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Abstract: The boreal tree line is in many places expected to advance upwards into the mountains
due to climate change. This study aimed to develop a general method for estimation of vegetation
height change in general, and change in tree height more specifically, for small geographical domains
utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may
subsequently be used to monitor vegetation and tree height change with detailed temporal and
geographical resolutions. A method was developed with particular focus on statistically rigorous
estimators of uncertainty for change estimates. The method employed model-dependent statistical
inference. The method was demonstrated in a 12 ha study site in a boreal–alpine tree line in
southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS
data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m
in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate
change. By following the area-based approach, predictions were produced for every individual 2 m2

population element that tessellated the study area. Two demonstrations of the method are provided
in which separate height change estimates were calculated for domains of size 1.5 ha or greater.
Differences in height change estimates among such small domains illustrate how change patterns
may vary over the landscape. Model-dependent mean square error estimates for the height change
estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual
covariance are provided. Findings suggested that the two latter sources of uncertainty could be
ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of
differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for
demonstration purposes, and thus may potentially be used to monitor tree line migration over time.

Keywords: Forest monitoring; Global change; Laser scanning; Small trees; Tree growth;
Model-dependent inference; Tree migration

1. Introduction

The world’s climate will undergo distinct alterations over the coming decades, leading to rapid
changes in basic growth factors, such as temperature and precipitation. This will influence the boreal
forest and its transition zones, leading to an increase in productivity [1]. Because the montane and
northern forests found in the transition zones between the boreal forest and the alpine and tundra
regions appear in areas where trees exist close to their tolerance limit in terms of temperature, these
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areas are characterized by steep temperature–productivity gradients. Even a moderate increase in
temperature may therefore lead to a rapid increase in the growth of existing trees [2,3], as well as
colonization of treeless areas and migration of the tree lines [4]. The dynamic global vegetation models
predict that by the end of the 21st century, the area of the arctic tundra will be reduced by 40% [5,6].
Other drivers of vegetation change also exist at the forest–tundra interface, like herbivory [7–9].
Summer farms and grazing by domestic animals, such as cattle and sheep, have been common in
many montane areas. Both the animals themselves and the human activity related to summer farming,
such as harvest of wood, have had large impacts on the montane forest and the tree line [7]. In areas
where summer farming and grazing animals have previously limited tree growth, the tree line and the
montane forest may thus expand towards higher elevations when this activity is reduced. Migration of
the alpine and northern tree lines will influence future carbon pools. A need therefore exists to monitor
vegetation changes in these ecotones [10].

Acquiring data for monitoring purposes over vast areas is expensive. So far, attempts to simplify
ground-based procedures, save costs, and make the monitoring uniform over large areas have relied
on remote sensing from space-borne platforms. Satellite remote sensing utilizing optical sensors has
been the dominant technology, but data from such sensors have limited capabilities for detecting subtle
changes in vegetation over short time periods.

Airborne laser scanning (ALS) has been proposed as a technique to monitor subtle changes near
tree lines, such as the colonization of treeless areas [11], and to assist in prediction and estimation of
tree height [12,13], tree height growth [13], and biomass [14,15]. Numerous recent studies (e.g., [16–18])
have shown that ALS data with point densities of 7–11 points m−2 may be applied to detect individual
pioneer trees in the alpine tree line. With such pulse densities, about 90–100% of the trees with heights
greater than 1 m are likely to be hit by laser pulses, resulting in echoes with height values greater than
zero, i.e., located above the terrain surface. Echoes with heights >1 m are mainly tree echoes. Rees [19]
anticipated that ALS could provide a means for discerning individual trees over hundreds of square
kilometers. In that study, a minimum height of 2 m was used as a criterion of a tree.

For trees <1 m in height, positive echo height above the terrain surface is a poor discriminator for
discerning individual trees. Using echo height as a predictor for the smallest trees will lead to large
commission errors (false positives) [20]. Other predictors such as laser backscatter intensity [12,21]
and variables characterizing the spatial context which potentially might be expected to differ between
trees and non-tree objects [12,22], contribute only marginally to improving identification of small
trees. Basing a monitoring system for following individual trees over time may therefore be a less
favorable strategy, leading to low accuracy of the change estimates. From a monitoring perspective,
identification of individual trees is not necessarily required for a meaningful quantification of tree
migration. Næsset and Nelson [11] proposed a statistical sampling approach by which the mean
difference (net change) in height for all echoes in a defined minimum monitoring unit, for example,
1 ha, is followed over time. Under such an approach, identification of individual trees is not a concern.
Even if it can be argued that tree line migration starts with individual pioneer trees moving further
into treeless areas, the appearance and growth of such individual trees will be captured by the estimate
for a monitoring unit as proposed by Næsset and Nelson [11]. Objects that may cause commission
errors in tree identification, such as rocks, hummocks, and other terrain structures will remain fairly
stable over time. This implies that net changes in height will only be due to changes in vegetation
height, provided that the vegetation height changes are properly calibrated with field observations to
account for differences between sensors [20,23] and terrain models [24].

Due to the uncertainty associated with the digital terrain model used as the reference surface [21]
and the fact that laser pulses often penetrate into a tree crown before an echo is triggered [11], it
will take some time from establishment of an individual seedling until a positive height value is
found in the ALS data. However, the probability of laser measurements for trees attaining positive
height values above the terrain model will increase gradually with increasing tree height. For example,
Thieme et al. [16] found that for a tree height of only 0.5 m, there was on average a 60% probability of a



Remote Sens. 2019, 11, 1804 3 of 29

positive laser height measurement when the echo density was 6.8–8.5 echoes m−2. Their study included
data for 744 trees collected along a 1500 km transect stretching along the entire Scandinavian mountain
chain, from 58N to 69N. Therefore, a methodology aimed at estimation of net changes in vegetation
height for small, geographical monitoring units might be able to capture subtle changes in height in a
very early stage after tree establishment. It would, however, be paramount to quantify the uncertainty
of such net height change estimates to provide a basis for statistical inference and to inform the extent
to which a net change in height could be expected to represent a statistically significant change.

The objectives of the current study were threefold. First, we aimed to develop a general
and operational method, using ALS data for estimation of net vegetation height change for small
geographical domains, that could subsequently be used to monitor vegetation height change with
detailed temporal and geographical resolutions. Second, we aimed to develop and devise a way of
estimating the uncertainty of the estimated vegetation height change and thus provide a basis for
statistical inference. An important aspect of this objective was to quantify the magnitude of the different
components of an estimator for uncertainty—an analysis that would be useful to inform decisions on
practical implementation of the method. Third, we wanted to demonstrate the feasibility of the method
based on bi-temporal ALS data and coincident ground observations of trees. A special application of
the proposed methodology would be to apply it to trees only, as opposed to other vegetation, which
would be of particular interest for monitoring tree line migration. Since trees need to reach a minimum
height before they can be identified using ALS data with high confidence, estimation of height change
of small trees would need an initial step involving tree identification. As part of the third objective,
we adapted and demonstrated the general methodology to a case where height change of trees was
estimated specifically. The bi-temporal data used in the current study covered a time span of six years.

2. Materials and Methods

2.1. Overview of the Methodology

A flowchart of the entire method is displayed in Figure 1. The method entails the following
six steps:

1. Wall-to-wall ALS data for the area of interest are required for the start point (T1) and the end
point (T2) of the observation period. Coincident field observations of vegetation height for a sample of
the same field objects must be provided at both points in time. A sample unit (field object) may be an
individual tree or a vegetation cylinder or sample plot (see further details in the discussion section).

2. If the ALS pulse density differs considerably between the two datasets, methods to obtain
similar densities in the two datasets may be considered.

3. ALS data are associated with the sample units, and the maximum ALS echo height at each
point in time is extracted for each unit.

4. The field sample observations are used to model the change in vegetation height, with
maximum vegetation height in the ALS data as the explanatory variable.

5. The area of interest is tessellated into regular population elements with the same size as
the sample units, and maximum ALS height is extracted for every element for each point in time.
The model from Step 4 is used to predict vegetation height change.

6. Height change is finally estimated for domains of interest following the area-based approach,
for example, for individual 1.5 ha cells, as in the current demonstration of the method (see details
below), larger domains, or any size domains found meaningful for a particular monitoring purpose.
Estimation and inference will follow model-dependent principles, i.e., the uncertainty of the estimates
will be addressed under a model-dependent inferential framework. The final product will be a spatially
detailed change map and consistent inference for change.
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Figure 1. Flowchart of the method to estimate change in vegetation height between the start point (T1)
and end point (T2) of an observation period for small domains of interest. ALS: airborne laser scanning.

A special application is dedicated to estimation of height changes of trees in particular, as opposed
to vegetation in general. Such an application is considered useful for monitoring tree line migration.
This application entails an additional modeling step (in Step 4) in which a model to predict the
probability of tree is applied initially, with subsequent tree height change prediction (in Step 5) and
estimation (in Step 6) for domains as detailed above. The additional model prediction step is accounted
for in the uncertainty analysis (in Step 6).

In the following, we first present the data that were used in the demonstration of the method,
and subsequently we detail all necessary steps described above. Finally, we present the statistical
estimators (applied in Step 6) and detail an empirical analysis to quantify the magnitude of the different
components of the estimator for uncertainty (Objective 2).

2.2. Study Area

The study area is located in the municipality of Rollag, southern Norway (60◦0′N 9◦01′E, 910–950 m
above sea level) (Figure 2). The entire study was conducted within a 200 m × 600 m rectangle. The work
took place in the boreal–alpine tree line, which at this location was around 900–940 m above sea
level. The main tree species in the trial area were Norway spruce (Picea abies (L.) Karst.), Scots pine
(Pinus sylvestris L.), and mountain birch (Betula pubescens ssp. czerepanovii). The total stem density
within the study area in 2006 was estimated to be 97 trees ha−1, of which only 15 trees ha−1 were taller
than 2 m [11].

2.3. Field Measurements

The purpose of the field work was to select and georeference individual trees (sample units) that
could be used as ground-reference for the analysis, and to measure physical properties that could
characterize these trees. Implications of using trees as sample units are addressed in the discussion
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section. The field work was conducted in the period of 23–30 August 2006 and then repeated six years
later, in the period 20–23 August 2012. We wanted to eliminate subjectivity in the tree selection, but at
the same time cover the full range of tree heights in the area and thus provide a dataset that could
support model construction.

2.3.1. Field Work in 2006

In 2006, the point-centered quarter sampling method (PCQ) [25] was used to select individual
trees for the study. The tree sampling was conducted according to PCQ at 40 systematically distributed
sample points within the 200 m × 600 m rectangle (Figure 2). It should be noted that due to time
constraints, only four points were measured on line #4, see Figure 2.

At each point, the closest tree in each of four height classes (<1 m, 1–2 m, 2–3 m, >3 m) within
each of the four quadrants around the points defined according to the cardinal directions, i.e., the NE,
SE, SW, and NW quadrants, was selected. Thus, a maximum of 16 trees were selected at each point.
It should be noted that the selection of trees was restricted to a maximum distance from each sample
point of 25 m [26].

The stem positions of the trees were recorded with a real-time differential global positioning
system (GPS) and global navigation satellite system (GLONASS), with a local reference receiver for
differential correction located within the study area (Figure 2) at a national reference point of the
Norwegian Mapping Authority. The expected accuracy was 3–4 cm [11]. For each tree, tree species,
tree height, stem diameter at root collar, and crown diameter in two perpendicular directions (N–S
and E–W) were recorded. In total, 342 trees were selected, ranging between 0.11 and 5.20 m in height.
Details regarding the field work in 2006 can be found in Næsset and Nelson [11]. It is important to
note that the measured trees took many different forms, including distinct and solitary trees, groups of
trees—for spruce often as krumholtz, and birch appearing as solitary trees as well as in the form of tall
scrubby vegetation (Figure 3). Even in the latter case (scrubby vegetation), only a single individual tree
was selected and measured by strictly following the protocol outlined above.

2.3.2. Field Work in 2012

When the field work was repeated in 2012, the already defined 40 sample points were once again
identified with real-time GPS + GLONASS. For each of the 40 points, the PCQ sampling was then
conducted independently of the sampling in 2006, but according to the same protocol. Many of the
trees selected in 2012 were the same as those measured in 2006. In addition, we identified all trees that
had been measured in 2006, including those that were not selected for the 2012 PCQ sample. For the
current study, we measured and analyzed all selected trees from 2006 and which still were alive in
2012. The individual tree recordings in 2012 followed the same protocol as in 2006.

2.3.3. Combining 2006 and 2012 Field Data

In the following, we let h2006 and h2012 denote field-measured tree height of an individual tree in
2006 and 2012, respectively. Among the 342 trees recorded in 2006, 316 (Table 1) were still alive and
were measured in 2012.

Because trees measured in the field on both occasions were required for constructing the model of
height change using the ALS data (see details below), only trees that had laser recordings (laser echoes)
within their crown periphery at both points in time could be used for height change modeling.
Among the 316 trees, 253 trees satisfied this criterion and constituted the field dataset used for
model construction.

It should be noted that even though trees that had died after 2006 were not included in the second
measurement, 83 of the 316 trees that were measured twice displayed a negative height development
over the observation period. Causes of negative height development could be dieback or breakage of
the upper parts of tree crowns and snow pressure during winter. There was a mean increase in tree
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height of the 316 trees by 0.19 m (Table 1) over the course of the six years, whereas there were large
differences between species (spruce: +0.38 m; pine: +0.29 m; birch: +0.02 m).
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Figure 2. (a) Location of the study area and (b) design of the trial. The black dots are the point-centered
quarter sampling points, which were centers of the 25 m radius plots (gray circles) arranged along
four sample lines; green is defined as forest according to the official N50 topographic map series; light
yellow is above the tree line; the black triangle is the reference point (base station).

Table 1. Summary of field measurements of 316 trees measured in both 2006 and 2012.

Tree Species Characteristic n 2006 2012

Range Mean Range Mean

Norway spruce Tree height (m) 122 0.25–5.20 1.83 0.29–6.30 2.21
Crown area a (m2) 122 0.034–14.522 2.314 0.061–23.562 3.070

Scots pine Tree height (m) 31 0.11–1.01 0.41 0.28–1.59 0.70
Crown area a (m2) 31 0.008–0.648 0.129 0.009–1.429 0.315

Mountain birch
Tree height (m) 163 0.24–4.08 1.54 0.10–3.80 1.56

Crown area a (m2) 163 0.016–10.948 1.636 0.015–8.482 1.802

All trees
Tree height (m) 316 0.11–5.20 1.54 0.10–6.30 1.73

Crown area a (m2) 316 0.008–14.522 1.75 0.009–23.562 2.151
a Crown area calculated as the area of an ellipse with the perpendicular crown diameter measurements as axes.
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2.4. Laser Scanner Data

2.4.1. Laser Data Acquisition in 2006

ALS data were acquired on 24 July 2006 under leaf-on conditions. A fixed-wing aircraft carried
the Optech ALTM 3100C laser scanning system. Average flying altitude was 700 m above ground level.
Pulse repetition frequency was 100 kHz, scan frequency was 70 Hz, and maximum scan angle was
±7 degrees. Flight speed was approximately 80 ms−1 and average footprint diameter was estimated to be
18 cm. Two parallel flight lines were flown over the area. However, to keep the density of recorded echoes
as constant as possible across the entire study area and thus obtain a homogenous dataset with respect
to laser measurement/tree interactions, echoes in the overlapping area between the two strips were
discarded from either of the strips. The average echo density within the study area was 7.1 echoes m−2.

2.4.2. Laser Data Acquisition in 2012

In 2012, the ALS data were acquired on 28 August with a Leica ALS70 laser scanner mounted on a
fixed-wing aircraft. Average flying altitude was 1160 m above ground. The study area was covered by
a single strip. Pulse repetition frequency was 228.4 kHz, scan frequency was 68.9 Hz, and maximum
scan angle was ±8 degrees. Flight speed was approximately 70 ms−1 and average footprint diameter
was estimated to be 26 cm. The average echo density was 7.8 echoes m−2.

2.4.3. Laser Data Processing

For each of the ALS datasets, the point cloud was classified into ground and non-ground echoes by
the data vendors (2006: Blom Geomatics, Norway; 2012: TerraTec, Norway). The classifications were
carried out with the TerraScan software [27] following the methodology described by Axelsson [28].
For the 2006 data, an iteration angle of 9.0 degrees was used and the iteration distance was 1.0 m.
Corresponding parameter values for the ground classification in 2012 were 7.5 degrees and 1.9 m,
respectively. The resulting digital terrain models obtained as triangulated irregular networks (TINs)
were used as terrain reference surfaces, and normalized height values were computed for all “first”
and “single” echoes relative to the TINs by linear interpolation. Only “first” and “single” echoes with
normalized height values were used in the subsequent analysis. However, although the two laser
scanners were capable of recording multiple echoes per pulse, very few pulses actually had more than
a single echo due to the minimum vertical resolution between subsequent echoes for a pulse and the
generally low vegetation in the area [20]. For example, for the 2012 data, only 0.17% of the pulses had
multiple (>1) echoes.

2.4.4. Laser Data Thinning

In change studies based on ALS, it is important to control for differences between the ALS data
acquired at different points in time in cases where ground sample data for model calibration are
unavailable for each point in time.

Numerous technology-specific effects on the data may easily be confounded with the change
phenomenon under study. Examples are differences in the constructed terrain elevation used as
reference surface for the height normalization of the laser echoes, differences in sensor properties
influencing the recorded echoes, and differences in laser data acquisition parameters such as, for
example, flying altitudes, laser footprint sizes on the ground, incident angles, and pulse density.

If, however, the analysis or application in question relies on a modeled relationship between
ALS data at multiple points in time and change in a vegetation property observed on the ground at
coincident points in time, the modeled relationship will in fact incorporate technology-specific and
acquisition-specific effects, although the different effects cannot be separated. In the current study, this
was the situation; we had access to field data for individual trees that were measured at both points in
time, and the model construction of change would in fact incorporate any acquisition-specific effects.
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However, for the sake of generality, the following should be noted. One particular effect that
actually can be circumvented with simple methods, regardless of the field data at hand, is the influence
of differences in pulse density between acquisitions. The analysis of change in vegetation height in the
current study was based on the maximum height value of ALS echoes within tree crown polygons (see
details below). Since maximum height is an order statistic [29], it is a monotone increasing function of
the number of echoes for a given target area. In the current study, the 2006 and 2012 ALS data had
almost the same echo density (7.1 versus 7.8 echoes m−2, see details above), and since there was just
a single echo per pulse in the data at hand for >99% of the pulses (see above), there would be only
marginal effects of differences in pulse density. However, for more pronounced differences, one might
expect that greater pulse densities would result in greater maximum height values. Thinning the ALS
datasets to similar densities would mitigate this effect. Numerous thinning algorithms have been
proposed. For example, Magnusson et al. [30] and Gobakken and Næsset [31] tessellated the study area
into regular grid cells and selected a single echo randomly within each cell, whereas Holmgren [32]
discarded echoes within and between individual scans by requiring a minimum horizontal distance
and a minimum difference in time of emission of the retained echoes. The latter approach aimed to
mimic the pulse distributional pattern of the laser scanner. All these approaches would satisfy the
requirements for change studies. Of particular interest for change studies is a method proposed by
Magnussen et al. [33]. They started with the ALS dataset with the smallest pulse density, and for every
echo in this dataset they searched for the nearest neighbor echo in the high-density dataset. The search
was restricted by a maximum searching distance. All other echoes of the high-density dataset were
discarded. Even though this thinning reduced the number of echoes in their study by about 80%, the
final uncertainty of estimates of change in biomass, which was their target parameter, was only slightly
reduced. In the current study, we conducted a nearest neighbor thinning, which reduced the 2012 ALS
echo density from 7.8 to 7.1 echoes m−2.

2.5. Laser Data Extraction for Sample Trees and Population Elements

Crown polygons for individual trees were constructed as ellipses around the recorded stem
positions with the perpendicular crown diameter measurements (N–S, E–W) as minor and major axes.
The tree crown polygons were laid atop the two ALS datasets and maximum echo height for the
polygon was extracted for each point in time. These polygon-wise maximum heights were denoted
as hmax2006 and hmax2012, respectively. Only the maximum ALS heights within each crown polygon
were used as independent variables in the subsequent analysis in the current study (see details below),
because use of, for example, deciles or moments of the ALS height distributions, which are commonly
used for modeling biophysical properties of larger forest trees, would exclude a large number of trees
from the dataset, because a large fraction of the small trees had only a single echo (see examples in [11]).
Furthermore, the maximum ALS height of the crown polygon has previously been shown to be a
strong predictor for tree height of small trees [13].

The 200 m × 600 m study area was tessellated into regular population elements of 2 m2 size.
This size was approximately equal to the mean crown area of the 316 trees (Table 1) in 2006 (1.75 m2)
and 2012 (2.15 m2). The resulting 60,000 population elements constituted the overall population in
a statistical sense (see details below). The maximum echo height was extracted for each individual
element at each point in time.

2.6. Tree Height Change Model Construction

ALS-assisted estimation of change based on direct as well as indirect approaches to modeling
has been demonstrated in previous studies [33–37]. Direct modeling entails model construction with
change as the dependent variable and ALS-derived variables from both points in time or differences
between corresponding variables for each point in time as independent variables. Indirect modeling
entails the construction of separate models for the state variables (e.g., height or biomass) for each
point in time with time-specific ALS-derived variables as independent variables in the models, or of
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longitudinal models with the state variable as dependent variable and with ALS-derived variables
for each point in time as independent variables in the same model. Change is then estimated as the
difference between predictions of the state variables. The direct method is often considered preferable
because only a single set of prediction errors must be accommodated (e.g., [34,38]). In studies on
design-based and model-assisted biomass change estimation supported by ALS data, Næsset et al. [35]
reported marginally greater precision of estimates with the direct method, while McRoberts et al. [36]
reached the opposite conclusion.

In the current study, the 253 trees mentioned above were used to model change in height.
Under model-dependent inference, which was adopted in the current study due to the lack of probability
samples of ground observations, the same trees would have to be used for model construction for each
point in time under an indirect approach to estimation. This implies that an estimate of covariance
between the mean estimates of height for the two points in time would be necessary. This would
add an extra level of complexity to the uncertainty analysis. A direct approach to modeling was
therefore chosen. It should be noted, though, that choice of approach to height change estimation in
the boreal–alpine transition zones (direct versus indirect) may merit consideration in future studies.

A simple linear regression model with the maximum height at both points in time (hmax2006 and
hmax2012, respectively) as independent variables was adopted:

∆h = β0 + β1hmax2006 + β2hmax2012 + ε, (1)

where ∆h = h2012 − h2006 is the field-measured change in height and ε is a normally distributed,
independent error term. In an initial analysis, this model was fitted with the ordinary least-squares
method. The initial analysis revealed that some observations with obvious ALS measurement errors
were included in the material. Inspection of individual residuals revealed that six trees (five birch
and one spruce) had higher ALS heights than the field-measured heights in the 2012 survey. They all
appeared in groups of trees (see illustration in Figure 3) with taller trees in close proximity. The ALS
recordings were obviously from these taller trees and not from the selected trees. Since the purpose
when subsequently applying the fitted model was to predict height change based on the ALS height data
for the objects that were actually measured by the laser, it would have been illogical to keep these six
trees in the model, and they were therefore discarded in the final model construction. In a model based
on the 247 trees, statistical tests [39,40] rejected the hypothesis of homoscedastic residuals (p < 0.01).
The model was fitted using the lm function of the “stats” package with R statistical software [41].
In the presence of heteroscedasticity, heteroscedasticity-consistent covariance matrix estimators were
used, as recommended by Long and Ervin [42]. The heteroscedasticity-consistent covariance matrix
estimators of type HC3, presented by MacKinnon and White [43], were computed using the “sandwich”
package [44] in R.

2.7. Modeling Probability of Tree

When used for prediction, the model in Equation (1) will produce height change predictions for
population elements, regardless of whether the vegetation within elements consists of trees, bushes, or
other ground vegetation. Some implications of using a model calibrated with tree measurement to
predict change even for non-tree vegetation are further elaborated in the discussion section, and ways
for improving this methodology prior to operational implementation are proposed.

For certain monitoring purposes, however, like monitoring of tree line migration, the trees, rather
than vegetation in general, are of primary interest. For prediction of height change of trees in particular,
a prior step is required to distinguish trees from other vegetation. As noted in the introductory section,
there is hardly any information that can be derived from ALS (e.g., backscatter intensity or spatial
distribution of echo heights) that can be used to effectively separate small trees from other vegetation,
apart from the height information itself. We therefore developed a strategy using a prior step in
which the maximum height values were used as independent variables for construction of a model
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for the probability of tree. However, positive height values can also represent objects other than
trees, such as rocks, tussocks, and hummocks, which are common in the alpine tree line. To avoid
large commission errors in tree classification based on ALS echo height, a height threshold may be
introduced to separate trees from non-tree objects. In the current study area, Næsset and Nelson [11]
and Næsset [21] adopted the PCQ protocol to sample and measure non-tree objects as well, and they
collected 159 such objects (rocks, tussocks, and hummocks) for the 40 PCQ sample points, according to
the same sampling protocol as detailed for trees (see previous sections). The maximum non-tree object
height was 1.10 m, while the mean height was 0.28 m [21]. A height value of 1.10 m was therefore
a reasonable threshold to distinguish between trees and non-trees. However, that also restricts the
target tree sizes of a change monitoring application to relatively large trees. Clearly, this threshold
must be adjusted according to local conditions. For example, in areas characterized by large boulders,
such as previous ablation areas after the glacial period, the proposed methodology may have clear
limitations, although other techniques, such as contextual methods, may then help to eliminate such
non-tree objects from the analysis.

In the current study, we proceeded with a binomial logistic regression model with the two
independent variables used in Equation (1):

log
(
πTREE

1−πTREE

)
= β1 + β2hmax2006 + β3hmax2012 + ε, (2)

where πTREE is the probability of tree defined by a height ≥1.10 m at both points in time, and
hmax2006 and hmax2012 are tree-wise maximum heights from the ALS datasets from 2006 and 2012,
respectively. The model was constructed using the 247 trees, among which 162 exceeded 1.10 m in
height at both points in time. The model was fitted using the glm function of the “stats” package [41].
The Hosmer–Lemeshow test [45], as implemented in the “ResourceSelection” package [46], and
accuracy in leave-on-out cross validation were used to assess the model fit. In the cross validation,
prediction was assessed according to a classification into discrete values, i.e., if πTREE > 0.5, it was
classified as TREE. Heteroscedasticity-consistent covariance matrix estimators of type HC3 were
computed using the “sandwich” package [47] in R.

Prediction of probability of tree ≥1.10 m in height was subsequently performed according to the
fitted model, as follows:

π̂TREE =
exp

(
β̂1 + β̂2hmax2006 + β̂3hmax2012

)
1 + exp

(
β̂1 + β̂2hmax2006 + β̂3hmax2012

) . (3)

Details on how predictions by the binomial logistic model and by the height change model were
combined to produce mean height change estimates for trees are provided in Section 2.9. Nevertheless,
using a model to predict the probability of tree ≥1.10 m for population elements with subsequent
height change prediction has the following implications for the monitoring application: the application
will give greater weight to trees that had already reached a height of 1.10 m at the beginning of
the observation period and which still are greater than 1.10 m in height at the end of the period.
This implies that trees established during the observation period or trees that have died during the
period to a lesser degree will be accounted for in the mean height change estimate. However, since the
same modeling approach may be used for subsequent observation periods, trees that were established
during the first period will, to a greater degree, be accounted for in the height change estimates for a
later period, provided that they do not die. Likewise, trees that die after the second point in time will
have a smaller impact on the height change estimates of subsequent periods. Thus, height changes will
consistently tend to be attributed to target trees ≥1.10 m in height at the beginning and the end of a
period, while changes in the population of target trees in the form of recruitment and mortality that
break the 1.10 m height threshold will tend to be accounted for by the transition from one observation
period to the next.
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2.8. Model Parameter Independence

The analysis of the proposed application assumed that the parameter estimates of the two models
Equations (1) and (2) were independent. One may suspect that estimates of parameters for the two
models were correlated because both models were constructed using the same data. If parameter
estimates were correlated, simultaneous parameters estimation for the two models may be considered
to obtain a simultaneously estimated heteroscedasticity-consistent variance–covariance matrix.

A bootstrap resampling with 1000 repetitions was conducted, with re-fitting of the models in
each repetition. The correlation between the parameter estimates was estimated and a simultaneously
estimated heteroscedasticity-consistent variance–covariance matrix was obtained. This matrix was
compared to the two independent matrices, estimated separately from the original sample.

The results of this evaluation showed that the independently estimated variance–covariance
matrices of the two models were similar to the corresponding matrices estimated with bootstrap
resampling. The four correlations among the four parameter estimates of the two models resulting
from the bootstrap resampling were 0.07, 0.04, −0.07, and −0.03, respectively. Therefore, for this study,
we proceeded with the initially estimated variance–covariance matrix that assumed independence.
The variance–covariance matrices for the two models are displayed in Tables 2 and 3.

2.9. Model Prediction

After the models in Equations (1) and (2) were constructed, the model for height change Equation (1)
was used to predict height change for all the 2 m2 population elements that tessellated the study area.
The result was a vegetation height change map with element-wise predictions (see Figure 6B).

Similarly, the constructed model for probability of tree ≥1.10 m in height Equation (2) was used for
element-wise predictions Equation (3) for every 2 m2 element across the study area. These predictions
were used in two different ways in the analysis.

First, denoted “Alternative 1,” the predictions were classified as TREE or NON-TREE. If π̂TREE > 0.5,
the element was classified as TREE and assigned the value of π̂TREE = 1. If π̂TREE ≤ 0.5, the element
was classified as NON-TREE and assigned the value of π̂TREE = 0.

Second, denoted “Alternative 2”, the predicted probabilities of π̂TREE for all elements were used
directly without any reclassification.

2.10. Change Estimation

2.10.1. Point Estimators of Change

The general approach to estimation adopted in the proposed method is known in the literature as
the area-based approach. In the current study, we did not have a probabilistic sample that would have
allowed design-based inference. Model-dependent estimation and inference was therefore adopted.
Model-dependent inference [48] has been applied frequently in recent years when estimating biomass,
volume, and other biophysical parameters using remotely sensed data (e.g., [49–52]). An overview of
the concept and a brief review of recent studies can be found in Ståhl et al. [53].

Let U be the entire population of elements (the 60,000 elements of size 2 m2 that tessellate the study
area) where U = {1, . . . , k, . . . , N}. Furthermore, let ∆̂hk denote the predicted height change according
to the model in Equation (1) for element k. Thus, the collection of spatially distributed predictions for
the N elements constitutes the height change map mentioned above (Figure 6B). Mean height change
across the entire study area can be estimated by

∆̂h =

∑
k∈U ∆̂hk

N
. (4)
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This estimator may be seen as a special case in which all k elements are given the same weight,
namely the value 1, and therefore the sum of the weights across all k elements is equal to N. The estimator
in Equation (4) may also be applied to smaller domains of U.

When, however, an estimate of mean height change for trees was sought—as opposed to change
in height for vegetation in general, predictions of probability of TREE (π̂TREE, k) according to the model
in Equation (2) were used to weight all k elements. In the case denoted Alternative 1, the weights
always took the values 1 (TREE) or 0 (NON-TREE) (see details above). In Alternative 2, the weights
took the actual predicted values π̂TREE, k. The estimator can then be formulated as

∆̂hTREE =

∑
k∈U ∆̂hk π̂TREE,k∑

k∈U π̂TREE,k
. (5)

2.10.2. Estimators of Mean Square Error

Because the model-dependent estimator of the population mean cannot be assured to be unbiased,
the term mean square error (MSE) rather than variance was used to characterize the uncertainty of
model-dependent estimators. For large areas, model-dependent MSE estimators of the point estimators
in Equations (4) and (5) will depend mainly on the uncertainty of the estimates of the model parameters
(e.g., [54–56]). This has also been illustrated by simulation studies (e.g., [57]). For finite populations
(small domains), an additional source of uncertainty must be accounted for, namely the residual
error. McRoberts [58] derived a model-dependent variance estimator that accounted for residual error
variance and incorporated a spatial autocorrelation structure of the residuals. Breidenbach et al. [51]
demonstrated with empirical data of timber volume from small forest stands and auxiliary data from
image matching of aerial photography that ignoring the residual error variance component may induce
bias in the mean square error estimator. Heteroscedasticity may complicate the mean square error
estimation even more [50,51,59]. In the following, we provide details on how the various mean square
error components were addressed, i.e., (1) the variance due to uncertainty of the model parameters
and the residual error (2) variance and (3) spatial covariance components. These three components
were treated as additive to obtain the total mean square error.

Estimators Accounting for Model Parameter Uncertainty

Under the model-dependent inferential framework, the variance due to uncertainty of the model
parameters can be approximated either by using a closed-form formula based on a first-order Taylor
series approximation (see e.g., [55]), or by using Monte Carlo simulations in the form of, for example,
parametric bootstrap. Although analytical model-dependent variance estimators that account for
model parameter uncertainty have been adopted in numerous studies on forest-related properties in
recent years (e.g., [49]), parametric bootstrap has several features that make it attractive in the current
study. As noted by Bollandsås et al. [60], (1) it does not rely on a linear approximation, (2) it allows
for estimation of the prediction errors and confidence intervals for other statistics than the mean, for
example, for each individual population element, and, of particular relevance to the current study, (3) it
can easily be adapted to more complex situations with several subsequent models used for predictions.
The latter approach was recently demonstrated in a sample survey in interior Alaska. In the Alaska
study, ALS strip samples and field surveys were adopted to estimate biomass, by which a first model
with binary response (biomass/non-biomass) was used to predict the probability of biomass along
the ALS strips and a second model was used to predict biomass for population elements that were
predicted to contain biomass quantities greater than zero [61].

In the current study, we adopted parametric bootstrap, as in Ene et al. [61]. The technique has also
been demonstrated recently in remote sensing studies by Bollandsås et al. [60] and Strîmbu et al. [62].
In the following, it is assumed that the model parameter estimates of the predictive models (β in the
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models in Equations (1) and (2) are independent (see Section 2.8) and follow asymptotically multivariate
normal distributions, i.e.,

β̂ ∼ N
(
E[β], Σβ̂

)
, (6)

where the expected value of the vector of β̂ estimates is E[β] and Σβ̂ is the heteroscedasticity-consistent

estimates of the variance–covariance matrix of β̂.
First, we wanted to establish a bootstrap procedure for a case in which only one model was

involved, i.e., estimation of mean change in vegetation height following the model in Equation (1)
and the estimator in Equation (4). By sampling from the multivariate distribution in Equation (6), a
large parametric bootstrap sample of random vectors βPB ∼ N

(
β̂, Σβ̂

)
was generated. The sample

was denoted SPB, where SPB = {1, . . . , l, . . . , M}. This sample can be used to produce new predictions
of ∆h, according to Equation (1). Predictions of ∆h were produced for all M random vectors βPB and
for all N population elements. Thus, we obtained unique predictions ∆̂hPB,k,l for k ∈ U and l ∈ SPB.
A parametric bootstrap variance estimator for the point estimator in Equation (4) is

var
(
∆̂h

)
par

=
1

M− 1

∑
l∈SPB

(
∆̂hPB,l − ∆̂hPB

)2
, (7)

where
∆̂hPB,l =

1
N

∑
k∈U

∆̂hPB,k,l (8)

and
∆̂hPB =

1
M

∑
l∈SPB

∆̂hPB,l. (9)

When two subsequent prediction models were involved in the estimation to obtain height change
estimates of trees only, estimation of the uncertainty of the height change predictions became more
complicated. In addition to the bootstrap sample of random vectors βPB in Equation (6), a parametric
bootstrap sample of random vectors β′PB ∼ N

(
β̂
′, Σ

β̂
′

)
, denoted S′PB, was generated for the model in

Equation (2) as well. Here, S′PB = {1, . . . , p, . . . , Q}. For each vector p among the Q vectors, a prediction
of π̂TREE was produced for all Q random vectors β

′

PB and for all N population elements. This resulted
in unique predictions π̂TREE, PB,k,p for k ∈ U and p ∈ S′PB.

A parametric bootstrap variance estimator for the point estimator in Equation (5) was then
obtained by combining all Q simulated realizations of π̂TREE with the M simulated realizations of ∆̂h.
The variance estimator can be formulated as

var
(
∆̂hTREE

)
par

=
1

QM− 1

∑
p∈S′PB

∑
l∈SPB

(
∆̂hTREE,PB,l,p − ∆̂hTREE,PB

)2
, (10)

where

∆̂hTREE,PB,l,p =

∑
k∈U ∆̂hPB,k,lπ̂TREE,PB,k,p∑

k∈U π̂TREE,PB,k,p
(11)

and
∆̂hTREE,PB =

1
QM

∑
p∈S′PB

∑
l∈SPB

∆̂hTREE,PB,l,p. (12)

As for the point estimator in Equation (5), the variance was estimated for the two approaches,
Alternative 1 and Alternative 2. In the case denoted Alternative 1, the weights (π̂TREE,PB,k,p) always
took the values 1 (TREE) or 0 (NON-TREE), according to the rules outlined above. In Alternative 2, the
weights took the actual predicted values.
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Estimators Accounting for Residual Variance

Analytical estimators of residual variance under heteroscedasticity have been adopted in previous
analysis of important parameters encountered in forest surveys, such as forest area, volume, and
biomass (e.g., [50,51,58]). In the current study, every geographical domain subject to estimation and
analysis had sample units (ground observations of height change) that could be used to provide
estimates of residual variance. Thus, for a particular domain with a sample S with n sample units,
S = {1, . . . , k, . . . , n}, the residual variance for the point estimator for mean vegetation height change
Equation (4) can be formulated as

var
(
∆̂h

)
res

=
1

Nn

∑
k∈S

(
∆hk − ∆̂hk

)2
. (13)

For the point estimator of mean height change of trees ≥1.10 m Equation (5), we obtain

var
(
∆̂hTREE

)
res

=
1

Nn

∑
k∈S

(
∆hkIk − ∆̂hkπ̂TREE,k

)2
, (14)

where Ik is an indicator of TREE (Ik = 1) or NON-TREE (Ik = 0).
As for the variance estimator in Equations (10)–(12), the residual variance was estimated for the

two approaches, Alternative 1 and Alternative 2.

Estimators Accounting for Residual Covariance

Residual covariance of substantial magnitude, as compared to the other sources of uncertainty
when estimating forest resource parameters for small areas, has been encountered for shorter distances
in several studies (e.g., [50,51]), while at greater distances—and consequently for larger areas—the
residual covariance is often assumed or found to be negligible in magnitude [50,55]. Analytical ways
of addressing the residual covariance have been demonstrated by, for example, Breidenbach et al. [51].
An essential part of the analysis of the residual covariance is the determination of the spatial
autocorrelation of the residuals. Spatial correlation, ρ, is often estimated via a correlogram using the
model prediction residuals when fitting the correlogram. Assuming that a correlogram has been fitted
and that ρ can then be predicted to obtain predicted values of the correlation for all combinations of the
N population elements in U, the residual covariance for the point estimator of mean vegetation height
change Equation (4) for a particular domain for which we had actual observations of the residuals, can
be estimated by

cov
(
∆̂h

)
res

=
1

nN2

∑
k∈S

(
∆hk − ∆̂hk

)2 ∑
k∈U

∑
l∈U

ρ̂kl, k , l , (15)

where ρ̂kl is the predicted value of the residual correlation between elements k and l in U and the
correlogram was fitted using the residuals ∆hk − ∆̂hk and ∆hl − ∆̂hl.

Similarly, for the point estimator of mean height change of trees ≥1.10 m Equation (5), the
corresponding residual covariance can be estimated according to

cov
(
∆̂hTREE

)
res

=
1

nN2

∑
k∈S

(
∆hkIk − ∆̂hkπ̂TREE,k

)2 ∑
k∈U

∑
l∈U

ρ̂kl, k , l, (16)

where the correlogram was fitted using the residuals ∆hkIk − ∆̂hkπ̂TREE,k and ∆hlIl − ∆̂hlπ̂TREE,l.

2.10.3. Assessment of Bias Properties of the Point Estimators

Assessment of the bias properties of the estimator for mean height change for all vegetation
and the two estimators for mean height change for trees ≥1.10 m (Alternatives 1 and 2) can only be
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performed by exhaustive simulations in which the entire population is known. In practice, that can only
be achieved by using an artificial population. Such a task was outside of the scope of the current study.

However, (1) when the model(s) exhibits no systematic lack of fit to the sample data and (2) the
moments of the independent variables in the sample correspond well to the moments of the population
values, estimators of the mean are generally considered unbiased. We assessed the fit of the models
and calculated the two first moments.

Furthermore, because we adopted in the most complex case of estimating height change for trees
≥1.10 m a sequence of two subsequent model predictions, we also assessed the resulting residuals of
this two-step prediction procedure to identify any potential lack of fit in the two-step case. This was
done by estimating and observing the mean error for the sample according to

ME =

∑
k∈S ∆̂hkπ̂TREE,k∑

k∈S π̂TREE,k
−

∑
k∈S ∆hkIk∑

k∈S Ik
, (17)

where, as before, the weights (π̂TREE,k) always took the values 1 (TREE) or 0 (NON-TREE) for
Alternative 1 according to the rules outlined above, while in Alternative 2, the weights took the actual
predicted values.

2.11. Analysis

The first step of the analysis was to construct the regression model for change in vegetation height
based on the 247 trees that were measured twice (Section 2.6). Subsequently, the logistic regression
model for probability of tree ≥1.10 m in height was fitted with the same trees (Section 2.7).

Once the regression models were constructed, we proceeded with the estimation. First,
we estimated mean change in vegetation height across the entire study area, according to Equation (4),
by using model predictions from the height change model Equation (1). We then estimated mean
change in height for trees ≥1.10 m. This was done according to the estimator in Equation (5) by
using model predictions of probability of tree Equation (3) and model predictions of height change
Equation (1).

Two demonstration cases of special interest were identified. First (Case A), we tessellated the
study area into 1.5 ha cells that may serve as the primary monitoring units in, for example, a tree line
monitoring program. This size was chosen purely for demonstration purposes, and this size can be
changed to any size found meaningful for a particular monitoring purpose. Nevertheless, a size of
1.5 ha would allow a tessellation of the current study area into eight individual cells, which is useful to
demonstrate to what extent cells of the chosen size would capture statistically significant differences
in height growth. Further, as residual covariance may be an issue in model-dependent inference for
small areas, we took the opportunity to evaluate the magnitude of the different components of the
MSE estimate for this particular size, as this may inform whether 1.5 ha or even smaller areas may be
meaningful sizes in future designs of monitoring applications.

Second (Case B), despite the very limited geographical extent of the study area (200 m × 600 m),
it displayed variation in wind exposure, temperature, soil depth, and moisture due to its location
on and along a small ridge with variations in aspect. As discussed by Kambo and Danby [63], these
are all factors influencing seedling establishment, growth, and mortality in tree line environments,
and aspect-related differences have been established in the literature in multiple forest, tree line, and
tundra sites [63]. Thus, we divided the area into four sub-regions (see Figure 6A) according to aspect,
slope, elevation, and soil depth (occurrence of bedrock outcrops). This was done on the basis of
aerial photography, the digital terrain model, and the structure of the vegetation as it appeared in the
ALS data. These sub-regions may reflect biologically meaningful differences in vegetation and tree
productivity, and this Case B was included to demonstrate how the proposed method could be used
for ecologically oriented analysis. It should be noted, though, that the focus was on technical aspects
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of the estimation process and not on a biological interpretation of the results. Estimates of change in
vegetation height and tree height were produced for these four sub-regions as well.

The final step of the analysis was to estimate the various MSE components for the entire study
area and for each geographical domain (eight 1.5 ha cells and four sub-regions) subject to analysis.
This analysis started with the construction of separate correlograms for the residuals for each domain
of interest. Correlations based on the observed residuals were graphed and then visually inspected.
For natural phenomena, in general, it is common to observe greater correlations at shorter distances
and then declining correlations with increasing distances. Such spatial structures can be modeled, for
example, by some exponential model form. In the current dataset, no such spatial structure could be
observed (see examples in Figure 4). Simple linear regression models of the form

ρ = β0 + β1D + ε (18)

appeared to be suitable, where D is the distance between pairs of residuals. In total, 39 correlogram
models were constructed according to Equation (18), i.e., separate models for each domain subject
to estimation, and for change in vegetation height for all vegetation and for trees ≥1.10 m in height.
Examples of these models are graphed in Figure 4.

The results of the model construction revealed p-values of β̂0 ranging from 0.08 to 0.99 for 37 of
the 39 models. Similarly, the p-values of β̂1 were in the range of 0.09 to 0.96 for the 37 models. When β̂1

is not statistically significantly different from zero, the residual correlation can be considered constant
across different spatial ranges. Furthermore, when β̂1 is not statistically significantly different from
zero, the spatially constant correlation is actually zero as well. We therefore concluded that the residual
covariance components of the estimates of MSE ( ˆMSE) would be zero and could be ignored in these
37 cases. In the two remaining cases, namely the models for Alternatives 1 and 2 in Cell #2 (see Figure
6A), β̂0 and β̂1 were positive and negative, respectively, such that at the average distance of the (N – 1)N
pairs of the covariance estimator (65.8 m), the two autocorrelation models would result in predicted
values of ρ̂kl close to zero. Even in these two cases, the residual covariance could therefore be ignored
cf. Equation (16).

In the characterization of the uncertainty of the various point estimates of height change,
we therefore proceeded with estimating MSE by adding the two remaining variance components,
accounting for model parameter uncertainty Equations (7) and (10) and residual variance
Equations (13) and (14). Subsequently, we calculated the standard error of the mean estimate (SE;
square root of ˆMSE) and a 95% confidence interval of the mean estimate. The proportions of ˆMSE that
were attributed to the residual variance were also calculated.

In the bootstrap variance estimation used to characterize the model parameter uncertainty, the
bootstrap was repeated until the mean variance over replications stabilized. Stabilization was judged
by visual inspection of graphical plots of the mean variance. For some of the estimates, stable variances
were obtained with fewer than 1000 simulated realizations, while for other estimates, 2000 realizations
were needed to reach stable estimates. Thus, 2000 realizations were used in all simulations reported in
this study.

Finally, we estimated the mean error of the mean height change estimates of the trees ≥1.10 m for
Alternatives 1 and 2 for the entire study area, and for the smaller domains using the trees observed in
the field. The mean error was estimated according to Equation (17).
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Figure 4. Autocorrelation of observed residuals across the entire study area (solid lines) and predicted
autocorrelation (dotted lines) for model of change in vegetation height (top) and change in height of
trees ≥1.10 m in height according to Alternative 1 (middle) and Alternative 2 (bottom).

3. Results and Discussion

3.1. Model Construction

Results for the models for height change based on the 247 trees are displayed in Table 2, which
also includes the estimated heteroscedasticity-consistent variance–covariance matrix for the parameter
estimates that was needed for the parametric bootstrap variance estimation.

All parameter estimates were highly significant (p < 0.001) and the model displayed an adequate
fit to the data with R2 = 0.437 and RMSE = 0.293 m. The signs of all parameter estimates were also
logical, with a negative sign for the parameter estimate for the ALS variable of height from the first
point in time (hmax2006) and positive for the last point in time (hmax2012). The residual graph (Figure 5)
did not indicate any model misspecification.

Table 2. Estimation results for linear regression model for height change fitted according to Equation (1)
(n = 247).

Coefficient Estimate p-Value

Intercept 0.0911 <0.001
hmax2006 −0.3689 <0.001
hmax2012 0.4391 <0.001

RMSE (m) 0.293
R2 0.437

Heteroscedasticity-consistent variance–covariance matrix of parameter estimates:

Intercept Intercept hmax2006 hmax2012
0.000534 −0.000197 −0.000064

hmax2006 −0.000197 0.002151 −0.001880
hmax2012 −0.000064 −0.001880 0.001927
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To the very best of our knowledge, there has been only one previous study conducted under
similar conditions that may serve as a reference for our analysis. Hauglin et al. [13] constructed models
for tree height change for small pioneer trees in a 1500 km long ALS transect encompassing numerous
boreal–alpine transition zones from 58◦ N to 69◦ N in Norway. Their analysis included 262 trees from
35 locations along the transect, which were observed over a time period of 4 years. On average,
the trees were 0.25–0.30 m taller than in the current study, and a similar model form was adopted.
They reported an R2 = 0.36, well in line with current findings, and RMSE = 0.16 m, which was smaller
than in the current study.

The logistic regression model for the probability of trees ≥1.10 m in height at both points in time
showed adequate fit to the data (Table 3). This was confirmed by the Hosmer–Lemeshow statistic
(p = 0.780). Greater p-values would suggest correctly specified models, while p-values less than, for
example, 0.05 would suggest a model with inadequate fit. Cross validation of the model showed an overall
accuracy of 87.5%. All parameter estimates were statistically significantly different from 0 (p ≤ 0.002).

Table 3. Estimation results for the logistic regression model for probability of trees ≥1.10 m in height at
both points in time, fitted according to Equation (2).

Coefficient Estimate Wald Chi-Square p-Value

Intercept −2.82 43.26 <0.001
hmax2006 4.61 24.17 <0.001
hmax2012 2.13 9.56 0.002

Model fit a 4.63 0.78
Overall accuracy b (%) 87.5

Commission error for TREE b (%) 8.0
Omission error for TREE b (%) 11.1

Heteroscedasticity-consistent variance–covariance matrix of parameter estimates:

Intercept Intercept hmax2006 hmax2012
0.183 −0.208 −0.155

hmax2006 −0.208 0.644 −0.093
hmax2012 −0.155 −0.093 0.522

a Hosmer–Lemeshow statistic with 8 degrees of freedom [45]. b Leave-one-out cross validation with πTREE > 0.5.

3.2. Overall Change Estimates

The estimated mean change in vegetation height across the entire study area was 0.16 m
(SE = 0.020 m) over the full observation period, while the estimated mean change in height for trees
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≥1.10 m in height was 0.29 m (SE = 0.027 m) when the predicted probabilities of tree were reclassified to
0/1 (Alternative 1) and 0.24 m (SE = 0.024) when the actual predicted probabilities of tree (Alternative 2)
were used (Table 4). Thus, the annual mean change was 2.6 cm for all vegetation and 4.9 and 4.0 cm for
trees≥1.10 m in height, depending on how the predicted probabilities were treated. The 95% confidence
intervals indicated that the estimated height changes over the whole period were significantly greater
than zero for all vegetation, as well as for trees.

These results indicate that ALS is sensitive to height changes of vegetation and small trees, even
for very short observation periods—in this case, only 6 years. Interestingly, the estimates indicate a
net growth in height for the study area as a whole. However, such results can hardly say anything
about the causes of change, but for this particular area, it is likely that changing land use over the past
decades can at least partly explain the changes, as there were numerous summer farms in the area that
dated back centuries and that were abandoned during the mid-1900s.

3.3. Change Estimates for Domains

The mean change estimates for the 1.5 ha cells (Case A) ranged from 0.13 m to 0.22 m for vegetation
in general (Table 4, Figure 6C), and from 0.21 m to 0.37 m for the trees under Alternative 1 (Figure 6E)
and from 0.15 m to 0.34 m for Alternative 2 (Figure 6G). The 95% confidence intervals indicated that all
change estimates were significantly greater than zero.

In this particular study area, the confidence intervals indicated that the height changes for all
vegetation differed significantly among cells. The change estimate for Cell #8 of 0.22 m was significantly
greater than estimates for Cells #1, #2, and #7 of 0.14 m, 0.14 m, and 0.13 m, respectively (see Figure 6C).
This illustrates that for monitoring units of, for example, 1.5 ha in size, it should be possible to identify
gradients in vegetation change, at least if the observation period is of a minimum length of around
10 years, and particularly so with longer or steeper elevation gradients than in the current study
area. It should be noted, though, that when multiple statistical comparisons (tests) are performed
simultaneously, one may wish to alter the level of significance to control the total Type I error (Bonferroni
approach [64]). Especially for studies of vegetation changes over larger areas covering many monitoring
units, this may be an important consideration.

For the trees ≥1.10 m in height under Alternative 2, the height change estimate for Cell #8 of
0.34 m was clearly significantly greater than estimates for Cells #1–2 and #4–7, which ranged from 0.15
m to 0.22 m. Likewise, the change estimate for Cell #3 (0.26 cm) was significantly greater than estimates
for Cells #2 (0.16 m) and #7 (0.15 m). Similar results were found for Alternative 1. This suggests that
significant gradients even in tree height change may be identified. The proposed estimators may
therefore support efforts to monitor tree line migration over time.

The subjectively defined sub-regions (Case B) based on aspect, slope, elevation, and soil depth
(occurrence of bedrock outcrops) showed slight differences in estimated mean height growth, at least
among some of the sub-regions. For all vegetation (Figure 6D), the mean height change estimate ranged
from 0.14 m for sub-region II, which was located on top of the ridge with shallow soils and frequent
occurrences of bedrock outcrops, to 0.19 m for sub-region IV, with a flat to southwesterly aspect, deeper
soils, and more protected location against wind than on the top of the ridge. The 95% confidence
intervals for the estimates for these two extreme sub-regions did not confirm that the differences were
statistically significant, however (Table 4). For the trees ≥1.10 m in height, estimated mean height
changes for sub-regions II and IV were statistically significantly different. The estimated changes in
height for these two regions were 0.23 m and 0.34 m under Alternative 1 (Figure 6F), respectively, and
0.18 m and 0.30 m under Alternative 2 (Figure 6H). Given the characteristics of the sub-regions, these
results are all logical, and the analysis demonstrates that the proposed estimators can even be used to
find ecologically meaningful changes in the vegetation and tree heights, and thus be used to shed light
on ecological processes in the boreal–alpine ecotone.



Remote Sens. 2019, 11, 1804 21 of 29

Table 4. Estimates of mean change in vegetation height (∆̂h; Equation (4) and in height of trees ≥1.10 m (∆̂hTREE; Equation (5) for various domains of the study area,
and corresponding standard error estimates a (SE) and 95% confidence intervals (CI).

Domain

All Vegetation (m) Trees ≥1.10 m (m)

Alternative 1 b Alternative 2 c

∆̂h SE CI ∆̂hTREE SE CI ∆̂hTREE SE CI

Study area 0.16 0.020 0.12 - 0.20 0.29 0.027 0.24 - 0.34 0.24 0.024 0.19 - 0.28

Case A:

Cell 1 0.14 0.022 0.10 - 0.18 0.24 0.023 0.19 - 0.28 0.18 0.021 0.14 - 0.22
Cell 2 0.14 0.022 0.10 - 0.18 0.21 0.021 0.16 - 0.25 0.16 0.020 0.12 - 0.20
Cell 3 0.18 0.019 0.14 - 0.22 0.30 0.030 0.24 - 0.36 0.26 0.026 0.21 - 0.31
Cell 4 0.16 0.019 0.12 - 0.20 0.23 0.024 0.18 - 0.28 0.21 0.022 0.16 - 0.25
Cell 5 0.15 0.021 0.11 - 0.19 0.28 0.024 0.23 - 0.32 0.22 0.023 0.18 - 0.27
Cell 6 0.14 0.022 0.10 - 0.18 0.28 0.024 0.23 - 0.32 0.20 0.023 0.16 - 0.25
Cell 7 0.13 0.023 0.09 - 0.17 0.21 0.020 0.17 - 0.25 0.15 0.021 0.11 - 0.19
Cell 8 0.22 0.019 0.18 - 0.26 0.37 0.035 0.31 - 0.44 0.34 0.032 0.28 - 0.40

Case B:

Sub-region I 0.14 0.022 0.10 - 0.19 0.29 0.026 0.24 - 0.34 0.21 0.024 0.16 - 0.26
Sub-region II 0.14 0.022 0.10 - 0.18 0.23 0.022 0.18 - 0.27 0.18 0.020 0.14 - 0.22
Sub-region III 0.17 0.020 0.13 - 0.21 0.28 0.026 0.23 - 0.33 0.23 0.023 0.19 - 0.28
Sub-region IV 0.19 0.019 0.15 - 0.23 0.34 0.031 0.28 - 0.40 0.30 0.028 0.24 - 0.35

a Standard error based on the sum of the variance due to parameter uncertainty and residual variance. b Probability of tree ≥1.10 m in height reclassified to 0 (NON-TREE) and 1 (TREE).c

Probability of tree ≥1.10 m in height according to actual predicted probabilities (π̂TREE).
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Figure 6. (A) Study area with 5 m counter lines, the eight tessellated cells of Case A (Cell 1–8), and
boundaries of the sub-regions for Case B (I–IV); (B) predictions of vegetation height change for the
2 m2 population elements; (C) estimated mean vegetation height change for tessellated cells of Case
A; (D) estimated mean vegetation height change for sub-regions of Case B; (E) estimated mean tree
height change for Alternative 1 for tessellated cells of Case A; (F) estimated mean tree height change
for Alternative 1 for sub-regions of Case B; (G) estimated mean tree height change for Alternative 2 for
tessellated cells of Case A; (H) estimated mean tree height change for Alternative 2 for sub-regions of
Case B. The height change estimates for each domain in (C–H) are given by numbers. The white area in
the lower part of B–H is due to missing ALS data in the 2006 acquisition.
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3.4. Model-Dependent Inference for Domains

One of the objectives of this study was to provide estimators for uncertainty of the estimated
change in height of trees and vegetation in general and by that provide a basis for statistical inference.
When we estimated the ˆMSE components for the different sources of uncertainty, we noted that in
the current dataset the residual covariance could be ignored because the spatial autocorrelation of the
residuals was zero or close to zero – even for the smaller 1.5 ha cells (see Section 2.11). The constant and
negligible residual spatial correlation across different lag distances suggests that residual covariance
may be ignored for inference regarding height change even for domains smaller than 1.5 ha.

Even the residual variance was of marginal magnitude. The residual variance accounted for
0.2–0.4% of ˆMSE for the entire study area (Table 5). For the change estimates for trees (Alternatives
1 and 2) for the various domains, the residual variance accounted for only 0.3–2.9% of ˆMSE. For all
vegetation, the corresponding contribution to ˆMSE was 0.6–2.9% for all domains, except for two of
the 1.5 ha cells, for which the residual variance accounted for 4.1% (Cell #4) and 5.1% (Cell # 8) of

ˆMSE. The overall assessment is therefore that in applications like those analyzed in the current study,
the variance due to uncertainty of the model parameters may account for around 95% or more of
the total ˆMSE of the mean estimate, even when the domains are small. It should be noted that the
area under study was small, and that caution should be exercised in generalizing from these findings.
Nevertheless, it was observed that there was no clear evidence of differences in residual variance
between the sub-regions with smallest vegetation and smallest change (sub-regions I–II) and tallest
vegetation and largest change (sub-regions III–IV), cf. Tables 4 and 5. Despite the small extent of the
study area, this suggests that the relative magnitude of the residual variance may not be sensitive to
the properties of the vegetation in the ecotone.

3.5. Bias Properties of the Point Estimators

The two fitted models did not exhibit any systematic lack of fit to the sample data (see details
in Section 3.1). The second moments of the distributions of the independent variables (hmax2006 and
hmax2012) were of similar magnitude in the sample data and in the population. Further, the analysis of
the mean residual errors for the actual sample of field-measured trees revealed that only minor mean
errors were present even for the complex cases of two subsequent model predictions (Alternatives 1
and 2). The ME values for these estimators were smaller than 0.028 m for the entire study area (Table 5),
and for most of the domains they were smaller than 0.08 m. The differences in ME between Alternative
1 and Alternative 2 were negligible (<1 cm) in most cases. This may suggest that the estimators were
approximately unbiased.

However, the final criteria of unbiasedness, namely the first, third, and fourth moments, showed
that there were non-negligible differences in these moments between the sample data and the population.
For example, the mean values of hmax2006 in the sample and in the population were 0.98 m and 0.32 m,
respectively, while the mean values of hmax2012 were 1.10 m and 0.42 m. These differences may also
explain why the estimates of mean change in height of trees ≥1.10 m for Alternative 1 tended to be
different from Alternative 2 (Table 4 and Figure 6). Differences between the two alternatives ranged
between 0.02 m and 0.08 m, although none of these differences were statistically significantly different
from zero.

The overall assessment is therefore that there was likely a bias in the point estimators that can be
attributed to differences in the properties of the population and the sample used to fit the models, i.e.,
that the sample was constituted by trees only while the population also comprised population elements
with vegetation other than trees and which tended to be smaller than the trees. This does not necessarily
mean that the models were inappropriate and therefore resulting in biased estimators. As noted by, for
example, Lohr [65], p. 57, “model-based analysis can be used for nonprobability samples” but “it is
assumed that all units in the population follow the assumed model.” Thus, with appropriate regression
models, the presented estimators should be approximately unbiased, but the magnitude of a potential
bias in the current study remains unknown. Further studies based on samples acquired according to a



Remote Sens. 2019, 11, 1804 24 of 29

modified strategy would be required prior to final recommendations on practical implementation of
the proposed methods.

Table 5. Contribution of the residual variance component to overall mean square error of estimates of

change in vegetation height (var
(
∆̂h

)
res

) and change in height of trees ≥1.10 m in height (var
(
∆̂hTREE

)
res

)

and mean error (ME) estimated according to e.g. (17).

Domain n

All Vegetation Trees ≥1.10 m

Alternative 1 a Alternative 2 b

var(∆̂h)res
(%)

ME (m) var(∆̂hTREE)res
(%)

ME (m) var(∆̂hTREE)res
(%)

Study area 247 0.4 0.028 0.2 0.021 0.2

Case A:

Cell 1 25 1.6 0.104 0.5 0.052 0.5
Cell 2 23 1.2 0.019 1.0 0.013 0.9
Cell 3 26 2.9 −0.047 1.1 −0.046 1.5
Cell 4 35 4.1 0.008 2.4 0.004 2.9
Cell 5 43 2.4 0.061 1.8 0.056 1.8
Cell 6 25 1.6 0.081 1.0 0.068 1.0
Cell 7 21 2.1 0.108 1.5 0.084 1.2
Cell 8 49 5.1 −0.017 1.3 −0.008 1.6

Case B:

Sub-region I 42 2.0 0.084 1.3 0.063 1.4
Sub-region II 66 0.6 0.088 0.3 0.073 0.4
Sub-region III 51 1.0 −0.034 0.5 −0.036 0.6
Sub-region IV 88 2.7 0.005 0.9 0.006 1.1

a Probability of tree ≥1.10 m in height reclassified to 0 (NON-TREE) and 1 (TREE). b Probability of tree ≥1.10 m in
height according to actual predicted probabilities (π̂TREE).

3.6. Improvements of the Sampling Design

At least two issues should be addressed in order to collect data that would be suitable for model
construction in a model-dependent application, one related to the composition of the sample and one
to the properties of the sample units.

First, it is important that the sample of population elements used for model construction results
in models that are valid for all population elements. As noted by Lohr [65], p. 57, this “does not
require random sampling” (i.e., probability sampling). Various options may be considered to acquire
a sample that satisfies the modeling requirements, for example, to use auxiliary data to inform the
sample selection. However, a safe solution would be to actually adopt probabilistic sampling designs
for acquisition of the data for the model construction [66]. In the current study area, for example,
systematic sampling could be a viable alternative.

Second, the sample units must be defined and measured such that they represent the elements of
the population. In the current study, the sample of trees was not fully representative of other non-tree
vegetation, and may have led to models that were not entirely valid for the population parameters
we wanted to estimate. A viable option would be to use conventional fixed-area sample plots. If the
target population is composed of e.g., 2 m2 population elements, even sample plots of this size should
be considered. This is illustrated in Figure 7, where a fixed-area sample plot has taken the form of a
vegetation cylinder. In the current study area, a plot size of 2 m2 would make sense, since that also is
the typical (average) size of an individual tree crown.
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accounted for (a). The sample unit to the left in the form of a vegetation cylinder can be viewed as a
conventional fixed-area sample plot, in this illustration with a size of 2 m2.

4. Conclusions

The proposed methods and estimators for change in vegetation height and tree height of small
trees in the boreal–alpine ecotone are likely to capture subtle changes in height over relatively short
time periods (5–10 yrs) for small domains, for example, 1–1.5 ha in size. The sampling strategy adopted
in the current study most likely resulted in prediction models that induced some bias in the estimators,
although the proposed estimators should be approximately unbiased when the models represent
the population in question well. Improvements of the sampling design and the definition of the
sample units should be considered for further research and before any firm recommendations about
operational implementation can be given. The analysis suggested that most of the mean square error
estimates (>95%) of the estimators will be accounted for by quantifying the variance attributable to the
model parameter uncertainty. That simplifies the uncertainty analysis considerably. This seems to
be a fairly robust conclusion across different spatial scales, due to the constant and negligible spatial
correlation of the model residuals.

The analysis suggested that the proposed estimators can be used to characterize relative changes
in height between adjacent small domains (primary monitoring units), for example, 1–1.5 ha in size,
and thus can be a way to monitor tree line migration over time. The proposed estimators may also
be useful to quantify changes in vegetation height that can help to understand interactions between
vegetation and environmental factors in the boreal–alpine ecotone, including temporal changes in such
factors caused by climate change and other external drivers of change.
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