the atmospheric scattering effect [70,71]; however, recent improvements in PlanetScope’s surface
reflectance products should minimize this effect [71]. Additionally, acquiring UAV imagery that can be
used to scale across sensors, space, and time can be challenging, due to differences between sensors
and sensor units, ambient weather, and lighting conditions [61,63].

Narrowband hyperspectral imagery and derived indices are also appropriate for detecting daily
changes in plant moisture status, but not yet commonly practical using commercial UAV cameras.
Most notably among these is the photochemical reflectance index (PRI), which uses bands at 532 nm
and 570 nm and requires a hyperspectral imaging camera [59,60]. PRI was developed to capture
diurnal changes in the xanthophyll cycle of leaves and canopies, which contributes to a plant’s
ability to efficiently disperse light energy for photosynthesis [72]. Because water limitation affects the
light-harvesting capacities and photosynthetic pathways within the leaves of a plant, PRI has become
an appropriate index with which to detect the effects of rapid changes in plant health due to lack of
water. Additionally, evergreen species, such as coyote brush, alter their chlorophyll:carotenoid ratios
in response to water or temperature availability, and this can be detected with PRI on a seasonal or
daily timescale [73]. NDVI, however, may be less suited for diurnal detection of water stress impacts
on vegetation greenness or photosynthetic capabilities in evergreens, because canopy reflectance
remains relatively stable even throughout the beginning and end of a season, when species alter rates
of photosynthesis and have access to varying amounts of water. Furthermore, nuanced differences in
photosynthetic downregulation during brief or sudden disturbances may not be captured by NDVI.
While NDVI is effective in detecting longer-term changes in photosynthesis (such as new growth and
leaf development), PRI is more suitable for subtle changes in evergreen leaf pigmentation. However,
over longer time scales, NDVI and PRI can be used together to understand rates of photosynthesis,
carbon fixation, and net primary production in a plant based on the combination of greenness and
light-use efficiency models [72]. New work also highlights the ability to measure solar-induced
fluorescence via narrowband remote sensing. About 1% of solar energy captured by plants is re-emitted
by chlorophyll as fluorescence. The amount of fluorescence emission is a direct indicator of the
photosynthetic activity of a plant and also provides indirect information about the plant stress [74].
Remote sensing of solar-induced fluorescence requires very narrow spectral bands (~0.05 nm) around
690 nm and 760 nm [67,75].

5. Conclusions

We conducted a water exclusion experiment over one week to plots of Baccharis pilularis (coyote
brush) at the Blue Oak Ranch Reserve (BORR) near San Jose, California. We monitored the experiment
at several altitudes with nearly hourly data collections over two days to determine: (1) spatial and
temporal thresholds at which water limitation in plants could be detected via common spectral indices
(NDVI and NDRE); (2) relationships between spectral and physiological responses to plant water deficit;
and (3) how coarser resolution imagery provided by PlanetScope data compared with UAV-collected
imagery. We found the best separation between treatments at higher resolution (lower flying height),
and the best separation between treatments in the morning (NDVI) and early morning (NDRE). Overall,
most treatments could be differentiated spectrally from each other and from the control, with some
exceptions. For example, it was difficult to separate the driest plots (Tx1 and Tx2) using NDVI. These
results suggest that while there are important differences between NDVI and NDRE across treatments,
there also exists some complementarity between NDVI and NDRE indices that needs further evaluation.
We found strong relationships between NDVI and leaf water content (highest r = 0.94).
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When comparing PlanetScope to UAV imagery collected at the same time, we found that
PlanetScope data was able to capture the overall trend in treatments (i.e., able to detect healthy
green vegetation from dead dry vegetation), even when treatments were represented by single pixels.
However, PlanetScope data was not able to capture subtle changes in water content. Although there
was a positive correlation between NDVI derived from the UAV and PlanetScope, the UAV imagery
captured a larger spectral range, suggesting a greater spectral sensitivity to plant responses to water
deficit with the UAV camera than with the PlanetScope imagery. In this case a narrow-band sensor
such as the RedEdge provided more detailed information by capturing a more precise measurement of
specific wavelengths than did the PlanetScope sensor.

What differentiates data collected from UAVs from data collected by high-resolution satellite
sensors is their ability to collect data on demand, at high temporal resolution, and with multiple
sensor payloads. Because of this and their increasing popularity, more experiments that evaluate the
relationship between direct field measurements and camera sensitivity are needed. Scaling simple
vegetation indices from UAVs to CubeSats will increase our ability to translate field-based physiology
measurements to landscape or regional scales.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/16/1853/s1,
Figure S1: A simple linear regression was calculated to predict mid-day water potential on the basis of water
content. Data gathered for Tx4 from Day 2 (outlier) was removed to further assess fit. A significant regression
equation was found with an R2 of 0.921. Leaf water potential decreased 0.0585 (MPa) for each percent water
content; Figure S2: Spectral index value for all pixels (Day 1 and Day 2) by treatment: NDRE values. Difference
between pairs of treatments determined from Wilcox test are indicated at the top of each pair: ns = not significant
at 0.05 significance level (p > 0.05), *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001; Figure S3: Density plot of distribution
of NDVI vs. NDRE values for a) all pixels within all n = 12 UAV flights, b) all pixels for all flights for each
treatment. Colors are representative of similarity in values, with blue colors showing lower correlation, and red
colors showing higher correlation between the values of the two indices; Figure S4: General study area before
and after treatments for UAV and PlanetScope; Figure S5: Band wavelengths (nm) of the MicaSense Red-Edge
Sensor with PlanetScope and RapidEye sensors; Figure S6: Spearman’s rho statistic (rs) = 0.64 positive correlation
between UAV NDVI and PlanetScope NDVI. Table S1: Pixel counts for the overall study area and each treatment
at 4.45 cm GSD or 60 m flying altitude.
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