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Abstract: In countries where livestock production based on native grasslands is an important
economic activity, information on structural characteristics of forage is essential to support national
policies and decisions at the farm level. Remote sensing is a good option for quantifying large areas in
a relative short time, with low cost and with the possibility of analyzing annual evolution. This work
aims at contributing to improve grazing management, by evaluating the ability of remote sensing
information to estimate forage height, as an estimator of available biomass. Field data (forage height)
of 20 commercial paddocks under grazing conditions (322 samples), and their relation to MODIS data
(FPAR, LAI MIR, NIR, Red, NDVI and EVI) were analyzed. Correlations between remote sensing
information and field measurements were low, probably due to the extremely large variability found
within each paddock for field observations (CV: Around 75%) and much lower when considering
satellite information (MODIS: CV: 4%—6% and Landsat:CV: 12%). Despite this, the red band showed
some potential (with significant correlation coefficient values in 41% of the paddocks) and justifies
further exploration. Additional work is needed to find a remote sensing method that can be used to
monitor grasslands height.

Keywords: remote sensing; livestock; forage; MODIS; campos

1. Introduction

Native grasslands are one of the largest ecosystems in the world with an estimated cover area
of 40 to 50 million square kilometers [1,2]. They are defined as natural ecosystems dominated by
naturally occurring grasses and other herbaceous species with the possible presence of woody species,
used mainly for grazing by livestock and wildlife [3].

As population increases, grasslands are becoming important contributors to human food supply
(meat and milk), while providing other important ecosystem services, such as carbon sequestration,
genetic material storage, water quality, and soils conservation [4,5].

The Rio de la Plata grasslands (located between 28° S to 38° S) are among the world’s largest
temperate-subtropical grasslands, covering the central-eastern part of Argentina, all of Uruguay, and
southern Brazil. These grasslands are subdivided into “pampas” and “campos” [6]: The former are
temperate treeless grasslands located in eastern and central Argentina on flat and fertile plains, humid
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to arid climate, with warm summers and mild winters [3]. “Campos” are grasslands consisting mainly
of grasses, along with other herbaceous species, small shrubs, and occasional trees. They occur on
undulating and hilly landscapes, with variable soil fertility, in sub-tropical humid climate, warm in
summer and mild in winter, found in Uruguay, southern Brazil, and north-eastern Argentina [3].

In Uruguay, livestock production is mainly based on extensive grazing of native grasslands, which
represent over 65% of the country’s total area. Uruguay has a wide diversity of soil types [7] and, as
a consequence, its grasslands are heterogeneous including tens of species per m? [8,9] and a total of
more than 350 registered species [10]. These grasslands have a predominance of summer growing
species (C4) with an increase in frequency of cold-season species (C3) during autumn and winter [7].
Considering that warm-season species are responsible of the highest forage production (in spring and
summer), and that this is the season with highest rainfall variability, the risks related to drought are
very high [7].

In environments with large variation in herbage production, due to seasonal and interannual
variability in rainfall and temperature, the optimal stocking rate needed to reach a specific performance
target varies widely among seasons and years [11-13]. The control of grazing intensity through the
management of stocking rate is an important tool to regulate the amount of solar energy captured and
converted into beef production. Within this context, herbage allowance (HA), defined as kilograms of
herbage dry matter per kilogram of animal body weight [3,14], may be more useful than stocking rate
for managing the grazing process [15]. Managing HA requires herbage mass estimation, or a proxy
like herbage height [16].

Information related to structural characteristics (herbage height or biomass) of native grasslands is
essential to support management decisions, not only at the farm level but also at national and regional
levels, to inform policy making. This results in demands on researchers to generate “low cost, appropriate
and timely information that can be provided to farmers to support their decision-making” [17]. Bearing
in mind that existing field methods are labor-intensive and time-consuming, it is difficult to extend HA
control to large areas. In this context, remote sensing monitoring is a promising option for quantifying
large areas in a relative short time at a comparatively low cost and offering the possibility of analyzing
historical data series.

Considerable research has been conducted to monitor indicators of the vegetation condition [18]
and, more specifically, to characterize grasslands functioning. Thus, remote sensing has been used
to estimate above ground net primary production (ANPP), with the advanced very high-resolution
radiometer (AVHRR-NOAA) and the moderate-resolution imaging spectroradiometer (MODIS) [19-24].
Annual grassland biomass has also been estimated using different satellite sensors (MODIS, SPOT, and
AVHRR) with good results in Northern China [25] and in the Sahel [26].

Other ecosystem’s structure and function attributes have also been related to vegetation indexes
coming from Earth observation. In the Patagonia steppes, Gaitan et al. [27] assessed the relationship
between cover and species richness with nine different vegetation indicators. The authors showed
that NDVI explained 30%—40% of the total variability found in these ecosystem attributes. In the arid
southwest grasslands of North America, the total herbaceous vegetation cover (green and senescent),
height, and biomass estimated using the soil adjusted total vegetation index (SATVI) for cover and
the near infrared band from Landsat for height and biomass, was highly correlated with observed
information [28].

Grasslands biophysical parameters, mostly considered in a season or in annual base, have been
retrieved from Earth observation for many years. Recently, the modelling approaches are evolving to
more complex, robust, and efficient ones [29]. Also, some studies included higher-resolution sensors
such as Sentinel 2 or modern technologies such as radar (active sensor) [30-32]. However, more
research is needed to accurately estimate the intra-annual performance of some biophysical variables
as biomass or height.

In this work, we tried to estimate observed grasslands behavior as a “photograph” of what was
available in terms of forage height at different time steps along the year. This approach differs from



Remote Sens. 2019, 11, 1801 3of16

estimating the height as the annual or seasonal accumulation of biomass. Our approach seems to be
particularly important for improving management of livestock production systems. We also analyzed
intra paddock variability at different spatial scales.

In this context, the objective of this study was to contribute to improve grazing management
by evaluating the ability of remote sensing information to estimate forage height (as an estimator of
available biomass) at paddock scale.

2. Materials and Methods

2.1. Study Area

The study was carried out on 11 commercial farms located in Uruguay (30°-35° S, 53°-59°W),
South America. Seven of them were located in the eastern region and the other four in the central zone

of the country (Figure 1).
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Figure 1. South America map highlighting Uruguay (up-left corner) and paddock” location in Uruguay
(bottom left corner and right).

2.2. Data

2.2.1. Farm Data

A total of 20 natural grasslands paddocks under grazing conditions, identified as 1 to 20, were
analyzed. Six of the farms had only 1 analyzed paddock (paddocks 3, 4, 7, 14, 19, and 20), four farms
had 2 paddocks, and one farm had 6 evaluated paddocks. The sizes varied between 12 has and 258 has.
(Table 1).
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Table 1. Area of the 20 paddocks analyzed in this study. Paddocks were designated from 1 to 20.
Letters from A to K designate farms.

Paddock Number Area (has)
3(B), 4(A), 7(C), 9(E), 10 (E), 19(D), 20(F) 12-50
8 (E), 11 (E), 15 (G), 16 (G), 17 (H), 18 (H) 51-100
1(1),2 (D), 5 (K), 12 (E), 13 (E), 14()) 101-150
6 (K) >151

Farm data (forage height) were collected between October 2012 and December 2015 every
40-50 days, two times per season, in each of the 20 paddocks under grazing conditions, with a total of
322 data points. Each forage height estimation was collected using the standard “comparative yield
method” [33] by trained experts, collecting 100 to 300 sampling points in a systematic procedure to
evenly cover the paddock area and decreasing the sampling error as the observation number increased.
In every case, and in order to avoid biases associated with the different users, every sample was taken
by trained assistants and researchers.

Five to seven reference quadrats of 50 cm X 50 cm were located to cover height heterogeneity,
and height was measured in five points for every quadrat. In these same quadrats, a five-level scale
was defined, where “1” was the lowest height and “5” was the highest. These scale samples were
transformed into height measures by applying the linear regression equations resulting from the
analysis of the measurements of forage height and estimated scale within the reference quadrats for
each paddock. After that, more than 100 points were sampled, and each observer had to assign a scale
value to each point. A “0” value was assigned when bare soil was identified. Finally, we used the
regression equation explained above to convert scaled values into height.

The forage average height, median, mode, and maximum values were estimated for each paddock
at each date.

Each paddock was sampled on average 16 times (between three and 23) during the analysis period.
When variables of every paddock were analyzed together, the 20 paddocks were included, but when
each paddock was analyzed individually, paddocks with less than 10 sampling dates were discarded
(paddocks 6, 8, and 10). Outliers due to annotations mistakes or sampling errors were removed from
the analysis.

2.2.2. Satellite Data

Spatial and temporal resolutions are critical when grasslands biophysical parameters have to be
monitored. Analyses were conducted based on MODIS information downloaded from Earth Data
website (https://search.earthdata.nasa.gov/search). We selected MODIS products because of their good
temporal resolution (daily), the relatively good spatial resolution (250 m, 500 m), and the possibility of
easily escalating to regional or national level with the same image (only one Path and row for Uruguay).
In addition to this, higher-resolution sensors (Landsat or Sentinel 2) have no daily information or had
no information available for Uruguay for the period when the field data were obtained (Sentinel 2).

We worked with ESRI®ArcGis 10.4 for Desktop on MODIS sinusoidal coordinate system,
reprojecting the farm paddocks originally generated on WGS84.

Relations between spatial data at different temporal and spatial resolutions, and field data, were
analyzed to achieve the objective of the research. We used composite images because of the practicality
and daily information in order to have the data closest to the field measurement date, to have every
pixel of the same date and to be able to choose nearby date due to the assiduous presence of cloud
cover in some part of the country and time of the year.

We computed the weighted average of satellite pixels within each paddock. We considered the
trade-off between size and purity, trying to select a sufficient number of pure pixels [34]. In some cases,
because of the shape of the paddocks, no pure pixels fitted in it. In those cases, we used the weighted
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average (percentage of the area within the paddock) estimated only with the non-pure pixels, which
centroid fitted in that paddock (more than 80% of the pixel was located inside the paddock).

Composite MODIS data

From composite products and for the analyzed period, we used:

e MOD13Q1, 250 m V006 [35]. We selected the middle infrared band (MIR), near infrared band
(NIR), and red bands; and the normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI).

e MCDI15A3H, 500 m V006 [36]. We used fraction of photosynthetically active radiation (FPAR)
and leaf area index (LAI). According to Myneni et al. (2015), in this context and for this product,
“LAl is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and
as one-half the total needle surface area per unit ground area in coniferous canopies. FPAR is
defined as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by
the green elements of a vegetation canopy”.

Quality bands of composite products were also checked.

Daily MODIS data

We extracted daily information from October 2012 to December 2015 of every paddock. We used
the bands and index described as follows:

e  MOD09GQ (GQ). MODIS Terra/Aqua Surface Reflectance 250 m [37]. We selected the near infrared
(NIR) and red bands; and estimated NDVI (NIR-Red/NIR+Red).

e  MODO09GA (GA). MODIS Terra/Aqua Surface Reflectance 500 m. [37]. We selected MIR, NIR,
and red bands; and estimated NDVI (NIR-red/NIR+red) and Normalized Difference Water Index,
NDWI (NIR-MIR/NIR+MIR).

In order to select the MODQ9 daily images, we analyzed zenith and azimuth angles for the sun
and sensor positions. For each paddock, we selected cloud-free images that were closest to the field
measurement date (no more than 15 days before or 15 days after). Considering that most of the chosen
images had similar solar and sensor zenith angles, we avoided dates where sun and sensor were at the
same side (azimuth angles with the same sign) because of the hot spot effect. We finally tried to select
similar angles to have equivalent images conditions.

We also analyzed quality bands in order to identify the best data for the studied dates and
paddocks. In this analysis, we found quality data that indicate good quality values, but when we
visually checked the images, clouds were detected. Because of this, we also visually analyzed each
selected image, to confirm that no clouds were present over the paddocks, in order to use them properly.

e MCD43A4 (Nbar). MODIS/Terra and Aqua Nadir BRDF (bidirectional reflectance distribution
function) adjusted reflectance (NBAR), 500 m, V006 [38]. We selected MIR, NIR, and red bands;
and estimated NDVI and NDWI.

Landsat data

Landsat images were only used to verify variability at different spatial scales due to their low
temporal resolution (16 days) and the consequent high probability of cloud cover, which makes it
more difficult to find available data (cloud free) for each sampling date. We downloaded and analyzed
Landsat 8 (30 m spatial resolution) images (OLI/TIRS Level-2 Data Products—Surface Reflectance)
from Earth Explorer website (https://earthexplorer.usgs.gov/) [39]. We only considered images visually
identified as without clouds over the paddocks, within the period of 15 days before and 15 days after
the field measurements date. We arbitrarily selected one band (NIR). Weighted average and standard
deviation of Landsat NIR was estimated for each paddock.
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We also estimated the standard deviation of NIR from both MODQ9 products (GA and GQ) and
MOD13Q1 for each paddock.

2.2.3. Data Analysis

We compared and correlated data obtained at paddock level with satellite data in order to identify
variables that can predict native grasslands height and/or available biomass. We first analyzed the
relationship between the variables by pairs and scatterplot’s linearity was checked. An example of the
analysis of median height vs. MODIS daily variables for all the paddocks is shown in Figure 2.

MIR.Nbar NDVI.GA NDVI.GQ
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Figure 2. Scatterplot of median height (cm) in the x axes and MODIS satellite information in the y axes
for all the analyzed paddocks. MIR: Middle infrared band, NIR: Near infrared band, Red: Red band,
NDVI: Normalized difference vegetation index, EVI: Enhanced vegetation index. Nbar (MODIS/Terra
and Aqua Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR),
500 m), GA (MODIS Terra/Aqua Surface Reflectance 500 m), and GQ (MODIS Terra/Aqua Surface
Reflectance 250 m) refer to the MODIS daily products analyzed.

Pearson coefficient of correlation was estimated for every paddock jointly and for each individual
paddock. Spearman coefficient of correlation was also checked, reaching very similar values.

Variability within the paddocks was analyzed as well. Coefficient of variation, for each sampling
date within paddocks, was analyzed for height measurement and pixels satellite information.

We worked with ESRI®ArcGis 10.4 for Desktop, R version 3.4.1, and R Studio software
(Version1.0.143) to analyze farm measurements distributions and correlations.

3. Results

3.1. Farm Data

Figure 3 presents the results of height measurements for each paddock for the period October
2012-December 2015, showing the seasonal pattern. Regarding the inter-date variability in height,
results showed differences in the observed measurements distribution for each paddock within dates.
The average inter date coefficient of variation (CV) of the 17 paddocks selected for individual analysis
was 76% (range: 53%—-100%).
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Figure 3. Height (cm) boxplot showing the distribution of observed data of each one of the 17
individually analyzed paddocks. Paddocks with less than 10 sample dates were discarded (paddock
6, 8, and 10). Sampling dates, from October 2012 to December 2015, are different according to

each paddock.

3.2. Composite MODIS Data

Regarding composite images, Pearson correlations between median height and satellite information
(FPAR, LAI, MIR, NIR, Red channel, NDVI, and EVI) for all the paddocks, showed non-significant
values (lower than 0.1).

The correlation between median height and MODIS composite images for each paddock

individually evidenced different performances depending on the paddock (Table 2).

Table 2. Pearson correlation coefficient between median height and composite MODIS satellite variables
for every analyzed paddock (P). Significant (p < 0.05) correlation coefficient values are highlighted in
grey. FPAR: Fraction of photosynthetically active radiation, LAI: Leaf area index, MIR: Middle infrared
band, NIR: Near infrared band, Red: Red band, NDVI: Normalized difference vegetation index, EVI:
Enhanced vegetation index.

P FPAR LAI MIR NIR Red NDVI EVI
1 0.024 0.204 -0.335 0.041 -0.248 0.201 0.141
2 0.084 0.013 —-0.355 0.042 -0.306 0.244 0.200
3 0.217 0.305 —-0.606 0.173 -0.514 0.428 0.307
4 -0.605 -0.376 0.030 0.290 0.087 0.076 0.246
5 0.324 0.458 -0.182 0.289 -0.305 0.354 0.349
7 0.180 0.225 —-0.094 0.079 0.146 0.029 0.067
9 0.603 0.468 —-0.537 0.306 —0.481 0.571 0.543
11 0.555 0.363 —-0.499 0.253 -0.323 0.411 0.390
12 -0.076  —-0.036 0.091 0.228 0.119 -0.043 0.042
13 0.444 0.274 —-0.402 0.229 -0.387 0.409 0.406
14 0.247 0.263 —-0.471 0.285 -0.324 0.351 0.353
15 0.328 0.250 -0407 -0.188 —0.380 0.240 -0.001
16 -0235 -0.237 @ -0.728 0.059 —-0.528 0.490 0.306
17 -0.478 -0.282  -0.400 0.065 0.130 0.370 0.335
18 -0.574  -0.390 0.003 0.098 0.571 -0.261  -0.002
19 0.447 0.363 -0.163 0.483 -0.190 0.543 0.588
20 -0367 -0282 -0218 -0.063 -0.131 0.083 0.018
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The remote-sensed variable that showed largest number of paddocks with significant and
consistent (negative) correlation coefficient values, was MIR (Table 2). FPAR, despite having one
more significant correlation values, showed no consistent results (positive in some cases and negative
in others).

3.3. Daily MODIS Data

We first analyzed the correlation of remote sensing MODIS variables (MIR, NIR, Red channel,
NDVI, and NDWI) with field information from all farms considered together. From this analysis,
Pearson correlation coefficient indicated no significant correlation between observed data and satellite
information (Table 3).

Table 3. Pearson correlation coefficients between height (median, average, mode, and maximum value)
and daily MODIS satellite variables for all paddocks.

H Median H Average H Mode H Maximum

MIR (GA product) -0.032 -0.018 -0.013 0.034
NIR (GA product) 0.090 0.070 -0.003 0.036
Red (GA product) -0.085 -0.067 —-0.041 0.008
NDVI (GA product) 0.108 0.087 0.037 0.012
NDWI (GA product) 0.079 0.058 0.013 —-0.002
NIR (GQ product) 0.083 0.058 0.009 0.029
Red (GQ product) —-0.092 —-0.077 —0.047 0.001
NDVI (GQ product) 0.112 0.092 0.047 0.016
MIR (Nbar product) -0.087 -0.092 -0.008 -0.056
NIR (Nbar product) 0.014 —-0.011 0.000 —0.051
Red (Nbar product) -0.163 -0.156 —-0.070 -0.092
NDVI (Nbar product) 0.136 0.121 0.060 0.051
NDWI (Nbar product) 0.081 0.070 0.011 0.016

Although all correlation coefficient values were low, they were higher when the median was
considered (Table 3). This justifies the decision to consider the median as the most representative
statistic of the observed values in the paddocks.

We then analyzed each paddock individually and assessed the correlation of all the satellite
variables (MIR, NIR, Red channel, NDVI, and NDWTI) with the field measurements. Pearson correlation
coefficients with all satellite variables were generally low and, in some cases, not consistent, with
positive correlations in some paddocks and negative in others. Despite this, there were some individual
paddocks that had significant correlation (p < 0.05) with most of the analyzed satellite information.
The highest coefficient was found with NDWI of MODIS GA product (r = 0.68, p = 0.002) but the Red
channel of MODIS Nbar product have the highest number of paddocks with significant correlation
values (7 paddocks from a total of 17). A linear relationship between satellite information and height
median is shown in Table 4. No daily satellite information had significant correlation in every paddock
together (Table 4).
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Table 4. Pearson correlation coefficients between height and daily MODIS satellite variables for
every analysed paddock (P). Significant (p < 0.05) correlation coefficient values are shaded in grey.
MIR: Middle infrared band, NIR: Near infrared band, Red: Red band, NDVI: Normalized difference
vegetation index, NDWI: Normalized difference water index. Nbar (MODIS/Terra and Aqua Nadir
BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR), 500 m), GA (MODIS
Terra/Aqua Surface Reflectance 500 m), and GQ (MODIS Terra/Aqua Surface Reflectance 250 m) refer to
the MODIS daily products analyzed.

P MIR, NIR, Red, NDVI, NDWI, NIR, Red, NDVI, MIR, NIR, Red, NDVI, NDWI,
GA GA GA GA GA GQ GQ GQ Nbar Nbar Nbar Nbar Nbar
1 0.002 -0.074 -0.010 -0.003 -0.027 -0.036 -0.029 0.021 -0.008 0.039 -0.001  0.000 0.014
2 0.246 0122  -0.002 0.039 -0.105 0.135 -0.012 0.052 -0.214 -0.323 -0.161 0.015 —-0.020
3 -0.525 0.314 -0.431 0.377 0.522 0.361 —0.333 0.329 —0.539 0.139 —0.645 0.500 0.492
4 —-0.036 0.014 0.014 0.001 0.036 0.018 —0.080 0.069 0.062 0.028 -0.174 0.168 -0.019
5 —0.256 0.383 -0.429 0.464 0.372 0.377 —0.429 0.441 —0.067 0.362 -0.309 0.432 0.359
7 -0.180 0.258 -0.342 0.352 0.290 0229 -0.293 0.323 0.071 0.137  -0.283  0.225 0.081
9 -0.546 0519 -0.574 0.615 0.679 0479 -0558 0.597 -0438 0460 -0.547 0.619 0.600
11 —-0.453 0.450 —0.467 0.494 0.520 0.386 —0.445 0.466 -0.349 0.422 —0.445 0.530 0.509
12 0.115 0.074 0.140 —-0.106 —0.062 0.022 0.166 —0.140 0.120 0.002 0.040 —-0.031 —-0.103
13 -0.116 | 0523 -0.136  0.246 0.334 0481 -0.159 0263 -0358 0.192 -0.420 0.397 0.397
14 -0.288 0276 0252 0277 0.323 0280 -0.226 0.261 | -0519 -0.015 -0.511 0.327 0.309
15 -0.425 -0.160 -0.472 0.257 0.136 -0.121 -0.301 0.167 -0.262 -0.002 -0.351 0.212 0.192
16 —0.482 0.371 -0.272 0.364 0.499 0.366 -0.221 0.315 -0.579 0.160 —-0.607 0.533 0.576
17 -0.335 0.295 —-0.390 0.469 0.430 0.283 —-0.367 0.444 -0.172 0.202 -0.576 0.609 0.504
18 -0.268 0211 -0.447  0.408 0.288 0204 = -0475 0415 -0278 0.051 -0.420 0.353 0.342
19 -0482 0351 -0.555 0.523 0.501 0328 = -0.610 0556 -0.257 0250 @ -0.594 0.584 0.467
20 -0.061 -0.241 0.053 -0.097 -0.059 -0.162 0.020 -0.052 -0.266 -0.346 -0.268 0.008 -0.106

After analyzing these correlations and in order to check if any satellite information could provide

an estimate of increase or decrease in height, we also checked for correlations between height and
satellite information, estimating the differences between one date and the previous one (delta value).
Pearson coefficients for each paddock and their statistical significance are shown in Table 5.

Table 5. Pearson correlation coefficients between delta median height (difference between one date
and the previous one) and delta daily MODIS satellite variables for every analyzed paddock (P).
Significant (p < 0.05) correlation coefficient values are highlighted in grey. MIR: Middle infrared
band, NIR: Near infrared band, Red: Red band, NDVI: Normalized difference vegetation index,
NDWTI: Normalized difference water index. Nbar (MODIS/Terra and Aqua Nadir BRDF (bidirectional
reflectance distribution function) adjusted reflectance (NBAR), 500 m), GA (MODIS Terra/Aqua Surface
Reflectance 500 m), and GQ (MODIS Terra/Aqua Surface Reflectance 250 m) refer to the MODIS daily
products analyzed.

P MIR, NIR, Red, NDVI, NDWI, NIR, Red, NDVI, MIR, NIR, Red, NDVI, NDWI,
GA GA GA GA GA GQ GQ GQ Nbar Nbar Nbar Nbar Nbar
1 -0316 0479 -0323 0457 0.514 0522 -0339 0476 -0.305 0412 -0.283 0.410 0.510
2 -0.093 | 0597 -0.380 0.458 0.379 0568 -0.373 0463 -0470 -0.031 -0419 0.379 0.385
3 -0.591 0.201 -0.541 0392 0.637 0242 -0408 0336 -0.499 0.106 & -0.604 0.500 0.550
4 -0.134  0.092 -0.205 0.194 0.143 0.138 -0.216 0224 -0.001 0267 -0.331 0.386 0.158
5 -0.223 | 0518 -0.314 0.462 0.493 0552 -0.336 0462 -0.291 0386 —-0.392 = 0.527 0.540
7 0.009 0.051 -0.183  0.188 0.047 0.010 -0.093  0.110 0.319 0.027 0.106  -0.125 -0.317
9 -0.225 0480 -0.301 0.403 0.490 0447 -0.281 0380 -0.255 0320 -0.342 0.378 0.348
11 -0.108 | 0.506 —-0.266  0.374 0.361 0467 -0.258 0364 -0.254 0305 -0.342 0.377 0.329
12 -0.072  0.251 -0.154  0.189 0.195 0217 -0.139 0172 -0.015 0.296 -0.272  0.302 0.145
13 -0.425 | 0501 -0.444 @ 0.532 0.666 0485 -0482 @ 0567 -0.632 0366 -0.623 0.629 0.706
14 -0.063 0404 -0.173 0.281 0.258 0367 -0.108 0218 -0.260 -0.045 -0.389 0.279 0.135
15 -0.603 0.019 -0.293 0232 0.348 0.056 -0.176 0.167 -0.223 0.084 -0.022 0.076 0.270
16 -0.173 0240 -0.132  0.190 0.293 0277 -0.147 0205 -0.143 0.186 -0.254 0.355 0.370
17 -0.181 0300 -0.282  0.406 0.351 0251 -0.306 0409 -0.065 0301 -0.371 = 0.539 0.477
18 -0.153 0369 -0.221 0296 0.329 0388 -0.260 0323 -0.050 0.114 -0.248 0.267 0.188
19 -0.038 0.160 -0.320 0.296 0.133 0205 -0.350 0.353 0.158 0286 -0.148  0.363 0.232
20 -0.094 0075 -0.007 0.012 0.114 0.145 -0.046 0.064 -0.256 -0.105 -0.293 0.145 0.077

There were four indices that showed the largest number of paddocks with significant correlations:
Delta NIR (GA) in four paddocks and Delta NDWI (GA), Delta NIR(GQ), and Delta NDVI (Nbar) in
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three paddocks. These new correlations (delta values, Table 5) were no better than correlation showed
in Table 4 despite having the higher correlation value (-0.706, p < 0.05).

Considering the information of all paddocks considered together, the delta values presented better
results than red channel, NIR, MIR, NDVI, and NDWI values, obtaining the best correlation value
between delta height and delta NDWI (MODIS GA product) (Figure 4). It is worth mentioning that
these better correlation values are probably due to two delta height values (circled in red in Figure 4),
which are likely very influential statistically and resulted in improved correlation.

0.2- r=032 p=29e-09 e o

<
—
1

delta NDWI (MODIS GA)
o
o

-10 0 10
delta Height (cm)
Figure 4. Linear correlation between delta median height and delta NDWI from MODIS GA product,

considering the whole field information together. Pearson correlation value and significance are r = 0.32,
p < 0.001. The tow influential data points are circled in red.

3.4. Variability

Analyzing variability and bearing in mind that farm measurements have coefficients of variation
within paddocks of around 75% on height, we estimated the coefficient of variation of the satellite
information (Table 6) to check variability at different spatial scales (Landsat and MODIS).

Paddocks 4, 7, and 10 have no MODIS (GA) information because of their shape and size; only one
centroid of a pixel fitted the paddock.

Satellite information evidenced much smaller variability than field measurements with coefficients
of variation for MODIS around 4% for 500 m resolution products, between 5% or 6% in 250 m resolution
products, and 12% for Landsat (30 m spatial resolution).



Remote Sens. 2019, 11, 1801 11 of 16

Table 6. Average of the coefficient of variation (CV) of satellite information within paddocks on the
considered dates and the standard deviation (SD) of those estimations for every paddock (P).

Landsat MODISGQ MODIS Comp MODIS GA
Ccv SD Ccv SD Ccv SD Ccv SD

P Dates Considered

1 10 12.04 144 6.27 0.95 6.23 0.83 5.89 2.15
2 12 9.89 4.05 441 6.59 4.49 2.59 1.56 0.58
3 8 1532 1312 292 1.74 4.15 1.70 2.88 0.86
4 9 10.89 327 5.01 6.75 5.38 1.78

5 9 18.10 10.67  8.64 1.67 11.43 5.11 6.87 3.52
6 4 1195 1149 9.18 2.07 8.09 2.45 8.89 2.55
7 10 1595  6.78 4.86 1.66 4.75 1.18

8 8 8.43 3.08 423 2.10 5.64 1.37 9.50 8.66
9 12 9.94 7.33 3.15 1.78 3.56 1.56 2.16 1.63
10 2 4.76 1.06 1.62 0.27 221 0.09

11 13 7.79 2.34 3.27 1.53 4.03 2.19 2.04 1.24
12 11 8.95 1.88 2.60 1.28 4.72 2.08 1.35 0.93
13 14 8.63 2.86 322 1.10 5.09 1.93 3.23 1.10
14 14 1498  7.45 7.07 3.20 7.74 2.75 4.01 3.93
15 11 18.44 1139 396 1.04 4.52 0.76 2.86 1.85
16 12 1478  4.68 6.51 1.37 6.71 1.67 6.00 2.04
17 6 1412 852 571 3.60 8.96 5.75 4.52 2.51
18 6 1194  6.12 6.79 294 9.46 5.54 1.97 1.71
19 11 19.57  8.56 6.40 4.10 7.55 3.70
20 8 8.09 7.92 3.37 1.82 4.46 3.11 1.26 1.01

4. Discussion

In agreement with previous studies that described native grassland variability [40], field
measurements were extremely variable within the paddocks for each sampling date, with coefficients
of variation around 75%. In most paddocks, this heterogeneity was even higher as the height increased,
as shown in Figure 2, where the size of the boxes is larger when the values of the median are higher.
This is probably due to the small-scale botanical and structural heterogeneity of this environment, but
also because of variation in livestock management and in climate conditions. The amount of variability
also showed differences between dates, probably associated with seasonal species composition. On
the other hand, as satellite information provides an average value at a pixel resolution (500 m, 250 m,
30 m), it is expected to have much less variability but, differing to what we anticipated, showed no
strong differences between these spatial resolutions. Thus, Landsat 8 (with spatial resolution of 30 m),
could not represent the variability of native grassland more accurately than MODIS. Therefore, it can
be expected that using other sensors with a resolution that is slightly higher, such as Sentinel 2, would
not result in a better characterization of this variability either. Although it could be worth to check this
fact, we probably must appeal to sensors of much higher resolution (1 m or centimeters) or non-optical
ones (radar).

When we compared these extremely variable field measurements with MODIS satellite information,
poor correlations were found. MODIS composite or daily variables seem to be not sensitive to grassland
height variations. Considering the median height of every date and paddock, the minimum value
was 1.4 cm and the maximum was 22 cm (Figure 3 boxplots), while satellite band reflectance values
from GA product vary only from 0.17-0.37 for MIR, 0.20-0.39 for NIR, and 0.03-0.1 for the red band.
Regarding the vegetation indices, NDVI varied from 0.43 to 0.83 and the NDWI from —0.15 to 0.28.
This is consistent with results found in the semi-arid Sahel by Olsen et al. [26], who concluded that an
increase in NDVI over time cannot always represent an increase in herbaceous biomass. This could be
due to the fact that NDVI saturates at high biomass or leaf area index.

In contrast to what was found on monospecific pastures of alfalfa and grass (tall fescue), where
good correlations are reported between height and several vegetation indices [41], our study showed
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that no daily or composite MODIS satellite information could explain height observed behavior in the
natural grasslands of every paddock and date. This could probably be due to the hundreds of species
present in native grasslands that result in such a heterogeneous environment, and/or to the presence
of non-photosynthetically active plant material that could influence the signal captured by remote
sensing sensors. For example, in paddocks 4, 17, and 18 (Table 2), the correlation between height and
FPAR was negative, opposing what we expected. A similar situation occurred in paddock 18 with a
positive correlation between height and red band. Careful consideration of the results at individual
paddocks revealed that in all cases mentioned above, we found one very influential point with a high
value of height and low value of FPAR (and high value of red band). This could probably be due
to a situation with high biomass and a large proportion of senescent material. In general, MODIS
composite information (MOD13Q1 and MCD15A3H) did not show good results either, and only MIR
appeared as a variable worthy of further exploration in future work.

Analyzing paddocks individually, red band was the most promising variable (Table 4). Some
paddocks had high and significant correlation values with several satellite variables (NIR, MIR, red
band, NDVI, NDWI). Paddock 9, 11, and 19 showed significant correlations in more than 9 (out of a
total of 13) daily remote sensing variables; paddock 13 a total of 8 with daily delta value; and paddock
9 and 19 more than 4 (from a total of 7) with composite images. Other paddocks had no correlation
with any variables (paddock 1, 7, 12, and 20). Taking into consideration only the significant values, the
sign (+ or —) of Pearson correlation coefficient values result as we expected for all the plots (positive
relation between height and NIR, NDVI, and NDWI; and negative relation with MIR and red band).

On the other hand, changes in height and in satellite variable values from one date to the next
(delta values) only showed better results than single date values when NIR (GA) was used (Table 5).
There were some paddocks that had relatively good correlations (Person correlation values >0.6)
between height and one or more of the different satellite variables such as MIR and NDWI of the
GA MODIS product and MIR, red band, and NDVI of Nbar MODIS product, but these cases were
isolated and not always with the same paddock involved. As an example, paddock 15 only showed
high correlation between delta height and delta MIR (—0.603) but this satellite variable had very poor
correlation values in other paddocks (Table 5).

It is worth considering that in the analyzed period, large variability on weather conditions was
observed. During the first three years (2012-2014), weather conditions were relatively favorable,
which resulted in NDVI values above or close to the average conditions of a 30 years series, while in
April-July 2015, an intense drought period occurred [42]. Hence, the low correlation observed in our
research cannot be attributed to a lack of variability in the observed values.

During the analysis process, we sought for possible common field characteristics in paddocks,
such as size of the paddocks (Table 1), location (Figure 1), or field data CV (Figure 3 boxplots) with the
same response to a specific satellite information signal, but no explanatory co-variable was found.

Considering paddocks 9, 11, 12, and 13 (all paddocks from the same farm) and taking into
account characteristics that could be detected by remote sensing, the first two paddocks had relatively
homogeneous conditions related to soil types, elevation, vegetation, and historical management, and
the other two had very different conditions, being more heterogeneous in relation to soils, elevation,
water sources, vegetation, and size. These could be the reasons that field measurements in paddocks
9 and 11 have strong correlation with different satellite variables while paddocks 12 and 13 did not
(Table 4). On the other hand, paddock 19, the third paddock with significant correlation values with
several satellite variables, had no homogeneous conditions and, therefore, this statement cannot
be generalized.

Furthermore, the results of Cimbelli and Vitale [30] suggested that higher grass had a bigger
component of the red band, but our results could not be explained by that either. Paddocks with higher
values of median height (average or median of sampling dates, and maximum observed value) had
different spectral response.



Remote Sens. 2019, 11, 1801 13 of 16

As it was shown, the spatial variability (heterogeneity) observed in native grasslands under
grazing conditions is extreme, and this makes it difficult to manage, plan, and characterize at the
paddock scale with a single average or even median field measurement value. Considering this, it is
even more difficult to try to do so based on earth observation information that provides a value for
each pixel, no matter how good the information is.

Additionally, more field information, such as density or vegetation cover, water content,
chlorophyll level, or percentage of senescent material, needs to be analyzed and monitored in
order to explain differences found between spectral information responses in different paddocks.

Most of the studies, including this one, have used a single sensor to analyze a very complex and
heterogeneous ecosystem and this could probably be a limitation. Bearing this in mind, Wachendorf et
al. [17] propose developing a system with complementary sensors to overcame these limitations and
provide better estimations of different grassland characteristics. In addition to this, the integration
of different sources of information (remote sensing, field data, air photos, and street-level imagery)
to monitor grasslands, also seems to be an auspicious methodology [43,44]. SAR data (radar remote
sensing) calculated from X- or C-band were explored too, with promising results [45,46]. On the other
hand, some authors propose hyperspectral and high-resolution images as an option to overcome the
difficulties at a paddock scale grasslands monitor [47]. Finally, drones and other unmanned aerial
vehicles offer an opportunity for new applications, proving higher spatial resolution and customized
spectral and temporal resolution [17,48]. It is worth mentioning that as spatial resolution increases,
it is more difficult to scale the analysis to a regional or national level. Moreover, a decision support
system needs to be simple to be used by different stakeholders.

5. Conclusions

As it was expected, height of native grasslands is extremely variable within paddocks for each
sampling date and between dates (seasonal variability). This variability is what we must deal with
when we analyze native grassland forage availability and satellite information, and, at least at these
spatial resolutions (500 m, 250 m, and 30 m pixel), the estimation of pasture height variability cannot
be represented accurately.

We did not find high correlations between field measurements of height and MODIS
composite/daily variable when we analyzed all the paddocks considered together or paddock by
paddock. However, some areas of future work seem to be justified. The daily red band of Nbar MODIS
product seems to be a promising variable to explore, with relatively good correlation values in 41% of
the paddocks. When composite MODIS images were considered, MIR had the best performance with
29% of the paddocks showing negative correlation values higher than 0.45.

This work aims to contribute to manage the grazing process on livestock production systems,
based on Earth observation information. Our results showed that no MODIS composite/daily variable
was able to predict robustly the native grassland height behavior, but some satellite information came
out as promising.

Work is needed in order to find remote sensing methods that can be used to monitor the
"instantaneous" condition of grasslands (height or available biomass), and this research has evidenced
some of the related difficulties and opportunities.
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