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Abstract: Explosives contaminate millions of hectares from various sources (partial detonations,
improper storage, and release from production and transport) that can be life-threatening, e.g.,
landmines and unexploded ordnance. Exposure to and uptake of explosives can also negatively impact
plant health, and these factors can be can be remotely sensed. Stress induction was remotely sensed
via a whole-plant hyperspectral imaging system as two genotypes of Zea mays, a drought-susceptible
hybrid and a drought-tolerant hybrid, and a forage Sorghum bicolor were grown in a greenhouse
with one control group, one group maintained at 60% soil field capacity, and a third exposed to
250 mg kg−1 Royal Demolition Explosive (RDX). Green-Red Vegetation Index (GRVI), Photochemical
Reflectance Index (PRI), Modified Red Edge Simple Ratio (MRESR), and Vogelmann Red Edge Index
1 (VREI1) were reduced due to presence of explosives. Principal component analyses of reflectance
indices separated plants exposed to RDX from control and drought plants. Reflectance of Z. mays
hybrids was increased from RDX in green and red wavelengths, while reduced in near-infrared
wavelengths. Drought Z. mays reflectance was lower in green, red, and NIR regions. S. bicolor grown
with RDX reflected more in green, red, and NIR wavelengths. The spectra and their derivatives will
be beneficial for developing explosive-specific indices to accurately identify plants in contaminated
soil. This study is the first to demonstrate potential to delineate subsurface explosives over large
areas using remote sensing of vegetation with aerial-based hyperspectral systems.
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1. Introduction

Environmental contamination by explosives and energetics has resulted from widespread
production, testing and partial detonations, unexploded ordnance (UXO), and improper disposal.
Unique to these constituents, threats exist for acute and chronic health concerns [1], and even physical
threats by UXO. Landmines are of specific concern as over 110 million have been laid in more than
70 countries since the 1970s [2]. An estimated 15,000 to 20,000 people are injured or killed each
year from remnant landmines, with children accounting for one in five of those deaths [3]. Current
landmine detection methods often consider vegetation a hindrance, though plants can aid in more
rapid discovery if used as phytosensors in the delineation and remediation effort.

While landmines are dangerous, explosives contamination in soil is of serious concern for a variety
of reasons. It is estimated that in the US alone 10 million hectares need remediation [4]. Royal demolition
explosive (RDX; hexahydro-1,3,5-trinitro-1,3,5-triazine) is commonly found with trinitrotoluene (TNT)
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in soil and is highly mobile unlike TNT and has entered groundwater sources of some communities
around military bases [5]. With almost 2000 sites at closed military bases contaminated with UXO,
explosives contamination at military testing sites also complicate base conversions after closure [6,7].
Over the course of years of being in soil, ordnance casings containing RDX degrade from contact with
water in the form of rain and soil moisture [8]. The sheer volume and diversity of fugitive compounds
in the subsurface drives the need for a novel technique that accurately locates contaminants and will
allow for safe and rapid remediation.

Plants can be used as sentinels to discover what lies in soil beneath the surface. Roots spread
out in the subsurface and acquire water, nutrients, and many chemicals present in subsurface soil and
groundwater, thereby acting as an in-situ sampling tool. Chemical testing of plant tissues has shown that
plants can act as chemical samplers [9] and that uptake is predicted by physio-chemical properties [10].
Compounds that can cross root membranes may cause stress by altering physiological and morphological
characteristics, e.g., chlorophyll reductions, decreased stomatal conductance, increased fluorescence, and
reduced biomass. Explosives enter plants by crossing root membranes via bulk water transport and are
either stored in roots or translocated to leaves where they accumulate [11–13]. RDX is known to cause
plant stress at relatively low concentrations [14]. RDX is a nitroamine that readily moves into plants and
is translocated into aerial portions of plants where it negatively affects leaf function and health.

Plant stress can be caused by a variety of factors such as nutrient deficiencies or pests, and often
manifests by way of reductions in pigment concentrations, decreased photosynthesis, necrosis, and
changes in plant morphology and physiology are remotely detectable with hyperspectral imagery
(HSI) [15]. Plant stress responses caused by environmental pollutants such as explosives can be
remotely detected via hyperspectral sensors [14,16] leading to the possibility of scaling up detection to
the field level. Importantly, to be effective in remotely detecting a specific contaminant, it is necessary
to compare numerous sources of stress and differentiate between them to limit potential false positives
or negatives. As plant responses can be species- and explosive-specific, discriminating between both
natural, i.e., drought or nutrient deficiency, and anthropogenic stressors is crucial for the accurate
remote detection of explosives. Research is extremely limited on comparing drought conditions to
plant stress caused by explosives [16]. Some studies have explored uptake of explosives by agronomic
species [13,17] and how the reflectance of shrubs is affected by explosives [14,16,18], but none have
done both. The research presented here was conducted in conjunction with a field-scale drought
experiment that utilized the same genotypes assessed with the same aerial-based HSI methods.

Hyperspectral imagery has been utilized for decades on vegetation for early stress detection to
mitigate potential agricultural crop losses. Other instances include using HSI of vegetation for the
detection of heavy metal contamination and salt stress [19,20]. Minimal research has been directed
at using plants to detect explosives in soil. Previous energetics detection work involved using
handheld spectroradiometers to obtain reflectance of leaves and calculating reflectance indices [14,18].
Reflectance Index values were compared to plant functional traits, and it was found that stomatal
conductance and photosynthesis were negatively affected by concentrations as low as 100 mg kg−1

RDX in soil, while pigment concentrations were decreased beginning at 500 mg kg−1 RDX for the
coastal pioneer species, Baccharis halimifolia [14].

The objective of this contribution was to begin developing effective methods of detecting plant
stress from explosives by comparing distinct hyperspectral reflectance signatures of drought and
RDX-exposed plants at a species-specific level for canopy-wide application. Existing reflectance
indices were examined in this study to determine their efficacy in differentiating between natural
and anthropogenic stressors remotely. Measuring reflectance at specific wavelengths sensitive to the
presence of explosives is crucial and a prerequisite to the implementation of this research in real-world
scenarios. While this paper only discusses imagery, the findings within are promising. It remains
imperative to continue similar research to hasten the detection rates of remnant landmines and other
sources of explosives contamination.
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2. Materials and Methods

2.1. Plants

Two hybrids of Zea mays L. (maize) and one of Sorghum bicolor (L.) Moench (sorghum) were grown
in a greenhouse at Missouri University of Science and Technology, Rolla, MO (37.955376 N, 91.771681
W). One maize hybrid (Pioneer® P1690AM, DuPont®, Wilmington, DE; abbreviated here as ‘AM’)
was considered less drought tolerant than the other (Pioneer® P0363AMX, DuPont®, Wilmington,
DE; abbreviated here as ‘AMX’). The sorghum used was forage sorghum (Blade® EJ 7282, Ceres, Inc.,
Boston, MA), referred to here as ‘S’. Plants in the drought and control groups were germinated in 38 L
pots (Hummert™ International Treepots™, Earth City, MO) filled with 14 kg of soil (Mexico silt loam
soil; fine, smectitic, mesic, Vertic Epiaqualf) per pot that was collected from University of Missouri’s
Bradford Research Center near Columbia, MO (38.894167 N, 92.201389 W). Plants used for the RDX
treatment were germinated in small pots and transplanted to contaminated soils to mitigate effects of
explosives on germination. Each group consisted of eight plants for a total of 72 plants. However, two
plants died during the experiment: one control sorghum plant and one RDX-exposed AM maize plant.
Plants were grown in a greenhouse under natural sun light which was supplemented by LumiGrow
Pro325™ (LumiGrow, Inc) LED lights to extend the photoperiod to 14 h.

To prepare the RDX-contaminated soil, RDX (1,3,5-trinitro-1,3,5-triazinane) was dissolved in
acetone at a concentration of 10 g L−1. This stock solution was diluted to dose soils at a concentration
of 250 mg kg−1. Soil for control and drought plants were also dosed with acetone to control for any
potential acetone effects. Drought treatment plants were held at 60% field capacity (FC) and control
plants were held at 90% FC by weighing each pot daily and replacing the lost water to return the
soil to 60% and 90% FC, respectively. Field capacity was measured by taking a known mass of soil
and completely saturating it with water, allowing water to drain for two days and weighing soil after
draining. The soil sample was left to dry completely in the greenhouse and weighed again. The gravity
drained soil was taken as 100% FC and the air-dried soil sample considered to be at 0% FC and were
used to calculate the appropriate FC.

2.2. Hyperspectral Imaging

Hyperspectral images were collected at the end of a four-week period after start of experiment
with a Headwall Nano-Hyperspec (VNIR) imager (Headwall Photonics, Inc., Bolton, MA, USA).
This sensor collects spectral information for 274 bands from 400–1000 nm at 2 nm intervals with a
Full-Width Half-Maximum (FWHM) of around 5 nm. The last two bands were removed from all
images during pre-processing to eliminate noise. A halogen lamp was used as a full-spectrum artificial
light source to control lighting and to mitigate any atmospheric corrections required from using the
sun for illumination. Using an artificial light source also allows for consistent imaging despite weather
conditions. A 10” square Labsphere Spectralon®white reflectance standard was used only for light
calibration; dark calibration was done using the lens cap. The headwall sensor was mounted in a
nadir position to a custom-made, 3 m-tall gantry system (Figure 1) that used a lead screw to move
the sensor at a rate of 0.635 m min−1 at 1.2 m above canopy to image each plant individually. The
gantry system allows for line-scanning of whole plants and mimics the line-scanning methods also
applied at a field-scale with an unmanned aerial vehicle. Plant heights did not vary appreciably in the
greenhouse study.

Eighteen relevant, established reflectance indices demonstrated to correlate with plant functional
traits (Table 1) were calculated from plant HSI using ENVI (Environment for Visualizing Images, Harris
Geospatial Solutions, Inc., Denver, CO, USA) from the list of available reflectance indices integrated
into the software. Custom interactive data language (IDL) codes were written for ENVI to handle
batch processes. The first code masked the background of each image, computed reflectance indices
for Index averages, and output those values to a text file (Figure 2). Another custom IDL code used
the masked images to extract average spectral values for each plant. Every pixel of each image, after
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masking, was used for analyses. Reflectance indices and spectra were calculated for each pixel and
then averaged per plant. Individual plant reflectance spectra were then averaged together by group
and plotted in Excel (Microsoft Corporation, Redmond, WA, USA). First derivatives, or the change in
slope, were calculated from reflectance spectra in Excel. Results are plotted by plant type.
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Figure 2. Image processing workflow. The Difference Vegetation Index was used to create a mask on
radiometrically-corrected images with a threshold of values. Once masked, reflectance indices are
only calculated and averaged on parts of images containing vegetation. Reflectance Index averages
and reflectance spectra were then output for statistical analyses. Indices and spectra were averaged
pixel-by-pixel for each image.
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2.3. Statistics

Reflectance Index values were statistically analyzed in RStudio (RStudio, Inc, Boston, MA) with
a one-way analysis of variance (ANOVA) with a least significant difference (LSD) post hoc multiple
comparisons test (α = 0.05) to obtain p-values across plant types and groups. Average reflectance Index
values were also used in Principal component analyses (PCA; PC-ORD software ver 5.10, MjM Software,
Gleneden Beach, OR) to visualize separation between groups. Spectra of each group were compared
via t-tests by using the average reflectance at each waveband (SPSS; α = 0.05) to delineate significantly
different wavelengths.

Table 1. Indices evaluated for drought and control groups. One-way ANOVA (α = 0.05) p-values are
reported for significant differences between groups. Bold p-values indicate significance.

Control – Drought Plant Type

Index Acronym Relates to References AM AMX S

Green Difference Vegetation Index GDVI
Biomass

[21] 0.0157 0.0001 0.0057
Leaf Area Index LAI [22] 0.0711 0.0415 0.8420

Normalized Difference Vegetation Index NDVI [23] 0.6455 0.8991 0.9290

Green Ratio Vegetation Index GRVI
Photosynthesis

[21] 0.9968 0.0176 0.0027
Modified Red Edge Simple Ratio MRESR [24] 0.5161 0.1252 0.8249
Photochemical Reflectance Index PRI [25] 0.7440 0.0340 0.0070

Anthocyanin Reflectance Index 1 ARI1

Pigments

[26] 0.1553 0.0008 0.0002
Anthocyanin Reflectance Index 2 ARI2 [26] 0.9573 0.0056 <0.0001
Carotenoid Reflectance Index 1 CRI1 [27] 0.9999 0.0002 0.9985
Carotenoid Reflectance Index 2 CRI2 [27] 0.9219 0.0002 0.7921
Green Normalized Difference

Vegetation Index GNDVI [28] 0.9999 0.1213 0.0396

Modified Chlorophyll Absorption
Ratio Index MCARI [29] 0.0994 0.0080 0.5899

Structure-Insensitive Pigment Index SIPI [30] 0.9933 0.8080 0.9129
Vogelmann Red Edge Index 1 VREI1 [31] 0.1114 0.1947 0.4924
Vogelmann Red Edge Index 2 VREI2 [31] 0.0039 0.0602 0.9844

Plant Senescence Reflectance Index PSRI
Stress

[32] 0.4803 0.9719 0.5158
Red Edge Position Index REPI [33] 0.3607 0.6276 0.7286

Water Band Index WBI Water
Content [34] 0.9125 0.8755 <0.0001

3. Results

The custom imaging system provided hyperspectral reflectance data that differentiated among
RDX exposure and control and drought groups. Data indicated that maize hybrids and sorghum had
significant responses as water stress and explosives treatments were discernable using HSI. One-way
ANOVA (α = 0.05) revealed differences between each group by the end of the experiment. p-Values
between control and drought groups of AM, AMX, and S indicated that two, nine, and seven indices
were affected by water stress, respectively (Table 1). The number of indices significantly altered by
RDX in soil, relative to controls, for AM, AMX, and S was 17, 15, and 15, respectively (Table 2). Between
drought and RDX treatments, 17 indices differed for both the AM the AMX hybrid, and 16 for S
(Table 3). The green ratio vegetation Index (GRVI; Figure 3a) of all plant types was reduced due to the
presence of explosives compared to control plants and drought plants. Drought plants of AMX and S
showed slight increases in GRVI, relative to controls (p-values = 0.0176 and 0.0027, respectively).
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Table 2. Indices evaluated for control and RDX groups. One-way ANOVA (α = 0.05) p-values are
reported for significant differences between groups. Bold p-values indicate significance.

Control – RDX Plant Type

Index Acronym Relates to References AM AMX S

Green Difference Vegetation Index GDVI
Biomass

[21] 0.0002 <0.0001 0.9979
Leaf Area Index LAI [22] <0.0001 <0.0001 <0.0001

Normalized Difference Vegetation Index NDVI [23] <0.0001 <0.0001 <0.0001

Green Ratio Vegetation Index GRVI
Photosynthesis

[21] <0.0001 <0.0001 0.0048
Modified Red Edge Simple Ratio MRESR [24] <0.0001 <0.0001 <0.0001
Photochemical Reflectance Index PRI [25] <0.0001 <0.0001 <0.0001

Anthocyanin Reflectance Index 1 ARI1

Pigments

[26] 0.5534 0.0054 <0.0001
Anthocyanin Reflectance Index 2 ARI2 [26] 0.0008 0.6521 <0.0001
Carotenoid Reflectance Index 1 CRI1 [27] <0.0001 0.0525 0.0953
Carotenoid Reflectance Index 2 CRI2 [27] <0.0001 0.4028 0.5756
Green Normalized Difference

Vegetation Index GNDVI [28] <0.0001 <0.0001 0.0040

Modified Chlorophyll Absorption
Ratio Index MCARI [29] 0.0008 0.0322 <0.0001

Structure-Insensitive Pigment Index SIPI [30] 0.0017 0.0009 0.0012
Vogelmann Red Edge Index 1 VREI1 [31] <0.0001 <0.0001 <0.0001
Vogelmann Red Edge Index 2 VREI2 [31] <0.0001 <0.0001 <0.0001

Plant Senescence Reflectance Index PSRI
Stress

[32] <0.0001 <0.0001 <0.0001
Red Edge Position Index REPI [33] <0.0001 <0.0001 <0.0001

Water Band Index WBI Water
Content [34] <0.0001 <0.0001 <0.0001

Table 3. Indices evaluated for drought and RDX groups. One-way ANOVA (α = 0.05) p-values are
reported for significant differences between groups. Bold p-values indicate significance.

Drought – RDX Plant Type

Index Acronym Relates to References AM AMX S

Green Difference Vegetation Index GDVI
Biomass

[21] 0.1478 0.0015 0.0050
Leaf Area Index LAI [22] <0.0001 <0.0001 <0.0001

Normalized Difference Vegetation Index NDVI [23] <0.0001 <0.0001 <0.0001

Green Ratio Vegetation Index GRVI
Photosynthesis

[21] <0.0001 <0.0001 <0.0001
Modified Red Edge Simple Ratio MRESR [24] <0.0001 <0.0001 <0.0001
Photochemical Reflectance Index PRI [25] <0.0001 <0.0001 <0.0001

Anthocyanin Reflectance Index 1 ARI1

Pigments

[26] 0.0220 0.7118 0.0093
Anthocyanin Reflectance Index 2 ARI2 [26] 0.0016 0.0406 0.0064
Carotenoid Reflectance Index 1 CRI1 [27] <0.0001 <0.0001 0.0740
Carotenoid Reflectance Index 2 CRI2 [27] <0.0001 <0.0001 0.2193
Green Normalized Difference

Vegetation Index GNDVI [28] <0.0001 <0.0001 <0.0001

Modified Chlorophyll Absorption
Ratio Index MCARI [29] <0.0001 <0.0001 <0.0001

Structure-Insensitive Pigment Index SIPI [30] <0.0001 0.0002 0.0022
Vogelmann Red Edge Index 1 VREI1 [31] <0.0001 <0.0001 <0.0001
Vogelmann Red Edge Index 2 VREI2 [31] <0.0001 <0.0001 <0.0001

Plant Senescence Reflectance Index PSRI
Stress

[32] <0.0001 <0.0001 0.0002
Red Edge Position Index REPI [33] <0.0001 <0.0001 <0.0001

Water Band Index WBI Water
Content [34] 0.1478 0.0015 0.0050
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Vegetation Index (GRVI) average values. (b) Photochemical Reflectance Index (PRI) average values.
n = 8 for all groups less S. bicolor control (n = 7) and AM Z. mays exposed to RDX (n = 7). Error bars
represent standard deviations.

The photochemical reflectance Index (PRI) was only slightly increased for drought in AM but
was significantly reduced for both drought in AMX (p = 0.0340) and in S (p = 0.0070; Figure 3b). PRI,
however, was reduced for all plant types in the RDX treatment (p-values < 0.0001), relative to drought
and control plants. The anthocyanin reflectance Index 2 (ARI2) was inconsistent across plant type
and groups (Figure 4a). Significant reductions in RDX AM, relative to control and drought plants
(p-values = 0.0008 and 0.0016, respectively), differed from AMX and S, where drought and RDX ARI2
values were higher, though at different levels. ARI2 of drought AMX was significantly higher than that
of controls (p-value = 0.0056), as it was for RDX (p-value = 0.0406). Drought and RDX ARI2 values of
S were also increased when compared to control plants (p-values < 0.0001), with values in the RDX
treatment also higher than in the drought treatment (p-value = 0.0064). The RDX treatment caused
drastic reductions (p-values < 0.0001) in the modified red edge simple ratio (MRESR) in all plant types,
but no differences were found between drought and control plants (Figure 4b). The same response was
found for Vogelmann reflectance Index 1 (VRI1; p-values < 0.0001; Figure 4c).
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Figure 4. Comparison of reflectance indices for all three plant types and groups: (a) Average
Anthocyanin Reflectance Index 2 values. (b) Modified Red Edge Simple Ratio (MRESR) average values.
(c) Vogelmann Red Edge Index 1 (VREI1) average values. n = 8 for all groups less S. bicolor control
(n = 7) and AM Z. mays exposed to RDX (n = 7). Error bars represent standard deviations.

To evaluate the dataset for all groups, PCA of reflectance indices was conducted and clearly
separated RDX-treated plants from control and drought plants for all plant types (Figure 5). Axis
1 explained 66% of variance with all groups present (Figure 5a). Indices mainly responsible for
separation along Axis 1 of RDX-treated plants were related to pigments (MCARI, SIPI, VREI2) and
stress (PSRI). Other pigment indices (CRI1, CRI2, VREI), and indices related to biomass (LAI, NDVI)
and photosynthesis (GRVI, MRESR, PRI), caused control and drought plants to group to the right.
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Figure 5. Principle Components Analyses of (a) control, drought, and RDX groups; (b) control and
drought groups; (c) control and RDX groups; and (d) drought and RDX groups. Each PCA includes all
plant types. Ovals indicated separation between groups. Percentages define the variance explained by
Axis 1. n = 8 for all groups less S. bicolor control (n = 7) and AM Z. mays exposed to RDX (n = 7) that
had one mortality.

Control and drought plants showed grouping without complete separation (Figure 5b; Axis 1
variance of 39%). Control and RDX plants were completely separated from one another, with Axis 1
accounting for 65% of variance between the two groups (Figure 5c). Drought and RDX groups were
also completely separated with 74% of variance explained by Axis 1 (Figure 5d).

Reflectance spectra of each plant was extracted from HSI and averaged by group. Average
reflectance spectra of AM in drought revealed significant reductions in reflectance in visible (VIS) and
near-infrared (NIR) wavelengths relative to control (α < 0.05; Figure 6a). NIR reflectance of AM RDX
plants was also significantly reduced relative to controls, though increased in the VIS portion (α < 0.05;
Figure 6a). Reflectance of AM RDX plants was also higher in VIS wavelengths while similar in the NIR
portions, relative to drought plants (α < 0.05; Figure 6a). Similar trends were seen in AMX plants with
more significantly different wavelengths between drought plants and controls, and less significant
wavelengths between RDX plants and controls (Figure 6b). Spectra of S drought plants remained
similar to controls from 398–816 nm, then reflectance of drought plants decreased relative to control
plants from 817–1000 nm (Figure 6c). S treated with RDX reflected more light from 502–740 nm and
along the red edge where it was significantly higher from control and drought plants (Figure 6c). NIR
reflectance of RDX plants followed the same trend as drought plants.

Reflectance first derivative averages were calculated from average spectra for each group and
plant type. Derivatives of AM plants were similar across groups but showed most variations near
520 nm, 658 nm, and between the red edge to 763 nm (Figure 7a). Drought and RDX first derivatives
tracked along control first derivatives in the NIR (Figure 7a). Though the patterns are similar, first
derivatives of AMX plants between 476 and 671 nm have gaps between each group. Between 696 and
727 nm, each group’s derivative peaked at different wavelengths or values (Figure 7b). AMX RDX
plants showed a relatively low derivative value at 696 nm and a more gradual decrease from 696–751
nm (Figure 7b). Smaller variations are present in the remaining NIR wavelengths. Minor differences
were present in S first derivatives in VIS wavelengths (Figure 7c). S RDX derivatives deviated the most
from control and drought derivatives in the 674–760 range. Overall, control and drought S derivatives
were similar to one another.



Remote Sens. 2019, 11, 1827 10 of 16Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 

 

 

Figure 6. Average reflectance spectra of control, drought, and RDX groups for a) drought-susceptible 
(AM) Z. mays, b) drought-tolerant (AMX) Z. mays, and c) S. bicolor (S). Line portions in red signify 
statistical difference from controls (α = 0.05). Shaded regions indicate statistical significance between 
drought and RDX groups (α = 0.05). n = 8 for all groups less S. bicolor control (n = 7) and AM Z. mays 
exposed to RDX (n = 7). 
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(AM) Z. mays, (b) drought-tolerant (AMX) Z. mays, and (c) S. bicolor (S). Line portions in red signify
statistical difference from controls (α = 0.05). Shaded regions indicate statistical significance between
drought and RDX groups (α = 0.05). n = 8 for all groups less S. bicolor control (n = 7) and AM Z. mays
exposed to RDX (n = 7).
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4. Discussion

RDX is known to be phytotoxic to plants in morphological and physiological ways, though effects
are concentration-, and species-dependent [13,17]. Drought also negatively affects plant performance
depending on severity. In this study, the effects of drought conditions and exposure to RDX in soil
were hypothesized to be discernable from controls but not each other. However, HSI did differentiate
between drought and anthropogenic stress from RDX. To ensure plants exposed to RDX would be
able to germinate, those seeds were started in clean soil and then transplanted to contaminated soil as
explosives are known to inhibit germination of some species [35]. Seeds of other groups were started in
clean soil. While only the RDX group potentially underwent stress from transplantation, plants were
given a week to recover before the experiment began. One-way ANOVA results of reflectance indices
clearly show changes between control and drought group as well as between drought and RDX groups.
Drought AM had the lowest number of indices that differed from the control, with only GDVI and
VREI2 showing significant deviations. Drought AMX and S were more different from controls based
on p-values of the one-way ANOVA. Almost all indices were significantly different for control-RDX
and drought-RDX comparisons for all plant types indicating plant physiological and morphological
responses from RDX exposure that weren’t detected under drought conditions (Tables 2 and 3). Only
one Index (GDVI) correctly discerned drought plants from controls for all three plant types. Contrarily,
14 reflectance indices were able to distinguish RDX-exposed plants from control and drought plants.

Differences are further evident based on PCAs with clear separation between and clustering of
plants by group (Figure 5). Increased variance in PCA results is attributed to reflectance Index values
from RDX exposure (Figure 5a,c,d). When considering all groups, indices such as MCARI, PSRI, SIPI,
and VREI2 were most responsible for RDX plants to separate along Axis 1. All other indices, less ARI1
and ARI2, strongly accounted for control and drought groups that congregated to the right. The same
patterns are also evident when comparing between only two of three groups, with variable percentages
of variance explained by Axis 1 (Figure 5b–d). Comparing average Index values (Figures 3 and 4) with
PCA results (Figure 5) provides insight into why such variance is present: inconsistencies across plant
types in ARI2 (Figure 4a) tied with drastic reductions in other Index values caused such separations in
PCA results to occur.

Reflectance spectra for AM and AMX plants showed similar patterns between groups. Control
and drought groups for both maize hybrids showed less reflectance in the 500–700 nm (VIS) range
compared to that of RDX. This range represents chlorophyll a and b, carotenoids, and accessory
pigments and is used as a non-destructive method to derive pigment concentrations [36]. RDX has
been shown to cause reductions in chlorophyll concentrations [13,14] which can be interpreted as
increases in reflectance in VIS wavelengths. The red edge, wavelengths from ~700–750 nm, can be
indicative of stress by exhibiting a “blue shift”, or increased reflectance along the red edge range of
wavelengths [37,38]. A red edge that is shifted towards NIR wavelengths is suggestive of higher
chlorophyll concentrations [39,40], which AMX expressed. Beyond the red edge into the NIR, are
wavelengths that are correlated with plant biomass [41]. High internal scattering of longer wavelengths
within leaves caused by cellulose, lignin, and other physical structures intensifies the signal captured
compared to reflectance of VIS wavelengths [42]. Drought conditions can hinder photosynthesis and
thereby decrease biomass production, but RDX uptake has been reported to not affect biomass, by
direct measurement or spectra, at concentrations lower than 500 mg kg−1 [16,43] despite reducing
rates of photosynthesis [14,16]. However, in this study less intense reflectance in NIR wavelengths was
measured (Figure 6a,b) for AM and AMX indicating reduced biomass, accompanied with reductions in
the Index correlated to photosynthesis, PRI (Figure 3b). Average reflectance of S showed increased
NIR reflectance (Figure 6c) indicating it may be more resistant to drought and anthropogenic stressors
negatively affecting biomass, despite reductions in remotely sensed rates of photosynthesis in PRI
(Figure 3b).

Vegetation reflectance Index results after four weeks of RDX exposure were mostly indicative of
stress dissimilar to drought responses demonstrating that remote sensing of vegetation is promising as a
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proxy subsurface forensic tool. Unfortunately, currently existing indices calculated from this experiment
are not wholly indicative of stress induced from explosives. Indices related to photosynthesis (GRVI,
PRI; Figure 3a,b) were both reduced significantly due to presence of RDX, yet stress indices based
on pigment content were not conclusive (ARI2; Figure 4a), as well as others (Tables 2 and 3). What
is needed is an explosives-specific Index (ESI), or a toolbox of explosives-specific indices that work
well when comparing multiple vegetation and explosives types to respective unexposed plants. One
way to begin exploring for wavelengths suitable for Index development is through the calculation of
reflectance first derivatives (Figure 7).

First derivatives calculated from average reflectance spectra are effective at highlighting where
specific wavelengths and portions of spectra differ based on changes in slope. Drought and control
group first derivatives tracked relatively consistently for all tested plant types (Figure 7). While the
forms are similar for AM and AMX control and drought average derivatives, differences in intensity
were evident in green wavelengths and red edge wavelengths (Figure 7a,b). Control and drought S
first derivatives were almost identical throughout, less a few specific wavelengths (Figure 7c). Thus,
these differences can be beneficial to Index development to expand the set of tools from which to draw
useful water stress indices.

Many of the wavelengths where derivatives indicated changes in reflectance responses to water
stress were close to those that were affected by RDX exposure, however in different ways. For example,
the values of local minima in NIR wavelengths (750–1000 nm) for AMX and S differ between drought
and control plants while RDX plants do not seem to dip at all and track in a more level manner for NIR
wavelengths (Figure 7b,c). Key areas for exploration and development of an ESI, or an ESI toolbox,
lie in the green wavelengths, red edge, and some NIR wavelengths. When considering wavelengths
for Index development, limiting both false positives and negatives is imperative for the successful
application of this technique of remotely detecting explosives via plant uptake to field scenarios
including, but not limited to, remote detection of indiscriminately-laid, remnant landmines from
previous wars and conflicts. Resulting ESIs could also be applied to explosives production and testing
sites, as there is a great risk of contaminating soil and groundwater whenever explosives are produced,
transported, and tested [8,44].

Explosive compounds can be phytotoxic, with symptoms including leaf curling, chlorotic and
necrotic lesions on leaves, and leaf drop [14,45,46]. Plant functioning is also affected and may be
assessed through chlorophyll concentrations, fluorescence, and photosynthesis measurements. These
effects on plant physiology and morphology can be detected and quantified via hyperspectral imaging
remotely over large areas, which has been used for decades to detect plant stress before it is visible
to the naked eye in efforts to limit reductions in agricultural crop yields, as well as to detect various
sources of contamination [47,48]. Using reflectance indices as a metric to estimate parameters such as
chlorophyll content, photosynthesis, and biomass may allow for the high-throughput determination
of not only plant stress, but the cause of stress, a necessary distinction when sensing for dangerous
explosive compounds. While current indices will be of use for traditional stress responses that may
result from explosives exposure, the development of an explosives-specific Index or set of indices
will aide in reducing false positives to more accurately pinpoint plants that have absorbed energetics.
Enhancing currently existing remote sensing technologies may be useful in detecting chemical exposure
in plants in the search for remnant landmines, other types of UXO, and contamination from a variety
of sources. Further research is underway to explore key wavelengths from reflectance derivatives,
as well as continuing to expand the types of species and explosives tested to better understand the
relationship between plants and xenobiotics for developing remote sensing techniques.

5. Conclusions

The results presented validate methods to delineate subsurface explosives over large areas at a
canopy scale using the remote sensing of vegetation with aerial-based hyperspectral systems. Current
detection methods for fugitive chemicals are all located within the minefields themselves and include
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people using electronic mine detectors or leading animals trained to smell explosives on leashes [49,50].
These methods are time-consuming, expensive, and require people to work in close proximity to
mines. Plants are also considered a hindrance to conventional mine detection and removal methods.
Using HSI for contaminated areas that are vegetated could be highly informative and applicable
over large areas in a relatively short amount of time. Within these datasets, spectral characteristics
may indicate the location of contamination based on vegetation’s ability to take up explosives and
consequent impact of these explosives on plant form and function. The methods developed herein can
be directly applied to assess potential landmine locations as well as translated to assess a wide variety
of environmental contaminants that have plant stress responses. Such remote sensing methods can not
only speed up landmine detection and remediation, but also make it safer by removing people from
minefields during the detection process. The development and implementation of ESIs from HSI may
be beneficial towards that goal.
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