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Abstract: This paper proposes to use a correlator-level global positioning system (GPS) line-of-
sight/multipath/non-line-of-sight (LOS/MP/NLOS) signal reception classifier to improve 
positioning performance in an urban environment. Conventional LOS/MP/NLOS classifiers, 
referred to as national marine electronics association (NMEA)-level and receiver independent 
exchange format (RINEX)-level classifiers, are usually performed using attributes extracted from 
basic observables or measurements such as received signal strength, satellite elevation angle, code 
pseudorange, etc. The NMEA/RINEX-level classification rate is limited because the complex signal 
propagation in urban environment is not fully manifested in these end attributes. In this paper, 
LOS/MP/NLOS features were extracted at the baseband signal processing stage. Multicorrelator is 
implemented in a GPS software-defined receiver (SDR) and exploited to generate features from the 
autocorrelation function (ACF). A robust LOS/MP/NLOS classifier using a supervised machine 
learning algorithm, support vector machine (SVM), is then trained. It is also proposed that the 
Skymask and code pseudorange double difference observable are used to label the real signal type. 
Raw GPS intermediate frequency data were collected in urban areas in Hong Kong and were 
postprocessed using a self-developed SDR, which can easily output correlator-level LOS/MP/NLOS 
features. The SDR measurements were saved in the file with the format of NMEA and RINEX. A 
fair comparison among NMEA-, RINEX-, and correlator-level classifiers was then carried out on a 
common ground. Results show that the correlator-level classifier improves the metric of F1 score by 
about 25% over the conventional NMEA- and RINEX-level classifiers for testing data collected at 
different places to that of training data. In addition to this finding, correlator-level classifier is found 
to be more feasible in practical applications due to its less dependency on surrounding scenarios 
compared with the NMEA/RINEX-level classifiers. 

Keywords: global positioning system (GPS); software-defined receiver (SDR); signal classification; 
non-line-of-sight (NLOS); multipath; support vector machine (SVM); urban environment 

 

1. Introduction 

In recent years, there has been significant research conducted to improve global navigation 
satellite system (GNSS) performance in urban environments [1–4]. One of the most noticeable 
techniques is three-dimensional mapping-aided (3DMA) GNSS positioning, which uses three-
dimensional (3D) mapping data to improve positioning accuracy in dense urban areas. The 3DMA 
technique can be broadly divided into two groups, i.e., ranging-based 3DMA positioning and shadow 



Remote Sens. 2019, 11, 1851 2 of 23 

 

matching. The former, like the conventional GNSS positioning algorithm, still makes use of 
pseudorange measurements, meanwhile it is aided with the information of satellite visibility or 
additional path delay of reflected signals obtained using 3D city models. For shadow matching, the 
basic idea is to compare the measured signal availability and strength with predictions obtained 
using 3D city models over a range of candidate positions. For detailed implementation of 3DMA 
GNSS positioning, readers are referred to [5–10]. For the 3DMA GNSS positioning, the accuracy of 
line-of-sight/non-line-of-sight (LOS/NLOS) signal reception classification directly affects its 
performance [5]. In addition to the 3DMA GNSS positioning, conventional ranging-based least-
squares GNSS positioning can also benefit from an accurate signal classification by excluding or 
down-weighting the identified multipath (MP)/NLOS measurements [11]. 

Various approaches to classifying LOS/NLOS signal have been proposed. As mentioned above, 
the 3D city model can predict the satellite visibility, but with a prerequisite of accurate user location. 
Another straightforward method is the usage of additional hardware sensors, e.g., dual-polarization 
antenna [12], array antenna [13], panoramic sky-pointing camera [14,15], 3D light detection and 
ranging (LiDAR) [16], inertial navigation system (INS) [17], etc. The effectiveness of these additional 
aiding-based techniques has been verified. However, the issue of large physical size and high cost 
needs to be addressed before being applied to low-cost receivers, which occupy a large portion of 
mass-market GNSS capable devices. 

Machine learning algorithms with nonlinear kernel functions can classify nonlinearly separable 
data instances by projecting the data features into a higher-dimensional space and maximizing the 
geometric distance between the decision boundary and the nearest data on each side of the decision 
boundary [18]. It has been used extensively in classification applications, e.g., the GNSS receiver 
context and channel classification [18,19] and GNSS signal type classification [20]. This method 
requires no additional aiding, making it more feasible in practice. The key element of the machine 
learning technique is the selection of features for recognition. Conventional machine learning-based 
GNSS signal classifier usually uses features extracted from the basic observables and measurements, 
like signal strength or carrier-to-noise-ratio ( 0C N ), satellite elevation angle, code pseudorange 
measurement, etc. In this paper, these kinds of features were referred to as national marine electronics 
association (NMEA)-level or receiver independent exchange format (RINEX)-level features as they 
can be obtained from the commonly used NMEA/RINEX files. Our previous study achieved a 75% 
of LOS/MP/NLOS classification rate using a support vector machine (SVM) classifier based on signal 
strength and the difference between delta pseudorange and pseudorange rate [21]. Note that, in [21], 
data collected at the same location were used as both training and testing data, and a ten-fold 
classification was carried out. The trained SVM model was not applied to test data collected at 
different places. An accuracy of 91.8% was reported in [20] for both training data and testing data 
collected at the same place. However, the accuracy was degraded to less than 75.0% for testing data 
collected at a different location, indicating the sensitivity issue of NMEA/RINEX-level classifiers, 
which will limit its application in practice. Other than the classification rate, as introduced in [22], a 
confidence value of the classification is also provided using the robust decision tree-based LOS/NLOS 
classifier. This method, however, should make a trade-off between high accuracy and low 
computational load. Besides, this method only deals with the LOS/NLOS classification. In fact, the 
identification of MP will be helpful for improving GNSS positioning in urban canyons. 

NMEA/RINEX-level classification rate is limited because the complex signal propagation in 
urban environment is not fully manifested in these end attributes. With the availability of GNSS raw 
measurements in mass-market devices, e.g., tablets and smartphones with Android 7 operating 
system [23], deeper-level GNSS measurements are accessible, such as carrier phase, code 
pseudorange, navigation message bits, correlation result of each channel [24]. This opens the door to 
develop a more advanced GNSS positioning algorithm, including signal type classification at a 
deeper level. In fact, correlator-level parameters have drawn much attention for better GNSS 
performance. In [25], the carrier phase delay between the LOS and reflected signals is considered to 
develop a new variable referred to as early late phase (ELP) for MP detection. In [26], the author 
proposed to identify the NLOS reception by constructing a classifier using features extracted from 
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multiple autocorrelation functions (MACF) in a software-defined receiver (SDR) [27]. The basic 
principle behind this is that the NLOS reception distorts the autocorrelation function (ACF) of the 
direct LOS signal. Features for multipath classification were also extracted from the correlation 
sequences in [18]. Authors in [28] used the code discriminator output and the mean and variance of 
the slope of the correlation curve to monitor the signal quality. In a more recent paper [29], the authors 
reported the indoor LOS/MP signal classification performance using a deep leaning approach based 
on the tracking outputs of a pseudolite signal. In this paper, the signal type classifier using tracking 
loop parameters is referred to as correlator-level classifier for simplicity. Despite these efforts, there 
is a lack of performance assessment of correlator-level classifier in urban areas for LOS/MP/NLOS 
classification and its comparison with the commonly used NMEA- and RINEX-level classifiers, which 
is the main objective of this paper. To accomplish this objective, LOS/MP/NLOS effects on code 
autocorrelation function will be analyzed, based on which correlator-level features will be extracted, 
and a fair comparison of the performance of NMEA-, RINEX-, and correlator-level classifiers will be 
carried out. Correlator-level measurements like multicorrelator outputs, and NMEA/RINEX-level 
observables such as signal strength, satellite elevation angle, code pseudorange, etc., will be 
outputted from the same receiver. In this way, a fair comparison based on a common ground is 
guaranteed, which is one of the contributions of this paper. 

Performance of supervised classifiers is related to the labelling accuracy of training data. 
Conventional methods of signal type labelling can be divided into two groups. The first group is the 
usage of sky-pointing camera or the 3D building model. This method is straightforward. For example, 
based on the satellite ephemeris, the sky-pointing camera method projects the satellites onto the 
captured image directly, with the satellite in the building area labelled as NLOS, and the one in the 
open area labelled as LOS [26]. Similarly, the 3D building model method compares the elevation 
angle of the satellite and the building boundary at the same azimuth angle. If the satellite elevation 
angle is lower than the building elevation angle, the satellite is labelled as NLOS, otherwise it is 
labelled as LOS. In [30], the authors also defined a three-degree diffraction zone taking into account 
the diffraction effect. Both methods can only determine the visibility of satellites, i.e., LOS or NLOS, 
whereas the MP signal cannot be identified. In addition, the 3D building model method is also 
dependent on the user ground truth. Based on the 3D building model, the ray-tracing technique can 
also be used to find all possible propagation paths [31], thereby determining the signal type, 
including the MP. However, the ray-tracing technique has a high computational load and relies on 
the building model accuracy and the material of building surface. The second group is to control the 
type of the received signal. For example, by using a GNSS simulator such as the Spirent SimGEN + 
SE-NAV product [32], one can control the signal type. In [29], multipath and NLOS signals were 
generated by controlling the experimental setup, e.g., the movement of obstructer and reflector. 
However, these methods are not feasible to real GNSS signals labelling. This paper will solve the 
signal type labelling issue using the Skymask and the code pseudorange double difference 
observable, which represents the second contribution of this paper. 

The following section describes the methods used in this paper, including modelling of GPS L1 
LOS/MP/NLOS signal and their effects on code autocorrelation function, feature extraction, and the 
proposed signal type labelling method using the combination of Skymask and code pseudorange 
double difference observable. This is followed by the experimental results for GPS L1 C/A signal, 
where detailed experimental setup, data collection, and classification results are presented and 
analyzed. In the next section, a discussion of the findings in this paper and their relationship with 
previous works will be given, as well as potential extensions of this work. Finally, conclusions are 
drawn. 
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2. Methods 

2.1. Signal Model 

2.1.1. LOS/MP/NLOS Signal Model 

Two assumptions are made in terms of the GPS L1 C/A signal in this paper: (1) there is no 
navigation data bit transition during one coherent integration time interval; (2) there is only one MP 
signal or one NLOS signal. The intermediate frequency (IF) signal for LOS, MP, NLOS reception, 
denoted as ( )0 sy nT , ( )MP

sy nT , and ( )NLOS
sy nT , respectively, at the output of the radio frequency 

(RF) front-end for one satellite can be written as [33]: 

( ) ( ) ( )( ) ( )0 0 0coss s IF D s sy nT A C nT τ ω ω nT φ η nT= ⋅ − + + +  (1) 

( ) ( ) ( )( )
( ) ( )( )
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0 0

MP MP MP MP
0 0

cos

cos Δ Δ
s s IF D s

s IF D s s
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α A C nT τ τ ω ω nT φ φ ω nT
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= ⋅ − + +

+ ⋅ ⋅ − − + + + +
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( ) ( ) ( )( )
( )

NLOS NLOS NLOS NLOS NLOS
0 0cos Δ Δs s IF D s s

s

y nT α A C nT τ τ ω ω nT φ φ ω nT

η nT

= ⋅ ⋅ − − + + + +

+
 (3) 

where n  is the index of a discrete-time sequence obtained by sampling a continuous-time signal at 
a sampling rate 1s sf T= , sT  is the sampling interval; A  is the amplitude of the direct LOS 
signal; ( )C ⋅  is the pseudo-random noise (PRN) code; IFω  and Dω  are the angular nominal IF 
frequency and Doppler shift, respectively; M Pα  and NLOSα  are coefficients of reflection of the MP 
and NLOS signal, respectively; 0τ  is the code delay of the LOS signal, MPτ  and NLOSτ  the additional 
code delay of the reflected signal; 0φ  denotes the initial carrier phase of the direct signal, MPΔφ  and 

NLOSΔφ  the relative phase of MP and NLOS, respectively; Δω denotes the Doppler difference between 
the direct and the reflected signal; ( )sη nT  is assumed to be a band-limited additive white gaussian 
noise. 

2.1.2. MP/NLOS Effects on Code Autocorrelation Function 

In this paper, the MP/NLOS effect on GPS performance is analyzed at the baseband signal 
processing level, i.e., specifically, the code autocorrelation function. The local carrier replica is 
assumed to be perfectly aligned with that of the incoming signal. The reason for this assumption is 
that the MP/NLOS effect on the code is much severer than that on the carrier, especially for low-
dynamic receivers. The code ACF, ( )τR δτ , for binary phase shift keying (BPSK) modulation with cT  
as the chip duration is defined as 

( )
1 , for

0, for

c
cτ

c

δτ
δτ T

TR δτ
δτ T


− ≤= 

 >

 (4) 

where δτ  is the code offset between the locally generated and the incoming code. 
In a typical GPS receiver, three code replicas, referred to as the early (E), prompt (P), and late (L) 

codes, with a spacing of 0.5 chip are created to correlate with the incoming code. The correlator 
outputs are integrated and dumped over one coherent integration time interval. The final correlator 
outputs will be generated as 
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( )
( )
( )

2

2

E A R δτ d

P A R δτ

L A R δτ d

= ⋅ +


= ⋅
 = ⋅ −

 (5) 

The delay lock loop (DLL) always tries to keep equivalent outputs of the E and L correlators, as 
illustrated in Figure 1. For the LOS signal, the ACF is ideally a symmetric triangle, with the prompt 
correlator output located at the correlation peak. For the NLOS signal, although the ACF shape is 
similar to that of LOS signal, two differences should be noted. One is the lower magnitude of NLOS 
signal due to the attenuation of reflection; the other is that there is a time offset of the whole ACF, as 
the dashed line denotes. This time offset is exactly the additional code delay of the NLOS signal, 

NLOSτ  [34]. As a result, the estimated propagation time delay of the LOS and NLOS signal is 

0
NLOS

0

for LOS
ˆ

for NLOS
τ

τ
τ τ
=  +

 (6) 

 
Figure 1. Autocorrelation function (ACF) for different types of signal, including LOS, NLOS, 
constructive MP and destructive MP. LOS: line-of-sight, NLOS: non-line-of-sight, MP: multipath  

For the MP, however, the estimated propagation time delay is dependent on multiple 
parameters such as the relative phase, MP MPΦ Δ Δ sφ ω nTΔ = + , between the direct and the reflected 
signal, the coefficient of reflection, M Pα , and the additional code delay of the reflected signal, MPτ . 
The mathematical expression can be found in [35] for both coherent and noncoherent code 
discriminators. Figure 1 also shows cases of constructive ( Φ 0 radΔ = ) MP and destructive (

Φ radπΔ = ) MP. Compared with the LOS/NLOS signal, the ACF shape of the MP signal is distorted 
due to the superposition of the direct and reflected signal. The prompt correlator output is no longer 
at the correlation peak, which provides an opportunity for detecting MP. Two conclusions can be 
drawn based on the above analysis: (1) The ACF shape of MP is asymmetric, with the correlation 
peak on either left or right side of the prompt correlator. For the NLOS, however, the ACF is still 
symmetric, with the correlation peak exactly in the prompt correlator. The only difference between 
the LOS and NLOS ACFs is the magnitude of correlation peak, considering the reflection attenuation. 
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(2) The estimated propagation time delay of NLOS is always bigger than that of the direct LOS signal, 
whereas it can be either greater or smaller for the MP signal depending on the relative phase between 
the direct and the reflected signal. As a result, the pseudorange measurement error for the NLOS 
signal is always positive, but it can be negative for the MP signal. 

2.2. Feature Extraction 

2.2.1. Correlator-Level Features 

Based on the analysis in Section 2.1, from the MACF [36], four correlator-level features are 
extracted: ratio between the measured maximum correlation value and the standard value, the mean 
and variance of the correlation peak delay, and the early late phase (ELP), which are described as 
follows: 

• Feature 1: Ratio between the measured maximum correlation value and the standard value 

In general, the strength of reflected or diffracted signal is weaker than that of the direct signal. 
However, the compound signal of multiple paths is not necessarily weaker than the direct signal, 
depending on the phase difference between multiple reflections and the direct signal. For example, 
in Figure 1, the compound signal has a higher correlation peak than the direct signal. Feature 1 is 
calculated as the ratio between the measured maximum correlation value and the standard value. 
The standard value is the maximum correlation value measured in open-sky areas at various satellite 
elevation angles, as shown in Figure 2. 

 
Figure 2. Maximum correlation values with regards to satellite elevation angle for data collected in 
open-sky areas. 

A third-order polynomial is used to fit the measurements with the expression as 

( )
3

0

i
ele i ele

i
Corr θ c θ

=

=  (7) 

where eleθ  is the satellite elevation; the coefficients ic  are estimated using the least-squares 
method, with the result shown in Table 1. Feature 1 is then calculated using [26] 

( )1 measured eleF Corr Corr θ=  (8) 

where measuredCorr  is the measured maximum correlation value at satellite elevation eleθ . 
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Table 1. Coefficients in Equation (7), estimated using least-squares method. 

Coefficients 0c  1c  2c  3c  
Values 4092.97 340.42 −2.99 0.03 

• Features 2 and 3: Mean and variance of the correlation peak delay 

Figure 3 presents real-world ACFs overlapped for 20 ms for constructive and destructive MP 
and NLOS signals. It can be seen that for both constructive and destructive MP, a non-zero time delay 
of correlation peak exists, whereas for NLOS, the correlation peaks are distributed around zero time 
delay. Due to the reflection attenuation, NLOS signal usually has a lower signal strength. The 
introduced noise will decrease the tracking performance. As a result, the variance of delay of NLOS 
correlation peaks is bigger than that of the direct LOS signal [26]. In this paper, the statistics of mean 
and variance of the correlation peak delay for N ACFs are calculated as features 2 and 3 

2 ,
1

1 N

delay delay i
i

F t t
N =

= =   (9) 

( )2

3 ,
1

1 N

delay i delay
i

F t t
N =

= −  (10) 

where ,delay it  is the correlation peak delay of the i-th ACF. 

   
(a) (b) (c) 

Figure 3. Real-world MP/NLOS autocorrelation functions overlapped for 20 ms: (a) Constructive MP 
(Elevation angle: 33.8°); (b) Destructive MP (Elevation angle: 33.8°); (c) NLOS (Elevation angle: 24.8°). 

• Feature 4: Early late phase 

The carrier phase difference between the direct and reflected signals has not been fully explored 
to detect MP signal. In [25], the phase difference between the E and L correlator outputs, called the 
ELP, was proposed to detect MP. ELP is used as the fourth correlator-level feature, which is calculated 
using [25] 

( )1
4 tan L L E EF Q I Q I−= −  (11) 

where the subscripts E and L denote the early and late correlators, respectively; Q and I refer to the 
quadrature and in-phase channels, respectively. Figure 4 illustrates this feature using the simulated 
MP signal with a fixed phase difference of 2π  rad to the direct signal. When the simulated MP 
occurs, there is a fixed carrier phase error in the early and late correlator channels, respectively. The 
ELP then shows a non-zero offset during the MP reception. 
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(a) (b) (c) 

Figure 4. Demonstration of early late phase feature using the simulated MP signal with a fixed carrier 
phase difference ( 2π  rad) to the direct LOS signal: (a) Early correlator outputs. Red dots denote the 

simulated MP. Blue dots denote the direct LOS signal; (b) Late correlator outputs; (c) Early late phase 
values. ELP: early late phase 

2.2.2. RINEX/NMEA-Level Features 

The RINEX- and NMEA-level features are listed in Table 2, where the feature pseudorange rate 
consistency is the difference between delta pseudorange and pseudorange rate, derived using 
Doppler frequency, as [20] 

( ) ( )Δ Δj jζ ρ ρ t= −   (12) 

where ( )Δ jρ  and Δt  are the delta pseudorange and the time interval between two consecutive 

epochs; ( ) ( )( ) 1
j j

Doppler Lρ c f f= − ⋅  is the Doppler-derived pseudorange rate with c  the speed of light, 
( )j
Dopplerf  the Doppler measurement, and 1Lf  the carrier nominal frequency. 

Table 2. RINEX- and NMEA-level features. 

Features 0C N  Satellite Elevation Pseudorange Rate Consistency 
NMEA-level √ √ √ 
RINEX-level √ √  

2.3. Signal Type Labelling 

The performance of supervised classifiers is related to the labelling accuracy of training data. 
This section deals with the signal type labelling issue by using the Skymask and the code 
pseudorange double difference observable. 

2.3.1. Skymask and Its Limitation 

Skymask is defined as the Skyplot with building boundary information, as shown in Figure 5. 
The gray area denotes the building blockage. If the elevation angle of satellite is lower than that of 
the building boundary at the same azimuth angle, it is labelled as NLOS, e.g., PRN 29 in red. 
Otherwise, it is labelled as LOS in green, e.g., PRN 13 in green. 
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Figure 5. Signal type labelling using Skymask. The green denotes the LOS satellite, and the red 
represents the NLOS satellite. 

This Skymask method is easy and straightforward, but it has two drawbacks. On the one hand, 
it can only determine the satellite visibility, namely LOS or NLOS, thereby MP cannot be identified; 
On the other hand, it is not accurate for satellites near the building edges, such as PRN 5 in Figure 5, 
due to the inaccuracy of receiver location and 3D building model [22]. To solve this problem, the code 
pseudorange double difference observable is used to help determine the signal type, which cannot 
be done by the sole Skymask method. 

2.3.2. Code Pseudorange Double Difference 

In GPS field, double difference (DD) of carrier phase measurements is one of the standard 
methods to determine the relative position between two receivers. In this paper, the DD observable 
of code pseudorange measurements is used to find the MP- or NLOS-induced pseudorange 
measurement error, thereby labelling the signal type. The code pseudorange between receiver k and 
satellite j can be modeled as [37] 

( ) , ,
j j j j j j
k k k iono trop k MP k NLOS kρ r c δt δt γ γ γ γ e= + − + + + + +  (13) 

with j
kr  the geometric range, kδt  and jδt  the clock bias of receiver k and satellite j, ionoγ  and tropγ  

the ionospheric and tropospheric errors, ,
j
k MPγ  and ,

j
k NLOSγ  the error induced by MP and NLOS, 

respectively, and j
ke  the other unmodelled errors. 

As shown in Figure 6, Receiver A is the reference station in the open-sky area, e.g., the HKSC 
reference station, used in this paper. Receiver B is the rover station in the urban area. For the reference 
station, it is assumed to be free of multipath and NLOS effects, i.e., 1 1 2 2

, , , , 0A MP A NLOS A MP A NLOSγ γ γ γ= = = = . 
To form the DD observable, the single difference (SD) is first created by differencing 1

Aρ  and 1
Bρ  

( )1 1 1 1 1
, ,Δ ΔAB AB A B B MP B NLOS ABSD r c δt δt γ γ e= + − − − +  (14) 

( )2 2 2 2 2
, ,Δ ΔAB AB A B B MP B NLOS ABSD r c δt δt γ γ e= + − − − +  (15) 

where Δ j j j
AB A Br r r= − , Δ j j j

AB A Be e e= − . The DD is then obtained by differencing 1
ABSD  and 2

ABSD  

12 12 2 1 2 1 12
, , , , ΔAB AB B MP B MP B NLOS B NLOS ABDD r γ γ γ γ e= ∇Δ + − + − + ∇  (16) 

where 12 1 2
AB AB ABr r r∇Δ = Δ − Δ , 12 1 2Δ Δ ΔAB AB ABe e e∇ = − . 
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Figure 6. Illustration of code pseudorange double difference. 

After the DD computation, clock biases of both the receiver and satellite are eliminated, as well 
as the correlated errors such as ionospheric and tropospheric errors. According to Equation (16), to 
label the signal, one of the satellites is assumed to be free of the MP and NLOS effect, called master 
satellite, which is in general selected to be the satellite with the highest elevation angle, e.g., Satellite 
2 in Figure 6. With this assumption, Equation (16) is simplified to 

12 12 1 1 12
, , ΔAB AB B MP B NLOS ABDD r γ γ e= ∇Δ − − + ∇  (17) 

where 12
ABr∇Δ  is a known parameter. 

2.3.3. Proposed Signal Type Labelling Method 

To address the issue with Skymask for labelling signal type, this paper proposes to integrate the 
Skymask method and the code pseudorange DD observable to help determine the MP signal and the 
satellites near the building edges, with the flowchart shown in Figure 7. This method consists of two 
major parts; one is using Skymask to determine NLOS satellites that are at least 5 degrees lower than 
the building boundary at the same azimuth, the other using code pseudorange double difference 
observable to distinguish among the three signal types for other satellites. 

The steps of the proposed method are described as follows: 
Step 1: Generate Skymask using ephemeris, receiver ground truth, and 3D building model. In 

this paper, the receiver ground truth is obtained from the Google Earth. 
Step 2: Calculate the elevation difference between the satellite and the building boundary at the 

same azimuth. 
Step 3: If the satellite elevation angle is at least 5 degrees lower than the building boundary 

elevation at the same azimuth, satellite j is claimed to be NLOS. Otherwise, go to Step 4. 
Step 4: Process GPS IF data using the SDR, which outputs the time-tagged code pseudorange 

measurements. 
Step 5: On the basis of the ephemeris and reference station measurements, calculate the code 

pseudorange double difference observable, ( ) , 1, 2, ,j
iDD i N=   where N is the amount of epochs 

tested, using Equation (17). 
Step 6: Find the amount of DD observables,M , that exceed zero, and the root mean square 

(RMS) value of the DD observables, ( )( )jiRMS DD , with the true value of zero. 

Step 7: If the DD observable exceeds zero for more than 90% of the epochs test, i.e., 0.9M N >  
and the RMS value exceeds a preset threshold, satellite j is claimed to be NLOS. The first condition is 
due to the fact that the NLOS-induced pseudorange error is always positive. The threshold of M N
is set as 0.9, considering the measurement outliers. The RMS threshold 10.50ε = meters is set as the 
RMS value of DD observables for LOS satellites. Otherwise, go to next step. 
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Step 8: If the RMS value is lower than ε , satellite j is claimed to be LOS; otherwise it is claimed 
to be MP. 

 
Figure 7. Flowchart of the proposed Skymask plus code pseudorange double difference observable 
for labelling signal type. 3D: 3 dimensional, GPS: global positioning system, IF: intermediate 
frequency, SDR: software defined receiver, DD: double difference, RMS: root mean square 

2.3.4. Case Study 

As shown in Figure 5, PRN 13 was selected as the master satellite. The reference station was the 
HKSC station of SatRef, which is established by the Hong Kong land department for providing 
differential corrections. The distance between the HKSC station and the receiver location in Figure 5 
is less than 5 km, which ensures that the atmospheric errors are eliminated. Figure 8 shows the DD 
observables in 1 min for each satellite in Figure 5. The statistics are listed in Table 3. As concluded in 
Section 2, the NLOS-induced pseudorange is always positive. This conclusion is consistent between 
the DD observable and the Skymask for PRNs 12, 29, and 30. For PRN 5, it is labelled as LOS by 
Skymask, whereas it should be NLOS according to the DD observable. 
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Table 3. Statistics of code pseudorange double difference observables. 

PRN Number 5 12 29 30 
Mean (m) 17.29 48.80 87.61 111.34 
RMS (m) 18.85 55.81 92.02 112.16 

 
Figure 8. Code pseudorange double difference observable for satellites in Figure 5. 

3. Results 

This section presents experimental results, including the experimental setup, GPS L1 raw data 
collection and signal type labelling, metrics for evaluation, and the signal type classification results 
using correlator-, RINEX- and NMEA-level classifiers. A comparison of these three kinds of classifiers 
is also provided. 

3.1. Experimental Setup 

Figure 9 shows the experimental setup. The NSL Stereo front-end with an active antenna, 
Allystar AGR6303, was used to collect the raw GPS IF data for postprocessing. An open-sourced GPS 
L1 SDR that is able to output pseudorange measurements was used in this paper [38], which was 
modified with the implementation of multiple correlators. The multicorrelator outputs were used for 
correlator-level LOS/MP/NLOS classification. The SDR outputs such as pseudorange, Doppler, C/N0, 
etc., were converted to generate the SDR RINEX and NMEA files, which were then used in the 
RINEX- and NMEA-level classifiers. Details of the configuration of the experimental setup are listed 
in Table 4. 

 
Figure 9. Experimental setup. RINEX: receiver independent exchange format, NMEA: national 

marine electronics association 
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Table 4. Parameter settings. E  and L  are the early and late correlator outputs defined in Equation 
(5). PQ  and PI  are prompt correlation values of quadrature and in-phase channels, respectively. 

RHCP: right-handed circular polarization, GNSS: global navigation satellite system, SVM: support 
vector machine 

Item Parameter Value Unit 

Antenna 
Polarization RHCP - 

Low noise amplifier gain 27 dB 
Noise figure ≤2 dB 

Front-end 

GNSS signal GPS L1 C/A - 
Sampling rate 26 MHz 

Intermediate frequency 0 MHz 
Double sided bandwidth 8 MHz 

Noise figure 8 dB 
RF gain 10 dB 

SDR [38] 

Correlator numbers 25 - 
Correlator spacing 0.05 chip 

Coherent integration time 1 ms 

Code phase discriminator 1
2
E L
E L

−
+

 - 

Delay lock loop bandwidth 2 Hz 
Carrier phase discriminator ( )1tan P PQ I−  - 
Phase lock loop bandwidth 20 Hz 

SVM 
Software LIBSVM [39] - 

Kernel function Radial basis function (RBF) - 

3.2. Data Collection and Signal Type Labelling Results 

GPS L1 raw IF data were collected at three different locations in Hong Kong, as shown in Figure 
10. It can be seen that the locations selected show very low sky visibility. All datasets were collected 
in static environment. Each dataset was composed of several sub-datasets, collected at different times 
on different days, due to the large size of raw IF data file. The length of the experimental data is listed 
in Table 5. The Skymask and code pseudorange DD observables method proposed in Section 2 was 
used for labelling the signal type. Table 5 summarizes the labelling results. 

   
(a) (b) (c) 

Figure 10. Data collection locations: (a) Dataset A; (b) Dataset B; (c) Dataset C. Skymask in the red 
frame indicates the sky visibility, where the gray area represents the sky blocked by surrounding 
buildings. 
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Table 5. Labelling results in terms of numbers of different signal types. 

Dataset A B C 
IF data length (min) 13.3 7.2 9.9 

LOS 419 (418) 1 504 (480) 1083 (1079) 
MP 1139 (1131) 692 (679) 213 (213) 

NLOS 1402 (1367) 695 (686) 753 (749) 
Total 2960 (2916) 1891 (1845) 2049 (2041) 

1 Values outside the bracket denote numbers of different signal types used for correlator-level 
classifiers; Values in the bracket denote numbers of different signal types used for RINEX- and 
NMEA-level classifiers. 

Figure 11 shows the point cloud of labelled data, from which several conclusions can be drawn 
for the experimental data. Firstly, in general, signal with low 0C N  is likely to be NLOS, while high- 

0C N  signal can be either LOS or MP. MP can also have low 0C N  depending on both the satellite 
elevation and phase difference between the direct and reflected paths. This also poses a challenge to 
the MP identification. Secondly, satellites with very high elevation can be NLOS in deep urban areas. 
Thirdly, MP and NLOS signals produce larger pseudorange rate consistency, due to the Doppler 
frequency difference between the direct and reflected signal. 

 
(a) 

 
(b) 

 
(c) 

  

Figure 11. Point cloud of labelled data. (a) Labelled data in three-dimensional (3D) space; (b) Labelled 
data regarding 0C N  and satellite elevation; (c) Labelled data regarding 0C N  and pseudorange 

rate consistency. 

  



Remote Sens. 2019, 11, 1851 15 of 23 

 

3.3. Metrics for Evaluation 

To assess the performance of the three different level classifiers, a multiclass confusion matrix 
was formed, as shown in Table 6. Based on the multiclass confusion matrix, metrics of precision, 
recall, overall accuracy, and F1 score are defined as follows [40,41]: 

1Precision =

l
i

i i i

TP
TP FP
l

= +
 (18) 

1Recall =

l
i

i i i

TP
TP FN
l

= +
 (19) 

1Overall accuracy =

l
i i

i i i i i

TP TN
TP FN FP TN

l
=

+
+ + +

 (20) 

Precision×RecallF1 score =2
Precision+Recall

×  (21) 

where i iiTP c= denotes the number of correctly recognized samples as class ic , 
1

l

i ji i
j

FP c TP
=

= −  the 

number of incorrectly recognized samples as class ic , 
1

l

i ij i
j

FN c TP
=

= −  the number of samples that 

were not classified as class ic , 
1 1

l l

i jk i i i
j k

TN c TP FP FN
= =

= − − −  the number of correctly recognized 

samples that does not belong to class ic . 

Table 6. Multiclass confusion matrix. l  denotes the number of classes. ,1 ,kjn k j l≤ ≤  represents the 

number of examples classified as jc , while its actual class is kc . 

 Classified Class 1c    Classified Class ic    Classified Class lc  
Labelled Class 1c  11n   1in   1ln  

      
Labelled Class ic  1in   iin   iln  

      
Labelled Class lc  1ln   lin   lln  

3.4. Classification Results 

3.4.1. Test I 

In this test, Datasets A and B were combined as the training data, while Dataset C was used as 
the testing data. The multiclass confusion matrix of different level classifiers is listed in Table 7, which 
also lists the F1 score and overall accuracy. According to the results, the following remarks can be 
drawn. 

On the one hand, in this case where testing data was collected at different places to that of 
training data, correlator-level classifier is the best among the three levels of classifiers in terms of F1 
score and overall accuracy. Specifically, the correlator-level classifier achieved an F1 score of 72.91%, 
while the F1 scores of the NMEA- and RINEX-level classifiers were only 58.02% and 57.35%, 
respectively. 

On the other hand, in this experiment, the SVM training accuracies for NMEA- and RINEX-level 
classifiers were 91.89% and 92.35%, respectively. The high inconsistency between the SVM training 
accuracy and the testing accuracy for NMEA- and RINEX-level classifiers indicated that the 
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performance of these two kinds of classifiers is sensitive to scenarios. Both NMEA- and RINEX-level 
features were not robust enough to classify the LOS and MP. Specifically, the training model with 
high accuracy may not be suitable for testing data collected at different places. For the correlator-
level classifier, however, the testing accuracy was consistent with training accuracy, which makes it 
more feasible in practice. 

Table 7. LOS/MP/NLOS classification results using different-level classifiers. 

 
NMEA-Level 

Classification Results 
RINEX-Level 

Classification Results 
Correlator-Level 

Classification Results 
 LOS MP NLOS LOS MP NLOS LOS MP NLOS 

Labelled 
Results 

LOS 154 575 350 148 564 367 722 347 14 
MP 21 184 8 21 187 5 47 151 15 

NLOS 0 166 583 2 179 568 5 101 647 
F1 Score 58.02 57.35 72.91 

Overall Accuracy 
(%) 45.12 44.24 74.18 

The recall value for each signal type is shown in Figure 12. It is observed that the MP recall value 
of NMEA- and RINEX -level classifiers was much higher than the LOS recall. As a result, the values 
of F1 score were only 58.02% and 57.35% for NMEA- and RINEX-level classifiers, respectively. This 
also indicates that MP and LOS signal are difficult to distinguish between each other using NMEA- 
and RINEX-level classifiers. For the correlator-level classifier, recall values for the three types of 
signal were comparative to each other. In other words, correlator-level classifier can better 
distinguish different types of signal. The explanation to the superiority of correlator-level classifier is 
that, as analyzed in Section 2, the LOS/MP/NLOS signal has different effects on the autocorrelation 
function. Deeper-level features extracted from the ACF, therefore, can better reflect the characteristic 
of different types of signal. 

 
Figure 12. Recall value for LOS/MP/NLOS in Test I for different level classifiers. 

In some applications, such as the standard shadow-matching-based positioning [5], it is enough 
to distinguish between LOS and NLOS, i.e., the satellite visibility. As such, a comparison of 
LOS/NLOS classification using the three different level classifiers was also conducted. To do this, MP 
was put into the LOS group because the MP contains the direct signal. The LOS/NLOS classification 
results are shown in Table 8. The recall value for each class is shown in Figure 13. As can be seen, the 
LOS accuracy was significantly improved for all three kinds of classifiers. As expected, the correlator-
level classifier still outperformed the other two kinds of classifiers. In specific, the F1 score of 
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correlator-level classifier was more than 90%, and its LOS and NLOS recall values were up to 98.69% 
and 77.96%, respectively. 

Table 8. LOS/NLOS classification results using different level classifiers. 

 NMEA-Level 
Classification Results 

RINEX-Level 
Classification Results 

Correlator-Level 
Classification Results 

 LOS NLOS LOS NLOS LOS NLOS 
Labelled 
Results 

LOS 1194  98 1153 139 1279 17 
NLOS 286 522 288 520 179 633 

F1 Score 80.42 78.11 90.39 
Overall Accuracy 

(%) 
81.71 79.67 90.70 

 
Figure 13. Recall value for LOS and NLOS signal in Test I for different level classifiers. 

3.4.2. Test II 

To confirm the scenario sensitivity issue, Test II was conducted, where all datasets were mixed 
up, half of which was randomly selected as the training data, while the remaining half was the testing 
data. The confusion matrixes for LOS/MP/NLOS and LOS/NLOS classifications are in Appendix A. 
Figure 14 shows the comparison of training and testing accuracy. In this case, the three kinds of 
classifiers showed comparative performances for both the LOS/MP/NLOS and LOS/NLOS 
classifications. In specific, the classification accuracy was improved for NMEA- and RINEX-level 
classifiers, and there was a high consistency between the SVM training and testing performance. For 
the correlator-level classifier, its accuracy consistency was still guaranteed although there was a slight 
decrease of classification rate compared with that in Figure 13, which was probably due to the 
decreased amount of training data. 
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(a) (b) 

Figure 14. Comparison of the training and testing accuracy. All datasets were mixed to form a whole 
dataset, from which half was randomly selected as the training data, while the remaining half as the 
testing data: (a) LOS/MP/NLOS classification accuracy; (b) LOS/NLOS classification accuracy. 

4. Discussion 

The results in this paper are encouraging, with the opening of deeper-level measurements on 
more and more GNSS-capable devices [42]. GNSS performance in urban areas is expected to improve 
by using these measurements. Increasing signal type classification rate is useful for both the popular 
3DMA positioning and conventional ranging-based least square positioning. Hence, this paper 
proposes to improve signal type classification rate by using correlator-level classifier, and compares 
it with conventional NMEA/RINEX-level classifiers. To make a fair comparison between different 
level classifiers, it is important to make sure that all features come from the same receiver, which has 
been rarely explored in existing researches, although some researches have explored the deeper-level 
features in different applications [18,26,29]. The two findings in this paper and the interpretation in 
perspective of previous studies are described as follows. 

On the one hand, the correlator-level classifier had the best performance among the three 
different level classifiers for training data and testing data that were collected in different places, 
improving the F1 score by 25.7% and 27.1% compared with NMEA- and RINEX-level classifiers, 
respectively (Table 7). In terms of the accuracy of each class, the correlator-level classifier also 
outperformed the other two methods, especially for distinguishing between LOS and MP (Figure 12). 
This finding shows the effectiveness of signal classification, including MP, at the correlator level, and 
can been seen as an extension of the work in [26,43], where correlator-level features were used to do 
LOS/NLOS classification. On the other hand, of particular importance is that the correlator-level 
classifier has been shown to be more robust to scenarios. In specific, for testing data that was collected 
at different places as the training data, the performance of NMEA/RINEX-level classifiers showed 
significant decrease, while the correlator-level classifier could retain the high performance. This 
finding, i.e., sensitivity issue of NMEA/RINEX-level classifiers, is consistent with that reported in 
[20], where the accuracy for testing data collected at different locations as the training data was 
degraded by more than 20%. This issue is probably due to that the NMEA/RINEX-level features were 
highly relied on in the scenario. For example, the signal strength was directly related to the street 
width and building height and materials. The robustness of correlator-level classifier makes it more 
feasible in practical applications. 

Due to the limited size of experimental datasets, this paper does not focus on improving the 
absolute signal classification rate, instead it is intended for the illustration of advantages of correlator-
level classifier against the commonly used NMEA- and RINEX-level classifiers. One of the extensions 
of this paper is to do a large-scale data test to improve the correlator-level classifier by using more 
advanced techniques. For example, the previous work of the authors has proven that vector tracking 
loop (VTL) has a different response to the MP/NLOS signal compared with the scalar tracking loop 
(STL) used in this paper [36]. This difference provides an opportunity to detect MP/NLOS more 
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efficiently [38,44]. Therefore, correlator-level features extracted from VTL may further improve the 
signal classification rate. Other techniques include replacing SVM with other deep learning 
approaches, e.g., neural networks as used in [29,43]. In this way, feature extraction can be 
automatically finished instead of the manual selection, thereby avoiding the information loss [41]. 
Another extension of this paper is to test smartphone data at the correlator-level and evaluate the 
positioning performance with the proper exploitation of the identified signal type. 

5. Conclusions 

In this paper, correlator-level features were extracted to classify GPS L1 signal using a 
supervised machine learning algorithm. A fair comparison with respect to the NMEA-, RINEX- and 
correlator-level classifiers was carried out on a common ground, by guaranteeing that all 
measurements come from the same GPS receiver (the self-developed SDR). To do this, 
LOS/MP/NLOS effects on autocorrelation function were analyzed first. Subsequently, four correlator-
level features were extracted and illustrated. The method of combining Skymask and code 
pseudorange double difference observable was proposed to do signal type labelling for the 
supervised machine leaning algorithm. To assess the performance of these different level classifiers, 
GPS raw IF data were collected at different places in deep urban canyons in Hong Kong. The 
conclusions are twofold according to the experimental results. 

On the one hand, correlator-level classifier outperforms the NMEA- and RINEX-level classifiers 
in terms of four metrics, i.e., precision, recall, F1 score, and overall accuracy. In specific, for training 
data and testing data collected at different places, the correlator-level classifier improved F1 score for 
LOS/MP/NLOS classification by about 25% compared with NMEA and RINEX-level classifiers. 
Besides, the correlator-level classification rate for each class was higher than that using 
NMEA/RINEX-level classifiers, especially for the identification between LOS and MP. For LOS/NLOS 
classification, the overall accuracy was greatly improved for all three kinds of classifiers, with the F1 
scores of 80.42%, 78.11%, and 90.39% for NMEA-, RINEX-, and correlator-level classifiers, 
respectively. 

On the other hand, by further checking the SVM training accuracy, NMEA- and RINEX-level 
classifiers were found to have the sensitivity issue, i.e., for testing data collected at different locations 
to the training data, NMEA/RINEX-level classifiers showed degraded performances. The correlator-
level classifier is more robust against the scenarios due to that deeper-level features can better reflect 
the characteristics of different types of signal. This benefit of correlator-level classifier is of particular 
importance to practical applications. 

Author Contributions: Conceptualization, B.X. and L.-T.H.; methodology, B.X.; software, B.X.; formal analysis, 
B.X., Q.J. and Y.L.; data collection, B.X. and Q.J.; writing—original draft preparation, B.X.; writing—review and 
editing, B.X., Q.J., Y.L. and L.-T.H.; supervision, L.-T.H. 

Funding: This research is funded by Fundamental Research on Free Exploration Category of Shenzhen 
Municipal Science and Technology Innovation Committee (Project No. JCYJ20170818103653507). 

Acknowledgments: The authors are grateful to Haosheng Xu, Hoi-Fung Ng, Guohao Zhang and Dr Jiang Yue 
for their valuable suggestion and to reviewers of this paper for their comments and remarks. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Confusion matrix in Test II 

Tables A1 and A2 list the confusion matrixes for LOS/MP/NLOS and LOS/NLOS classifications 
in Test II where all datasets are mixed up to form a whole dataset. Then, half of the whole dataset 
was randomly selected as the training data, while the remaining half was used as the testing data. 

Table A1. LOS/MP/NLOS classification results using different-level classifiers in Test II. 
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NMEA-Level 

Classification Results 
RINEX-Level 

Classification Results 
Correlator-Level 

Classification Results 
 LOS MP NLOS LOS MP NLOS LOS MP NLOS 

Labelled 
Results 

LOS 804 105 57 832 112 68 941 43 16 
MP 338 442 257 302 457 241 472 336 218 

NLOS 207 80 1111 184 85 1120 163 130 1131 
F1 Score 68.90 70.00 69.14 

Overall Accuracy 
(%) 

69.30 70.83 69.80 

Table A2. LOS/NLOS classification results using different-level classifiers in Test II. 

 NMEA-Level 
Classification Results 

RINEX-Level 
Classification Results 

Correlator-Level 
Classification Results 

 LOS NLOS LOS NLOS LOS NLOS 
Labelled 
Results 

LOS 1755 218 1784 214 1891 131 
NLOS 320 1108 352 1051 460 968 

F1 Score 83.67 82.70 82.42 
Overall Accuracy (%) 84.18 83.36 82.87 
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