

  remotesensing-11-01794




remotesensing-11-01794







Remote Sens. 2019, 11(15), 1794; doi:10.3390/rs11151794




Article



Alternately Updated Spectral–Spatial Convolution Network for the Classification of Hyperspectral Images



Wenju Wang 1[image: Orcid], Shuguang Dou 1,*[image: Orcid] and Sen Wang 2





1



College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China






2



Institute of Information Technology, Shanghai Baosight Software Co., Ltd., Shanghai 200940, China









*



Correspondence: 173732497@st.usst.edu.cn; Tel.: +86-138-1834-7625







Received: 10 July 2019 / Accepted: 24 July 2019 / Published: 31 July 2019



Abstract

:

The connection structure in the convolutional layers of most deep learning-based algorithms used for the classification of hyperspectral images (HSIs) has typically been in the forward direction. In this study, an end-to-end alternately updated spectral–spatial convolutional network (AUSSC) with a recurrent feedback structure is used to learn refined spectral and spatial features for HSI classification. The proposed AUSSC includes alternating updated blocks in which each layer serves as both an input and an output for the other layers. The AUSSC can refine spectral and spatial features many times under fixed parameters. A center loss function is introduced as an auxiliary objective function to improve the discrimination of features acquired by the model. Additionally, the AUSSC utilizes smaller convolutional kernels than other convolutional neural network (CNN)-based methods to reduce the number of parameters and alleviate overfitting. The proposed method was implemented on four HSI data sets, as follows: Indian Pines, Kennedy Space Center, Salinas Scene, and Houston. Experimental results demonstrated that the proposed AUSSC outperformed the HSI classification accuracy obtained by state-of-the-art deep learning-based methods with a small number of training samples.
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1. Introduction


Hyperspectral images (HSIs) contain both spectral and spatial information and generally consist of hundreds of spectral bands for the same observed scene [1]. Due to the vast amounts of information they contain, HSIs have found important applications in a variety of fields, such as the non-contact analysis of food materials [2], the detection and identification of plant diseases [3], multispectral change detection [4], and medicine [5]. HSI classification is the core technology in these applications. However, since HSIs include inherently high-dimensional structures, their classification remains a challenging task in the remote sensing community.



Traditional classification methods involve feature engineering using a classifier. This process aims to extract or select features from original HSI data, typically producing a classifier based on low-dimensional features. Support vector machines (SVMs) are the most commonly used method in the early stages of HSI classification, due to their low sensitivity to high dimensionality [6]. Spectral–spatial classification methods have become predominant in recent years [7]. Mathematical-morphology-based techniques [8], Markov random fields (MRFs) [9], and sparse representations [10] are also commonly used branches. However, many of these techniques suffer from low classification accuracy due to shallow feature extraction.



Deep learning, a popular tool in multiple areas including remote sensing, has recently been applied to HSI classification [11]. Traditional feature extraction methods have struggled to identify high-level features in HSIs. However, deep learning frameworks have been proposed, in which stacked auto-encoders (SAEs) were used to obtain useful deep features [11]. Deep learning-based methods can extract deep spectral and spatial features from HSIs to obtain higher classification accuracies than those of most traditional methods [12]. Consequently, in recent years, a variety of deep learning-based methods have been used for classification [7]. For example, one study used a deep belief network (DBN) that combined PCA with logistic regression to perform HSI classification, achieving competitive classification accuracy [13].



Among these methods, deep convolutional neural network (CNN) algorithms have achieved particularly high accuracy. Deep supervised methods using randomized PCA have also been proposed to reduce the dimensionality of raw HSIs. Additionally, two-dimensional (2D) CNNs have been used to encode spectral data, spatial information, and a multilayer perceptron (MLP) for classification tasks [14]. Three-dimensional (3D) CNNs have also been used as feature extraction models to acquire spectral–spatial features from HSIs [15]. Two-layer 3D CNNs have performed far better than 2D CNN-based methods [16].



Recently, two deep convolutional spectral–spatial networks, the spectral–spatial residual network (SSRN) [17] and the fast and dense spectral–spatial convolutional network (FDSSC) [18], achieved unprecedented classification accuracy. This was due in part to the inclusion of deeper 3D CNN architectures. SSRN and FDSSC achieved an overall accuracy of above 99% across three widely used HSI data sets. As such, there appears to be little room for improvement in HSI classification. However, deep supervised methods require large quantities of data. For example, SAE logistic regression (SAE-LR) requires 60% of a data set to be labeled [11] and DBNs [13] and 3D CNNs [16] require 50% to be labeled. In contrast, SSRN and FDSSC require only 20% and 10% of a data set to be labeled, respectively. However, even a minimal labeling requirement (e.g., 10%) typically includes more than a thousand samples. As a result, the cost of sample labeling remains high in remote sensing studies.



In contrast, semi-supervised methods require only limited labeled samples. Recently, a semi-supervised model was introduced that labels samples based on local, global, and self-decisions. As a result, test samples were labeled based on multiple decisions [19]. Generative adversarial networks (GANs) can also be used for HSI classification. Real labeled HSIs and fake data generated by a generative network can be used as inputs to a discriminative network. Trained discriminative networks can then classify unlabeled samples [20]. Although GANs require only 200 real labeled samples to train, their classification accuracy remains relatively low.



Attention mechanisms [21], a popular research topic in network structures, have also proven to be effective for image classification [22]. These mechanisms mimic the internal processes of biological systems by aligning internal experiences with objective sensations, thereby increasing the observational fineness of subregions. When humans view a digital image, they do not observe every pixel in the image simultaneously. Most viewers focus on specific regions according to their requirements. Additionally, while viewing, their attentional focus is influenced by previously observed images. Attention mechanisms implemented through feedback connections [23] in a network structure can enable the network to re-weight target information and ignore background information and noise. Cross-entropy loss is the most commonly used loss function in multi-objective classification tasks and has achieved excellent performance. It increases the inter-class distance, yet neglects the intra-class distance. However, sometimes the intra-class distance is even greater than the inter-class distance, which reduces the discrimination of the extracted features. The objective function must ensure that these extracted features are distinguishable. Furthermore, the center loss function [24], which is designed to reduce the intra-class distance, has been shown to help the network extract more discriminant features. However, to prevent the degradation of classification accuracy, center loss can only be used as an auxiliary loss function.



This study introduces an attention mechanism and a center loss function for HSI classification. Inspired by previous studies [25], we propose a deep supervised method with an end-to-end alternately updated convolutional spectral–spatial network (AUSSC). Unlike 3D CNN, SSRN, and FDSSC, which include only forward connections in the convolutional layers, the AUSSC includes both forward and feedback connections. Additionally, the convolutional kernels of the AUSSC are smaller than those of 3D CNN, SSRN, or FDSSC, as the kernels are decomposed into smaller kernels. Deeper spectral and spatial features can be obtained in the AUSSC using a fixed number of parameters, due to the alternate updating of blocks.



Due to the inclusion of attention mechanisms and factorization into smaller convolutions, the AUSSC is more capable of spectral and spatial feature learning than other CNN-based methods. Both forward and feedback connections are densely connected within the alternately updated blocks. Consequently, spectral and spatial features are optimally learned and feature maps from different blocks are repeatedly refined by attention. The classification results obtained using the proposed method demonstrate that this AUSSC has been optimized for classification with a limited number of training samples. The four principal contributions of this study are as follows:




	(1)

	
The proposed method includes a recurrent feedback spectral–spatial structure with fixed parameters, in order to learn not only deep but also refined spectral and spatial features to improve HSI classification accuracy.




	(2)

	
The effectiveness of the center loss function is validated as an auxiliary loss function used to improve the results of hyperspectral image classification.




	(3)

	
The AUSSC decomposes a large 3D convolutional kernel into three smaller 1D convolutional kernels, thereby saving a large number of parameters and reducing overfitting.




	(4)

	
The AUSSC achieves state-of-the-art classification accuracy across four widely used HSI data sets, using limited training data with a fixed spatial size.









The remainder of this paper is organized as follows. Section 2 presents the framework of the proposed AUSSC. Section 3 describes the experimental data sets. The details of the experimental results and a discussion are given in Section 4. Conclusions and suggestions for future work are presented in Section 5.




2. Methods


In this section, an alternately updated spectral–spatial convolutional network is proposed for HSI classification. Figure 1 shows an overview of the proposed method. For HSI data with L channels and a size of H×W, a spatial size of s×s was selected from the raw HSI data and used as the input to the AUSSC network. First, the AUSSC uses three smaller convolutional kernels to learn spectral and spatial features from an original HSI patch. Second, the alternately updated spectral and spatial blocks refine the deep spectral and spatial features using recurrent feedback. Finally, the model parameters are optimized using the cross-entropy loss and center-loss loss functions. Details of each stage are elaborated in the following subsections.



2.1. Learning Spectral and Spatial Features with Smaller Convolutional Kernels


During HSI classification, deep CNN-based methods typically utilize preprocessing technology such as PCA. This is often followed by several convolutional layers with multiple activation functions and a classifier for obtaining classification maps. The convolution and activation can be formulated as


Xil+1=f(∑j=1NXjl∗kjil+1+bil+1),



(1)




where Xjl is the ith input feature map for the (l+1)th layer, N is the number of feature maps in the (l+1)th layer, * is the convolution operation, f(⋅) is an activation function, and kjil+1 and bil+1 are learnable parameters that can be fine-tuned using the back-propagation (BP) algorithm.



The 3D CNN, SSRN, and FDSSC algorithms all demonstrate that an end-to-end 3D-CNN-based framework outperforms 2D-CNN-based methods that include preprocessing or post-processing, as well as other deep learning-based methods. One reason for this is that an end-to-end framework can reduce pre-processing and subsequent post-processing, allowing the connection between the original input and the final output to be as close as possible. The model then includes more space that can be adjusted automatically by the data, thereby increasing the degree of fitness. Additionally, when applied to HSIs with a 3D structure, 1D convolution operations focus on spectral features. 2D convolution operations focus on spatial features and 3D convolution operations can learn both spatial and spectral features. However, 3D kernel parameters are larger than 2D or 1D kernel parameters when the number of convolutional layers and kernels is the same. As such, a large number of model parameters can lead to overfitting.



As such, we propose an end-to-end CNN-based framework that uses smaller convolutional kernels compared to other CNN-based methods. As shown in Figure 2, the AUSSC utilizes kernels for HSI classification, ignoring other specific architectures. The 3D CNN method uses two similar convolutional kernels with sizes of a×a×m1 and a×a×m2, with the two convolutional kernels differing only in spectral dimension. SSRN uses a spectral kernel with a size of 1×1×m and a spatial kernel with a size of a×a×d to learn spectral and spatial representations, respectively. Convolutional kernels dictate model parameters and determine which features are learned by the CNN. In contrast, we introduce the idea of factorization into smaller convolutions from InceptionV3 [26]. In this process, a larger 3D convolutional kernel with a size of a×a×m was divided into three smaller convolutional kernels with sizes of 1×1×m, 1×a×1, and a×1×1. This substantially reduced the number of parameters, accelerated the operation, and reduced the possibility of overfitting. As shown in Table 1, in the absence of bias (with all other conditions remaining the same), the convolutional kernel with a size of a×a×m included a2m parameters. The smallest convolutional kernel only included parameters, which is more economical than the other two. This increased the nonlinear representation capabilities of the model due to the use of multiple nonlinear activation functions.




2.2. Refining Spectral and Spatial Features via Alternately Updated Blocks


Deep CNN architectures have been used for HSI classification and have produced competitive classification results [17]. However, the connection structure in the convolutional layers is typically in the forward direction. Additionally, the convolutional kernels in SSRN and FDSSC increase with depth. Alternately updated cliques have a recurrent feedback structure and go deeper into the convolutional layers with a fixed number of parameters [25]. Therefore, we propose combining small convolutional kernels with this loop structure and design two alternately updated blocks to learn refined spectral and spatial features separately from HSIs.



As shown in Figure 3, there are two stages in the alternately updated spectral blocks. In the initialization stage (stage 1), the 3D convolutional layers use k kernels with sizes of 1×1×m to learn deep spectral features. In stage 2, the 3D convolutional layers use k kernels with sizes of 1×1×m to learn refined spectral features. A feature map with a size of s×s×b and a number, n, was input to the alternately updated spectral block. This input is denoted as X0(1), where the subscript 0 represents the feature map in the initial position of the alternately updated spectral block. The superscript (1) indicates the feature map is in the first stage of the alternately updated process. In stage 1, the input of every convolutional layer is the output of all the previous convolutional layers. Stage 1 can be formulated as follows:


Xl(1)=f(∑j<lXj(1)∗Wjl),



(2)




where Xl(1) is the output of the lth (l≥1) convolutional layer in stage 1 of an alternately updated spectral block, f(·) is a nonlinear activation function, ∗ is the convolutional operation using the padding method, and WWjl is a parameter reused in stage 2.



In the looping stage (stage 2), each convolutional layer (except the input convolutional layer) is alternately updated to refine features. Stage 2 has a recurrent feedback structure, meaning that the feature map can be refined several times using the same weights. Therefore, any two convolutional layers in the alternately updated spectral block are connected bi-directionally. Stage 2 can then be formulated as follows:


Xlr=f(∑j<lXjr∗Wjl+∑k>lXk(r−1)∗Wkl),



(3)




where r≥2 since the feature map is in stage 2 and can be updated multiple times by the recurrent feedback structure. Similarly, l≥1 since the input feature map is not updated.



After learning refined deep spectral features, the input convolutional layer and the updated convolutional layer are concatenated in the alternately updated spectral block and transferred to the next block. Once spectral information from the HSI has been learned, the high dimensions of the feature map can be reduced by valid convolution and reshaping operations (see figure in Section 2.4.). The resulting input to the alternately updated spatial block is a feature map with number, n, and size t×t×1.



As shown in Figure 4, there are two different convolutional kernels in the alternately updated spatial block. The 3D convolutional layers use ka×1×1 and k1×a×1 convolutional kernels to learn deep refined spatial features with an alternately updated structure that is also used for the alternately updated spectral block. In the spatial block, two different convolutional kernels learn spatial features in parallel rather than in series. The convolutional relationship between the spatial block is the same as for the previous block.



These alternately updated blocks achieve spectral and spatial attention due to the presence of refined features obtained in the looping stages. Densely connected forward and feedback structures allow the spectral and spatial information to flow in convolutional layers within the blocks. These alternately updated blocks also include weight sharing. In stage 1, the weights increase linearly as the number of convolutional layers increases. However, in stage 2, the weights are fixed since they are shared. The partial weights from stage 1, such as W12, W13, and W23 (see Figure 2), are reused in stage 2. As features are cycled repeatedly in stage 2, the number of parameters remains unchanged.




2.3. Optimization by the Cross-Entropy Loss and Center Loss Functions


HSI classification is inherently a multi-classification task and cross-entropy loss with a softmax layer is a well-known objective function that is used for such problems. The softmax cross-entropy loss can be written in the following form:


ℒsoftmax=−∑i=1mlogexp(WyiTxi+byi)∑j=1nexp(WjTxi+bj),



(4)




where m is the size of the mini-batch, n is the number of classes, xi is the ith deep feature belonging to the yith class, Wj is the jth column of the weights W in the last fully connected layer, and b is the bias. The last layer of the CNN-based model is typically fully connected, as it is difficult to make the dimensions of the last layer equal to the number of categories without a fully connected layer. Intuitively, one would expect that learning more discriminatory features would improve the generalization performance. As such, we introduce an auxiliary loss function [24] to improve the discrimination of features acquired by the model. This function can be formulated as follows:


ℒcenter=12∑i=1m‖xi−cyi‖22,



(5)




where cyi is the central feature in the yith class. The function decreases the quadratic sum of the distance from the center of the feature to the features of each sample in one batch, which decreases the intra-class distance. The center of feature cyi can then be updated through iterative training.



When two loss functions are used together for HSI classification, the softmax cross-entropy loss is considered to be responsible for increasing the inter-class distance. The center loss is then responsible for reducing the intra-class distance, thus increasing the discriminant degree and generalization abilities of learned features. Consequently, the objective function for the AUSSC can be written in the following form:


ℒ=ℒsoftmax+λℒcenter =−∑i=1mlogexp(WyiTxi+byi)∑j=1nexp(WjTxi+bj) +λ2∑i=1m‖xi−cyi‖22



(6)




where λ ∈ [0, 1) controls the proportion of center loss and the value of λ is determined experimentally, as discussed in the following section. In summary, the cross-entropy loss is the principal objective function and the inter-class distance is the principal component. The center loss is the auxiliary used to reduce the intra-class distance.




2.4. Alternatively Updated Spectral–Spatial Convolutional Network


A flowchart is included below to explain the steps in the AUSSC end-to-end network. Considering the cost and time requirements of the collection of HSI labeled samples, we propose a 3D CNN-based framework that maximizes the flow and circulation of spectral and spatial information. Figure 5 shows a 9×9×L cube, which is used as input in our technique, where L is the number of HSI bands. Due to high computational costs, two convolutional layers were used in the alternately updated blocks and a single loop was used in stage 2.



L2 loss and batch normalization (BN) [27] were used to improve the normalization of our model. In a broad sense, L2 and other regularization parameter terms added to the loss function in machine learning are essentially weighted norms. The goal of normalization with L2 loss is to effectively reduce the size of the original parameter values in the model, with BN performing normalization operations on input neuron values. The normalization target regularizes its input value to a normal distribution with a mean value of zero and a variance of one. The blue layers and blue lines both refer to the BN, rectified linear units (ReLU), and the convolution operation. The first convolutional layer lacks both a BN and a ReLU.



The original HSI input, which has a size of 9×9×L, flows to the first convolutional layer with a kernel size of (1,1,7) and a stride of (1,1,2) to generate feature maps with a size of 6 49×9×b. The number of kernels in the convolutional layers of alternately updated spectral block was 36, the kernel size was (1,1,7), and the convolutional padding method was the same. As a result, the output size for each layer remained 36 9×9×b, which was unchanged in stage 1 and stage 2. After concatenating the input and updated feature maps, the output of the alternately updated spectral blocks had a size of 136 9×9×b.



A valid convolutional layer with 48 channels and a kernel size of 1×1×b was included between alternately updated spectral and spatial blocks. This reduced the dimensions of the output of alternately updated spectral blocks, resulting in 48 feature maps with a size of 9 × 9 × 1. After reshaping the third dimension and the channel dimension, 48 channels with a size of 9 × 9 × 1 were merged into a single 9×9×48 channel. A valid convolutional layer with a kernel size of 3×3×48 and 64 kernels transformed the feature map into 64 channels with a size of 7×7×1.



Similar to the alternately updated spectral blocks, the alternately updated spatial block featured two convolutional kernels with sizes of 1×3×1 and 3×1×1. In stage 1 and stage 2, the output of each layer was 36 kernels with a size of 7 × 7 × 1. The results of two convolutional kernels were concatenated into 272 kernels with a size of 7 × 7 × 1. Finally, the output passed through a 3D average pooling layer with a pooling size of 7×7×1, which was converted into 272 feature maps with a size of 1 × 1 × 1. After the flattening operation, a vector with a size of 1×1×C was produced by the fully connected layer, where C is the number of classes. Trainable AUSSC parameters were optimized by iterative training using Equation (6) and used to compute the loss between the predicted and real values.



The following sections provide a summary of the advantages of this proposed AUSSC architecture. First, the use of three different small convolutional kernels reduced both the number of parameters and overfitting, thereby increasing the nonlinear representation ability of the model and the diversity of features. Compared with symmetric splitting into several identical small convolutional kernels, this asymmetric splitting can handle more and richer features. Second, refined deep features learned by both forward and feedback connections between convolutional layers are more robust and have more high-level spectral and spatial information. Additionally, SSRN and FDSSC learn deeper features by increasing the number of convolutional layers in the blocks. However, unlike these conventional models, AUSSC can go deeper with fixed parameters due to its loop structure and shared weights. Finally, an auxiliary loss function was used to reduce the intra-class distance and increase the distinction between features of different categories.





3. Experimental Data Sets and Framework Settings


3.1. Description of Experimental Data Sets


Three common HSI data sets were used to validate the proposed AUSSC, as follows: The Indiana Pines (IP; northwestern Indiana, USA), Kennedy Space Center (KSC; Merritt Island, FL, USA), and Salinas Scene (SS; Salinas Valley, CA, USA). These IP data were obtained by the NASA Airborne Visible Imaging Spectrometer (AVIRIS) sensor. The size of the IP data was 145×145, with 220 bands containing 16 kinds of ground cover. The KSC data were collected by the AVIRIS sensor in 1996 and had a size of 512×614, with 176 bands and 13 ground truth classes. The SS data were also collected by the AVIRIS sensor and had a size of 512×217, with 204 bands and 9 ground truth classes. Table 2 lists these classes and the corresponding false-color composite maps for three data sets.



However, with the development of state-of-art algorithms for hyperspectral image classification, these three data sets are easily classified. When the number of training samples was more than 800, SSRN and FDSSC achieved an accuracy higher than 98% for the three HSI data sets. The difference between the classification accuracies of these methods is less than 1%. Therefore, in addition to the three data sets discussed above, this study included the Houston (Houston, TX, USA) data set, which was distributed for the 2013 GRSS Data Fusion Contest [28]. The Houston data are more difficult as conventional algorithms (SSRN, FDSSC, etc.) have been unable to achieve classification above 90% with 200 labeled training samples. The size of the Houston data was 349 ×1905, with 144 bands containing 15 kinds of ground cover. Table 3 lists the classes and corresponding false-color composite maps for this data set.



Quantitative analysis was performed with the same limited training samples using all methods. Different sets of training samples were used to demonstrate the effectiveness of the AUSSC method under different conditions. A subset of 200 labeled samples were used for training and 100 labeled samples were used for validating. A series of 400, 600, 800, and 1000 training samples were then included to test the robustness and generalizability of the proposed AUSSC.




3.2. Framework Setting


The framework for all data sets was established as follows. From 10 random seeds, all data sets were randomly divided into the three following groups: A training set, a validation set, and a test set. The training sets were used to optimize model parameters. The validation sets were not directly used in the training process and were only included to verify whether the model was overfitting. The testing sets were used to test the performance of the model after the training was completed. The number of validation sets was half the number of training sets and the remainder of the sets were test sets. The batch size was set to 16 and the Adam [29] optimizer was used for stochastic optimization. The initialization of model weights was performed using the He normal distribution method [30] for all 3D convolutional layers and the Xavier normal distribution method for the fully connected layer [31]. We used a variable learning rate, which was gradually reduced during the optimization process. This was done because the learning rate must be smaller when closer to the valley. The number of training epochs was set to 400 and the initial learning rate was set to 0.0001 for IP, KSC, and SS data sets and 0.0003 for the Houston data set. The learning rate was halved when the validation loss did not decrease after 10 epochs.



In addition to these basic settings, four key factors were used to configure the AUSSC framework for HSI classification. Namely, (1) the number of convolutional layers and loops in one block of stage 2; (2) the number of convolutional kernels in alternately updated blocks; (3) the spatial size of input cubes; and (4) the coefficients of the center loss function. These four factors are discussed by the OA of IP, KSC, and SS below.



First, the number of convolutional layers and loops in each block of stage 2 determined the depth of the entire network, which consequently affected classification accuracy and runtime. As shown in Figure 6, appropriately increasing the number of convolutional layers and the number of loops improved classification. However, the network depth had a significant impact on training time and was almost linearly related to the training time. Therefore, we used two convolutional layers and only loop in each block to conserve training time.



Second, increasing the number of convolutional kernels often extracted more rich features. If enough convolutional kernels were provided, abstract high-order structures could be efficiently learned from the convolutional layer. As shown in Figure 7, the overall accuracy (OA) of the AUSSC was weakly positively related to the number of convolutional kernels, which had little effect on training time. Combining the performance of the AUSSC for the three data sets, the number of kernels in the first convolutional layer was set to 64 in each block and the number of kernels was set to 36 in two blocks.



Third, a larger input space allowed more spatial information to be extracted. Input samples with spatial sizes of 5×5, 7×7, 9×9, and 11×11 were used in the three data sets. As shown in Figure 8, the OAs of the IP, KSC, and SS data sets increased with increasing input spatial size. However, for inputs with spatial sizes greater than or equal to 9 × 9, the increase in OA was less than 1%. Considering the cost of calculation, the 9×9 spatial size was selected for all data sets to test the performance of the AUSSC framework.



Moreover, the coefficient of center loss also played an important role in our proposed AUSSC. The coefficient of L2 loss was set to 0.0001 and the possible values of the coefficients for center loss were set to 0, 0.1, 0.01, and 0.001. As shown in Figure 9, the center loss could not be used directly as an objective function. However, as an auxiliary objective function, the center loss can slightly increase the overall classification accuracy. When the coefficient of center loss was set to 0.001, the OA of the AUSSC using the IP and SS data sets increased slightly. However, the OA of the AUSSC using the KSC data set increased by nearly 1%. As such, the coefficient of center loss was set to 0.001.





4. Classification Results and Discussion


4.1. Experimental Results


In this section, we compare the proposed AUSSC framework with deep learning-based methods, including SAE-LR [14], CNN [18], SSRN [21], 3D-GAN [24], and FDSSC [22]. As SSRN, FDSSC, and the proposed AUSSC are all 3D CNN-based methods, the input spatial size was fixed at 9 × 9 to allow a fair comparison. Ten groups of 200 training samples were randomly selected from the IP, KSC, SS, and Houston data sets. The classification accuracy indices for the experiment included the OA, average accuracy (AA), and kappa coefficient (Κ). The results of these three metrics are displayed in the form of mean ± standard deviation. The original hyperspectral data were normalized to a zero mean and standard deviation of one. The dimensions of the image block were the same as those of the original hyperspectral data. Figure 10, Figure 11, Figure 12 and Figure 13 show classification results obtained from the IP, KSC, SS, and Houston data sets using different algorithms.



Table 4, Table 5, Table 6 and Table 7 display the results of the OA, AA, kappa coefficient, and accuracy of each category for the IP, KSC, SS, and Houston data sets and the best accuracy is shown in bold. These experimental results show that our proposed AUSSC method is superior to early deep learning methods (SAE-LR and CNN), novel 3D-GAN, and recent 3D CNN-based methods (SSRN and FDSSC).



As shown in Table 4, the values of OA, AA, and K, obtained using the AUSSC, were 2.43%, 11.28%, and 2.75% higher than those obtained using FDSSC, which exhibited the second-best performance for the IP data set. AUSSC also achieved the best classification accuracy in 10 categories of the IP data set. AUSSC achieved an accuracy similar to SSRN and 3D-GAN for Class 4 (Corn) and Class 8 (Hay-windrowed), respectively. FDSSC achieved significantly better results for Class 11 (Soybean-mintill) and Class 13 (Wheat). However, FDSSC (like other methods), achieved poor results for Class 9 (Oats), with an average accuracy of only 10%. In contrast, AUSSC achieved excellent results with an average accuracy of 92.61%. CNN achieved the best results for Class 16 (Stone-Steel-Towers) but produced 0% for Class 9 (Oats) and performed poorly in four other categories.



As shown in Table 5, the values of OA, AA, and K obtained using AUSSC were respectively 1.37%, 3.34%, and 1.48% higher than those produced by 3D-GAN, which exhibited the second-best performance for the KSC data set. AUSSC also achieved the best accuracy in 7 of 13 KSC categories, producing results similar to those of 3D-GAN for Class 10 (Cattail marsh) and Class 11 (Salt marsh). 3D-GAN achieved significantly better results for Class 5 (Oak), Class 6 (Hardwood), and Class 7 (Swamp). However, its accuracy for Class 2 (Willow swamp) and Class 8 (Graminoid marsh) was ~20% lower than that of our method.



As shown in Table 6, the values of OA and K obtained using AUSSC were 0.63% and 0.71% higher than those produced by FDSSC, which exhibited the second-best performance for the SS data set. AUSSC achieved similar or better results than FDSSC across all 16 categories in the SS data set. As shown in Table 7, the values of OA, AA, and K, obtained using AUSSC, were 1.81%, 1.91%, and 1.95% higher than those obtained by FDSSC, which exhibited the second-best performance for the Houston data set. CNN achieved excellent results for Class 2 (Grass Stressed), Class 5 (Soil), and Class 15 (Running Track). However, the accuracy of CNN in Category 10 (Highway), Class 12 (Parking Lot 1), and Class 13 (Parking Lot 2) was ~40% lower than that of our method.



These experimental results indicate AUSSC achieved the best performance in terms of OA and K for all four HSI data sets. Other methods, especially CNN, were superior to our methods in some categories, but performed poorly in others. These poorly performing categories dramatically reduced the OA, AA, and K.



With the exception of the 3D-GAN data, which were obtained from the literature, these classification results shown in Table 4, Table 5, Table 6 and Table 7 were trained and tested using a desktop computer with 32 GB of memory equipped with an NVIDA GTX 1080Ti GPU. Table 8 shows the mean and standard deviation of the training time and testing time for 10 runs using CNN-based methods and the minimum time is shown in bold. As shown in the tables, the training times for deep 3D CNN-based methods were longer than those of other deep learning-based methods. The AUSSC required a longer training time than SSRN or FDSSC. For AUSSC applied to the IP data set, the number of floating-point operations per second (FLOPs) was 5362.386 K and the number of parameters was 761.064 K.



To corroborate the robustness and generalizability of the proposed method, Figure 14 and Figure 15 show the OA obtained using different methods for different training samples. When the number of training samples was higher than 400, our method performed similarly to SSRN and FDSSC. This is because the OA of SSRN and FDSSC reached more than 98%, creating a small gap between our method and these conventional techniques. This also demonstrates that the three datasets published more than 10 years ago are easily classified by state-of-the-art methods. The Houston data set, provided by the University of Houston for the 2013 IEEE GRSS Data Fusion Contest, is more challenging. As shown in Figure 15, it is more discriminant than the three datasets in comparing AUSSC with other methods. The resulting difference in OA between AUSSC, FDSSC, and SSRN was more than 1%.




4.2. Discussion


In this study, a highly limited number of training samples (200) was used to demonstrate that our proposed method can reduce data dependence. Insufficiently labeled data are unavoidable in remote sensing applications. Additionally, the collection and labeling of remote sensing data is complex and expensive. Thus, it is very difficult to build large-scale, high-quality labeled sets. The number of labeled samples used for training is the most important factor in deep-learning supervised methods, as data dependence is one of the most serious problems in deep learning. Compared with traditional machine-learning methods, deep learning relies heavily on large-scale training data, which are necessary to understand potential patterns. Semi-supervised 3D-GANs also require ~200 training samples; however, their classification accuracy is significantly lower.



The proposed method offers three principal benefits. First, it provides an end-to-end framework for HSI classification. SAE-LR, CNN, and 3D-GAN all require PCA to preprocess hyperspectral data. Second, deep CNN architectures and convolutional kernels were used to determine classification accuracy in 3D CNN-based methods [20]. These networks include only two convolutional layers with 3 × 3 × m convolutional kernels. SSRN and FDSSC use residual blocks, dense blocks, and two different convolutional kernels to learn deep spectral and spatial features. The biggest difference between AUSSC and the 3D CNN-based methods discussed above is its use of recurrent CNN architectures and three 1D convolutional kernels. Alternately updated blocks can not only learn deep spectral and spatial features but also refined spectral and spatial features. As a result, three 1D convolutional kernels can be combined to generate more abundant features. As a result, AUSSC achieved better classification accuracy than current state-of-the-art deep learning-based methods. Finally, unlike these other methods, only cross-entropy objective functions were used in the AUSSC. We also introduced center loss in the AUSSC as an auxiliary objective function to learn more discriminating features.



Although the proposed method provides better performance than conventional architectures (especially SSRN and FDSSC), it has a much higher computational requirement (see Table 8). There are three primary reasons for this. First, AUSSC uses more convolutional kernels in two blocks than SSRN and FDSSC. Second, the use of the center loss function increases the computational cost. Finally, and most importantly, more training epochs are used in AUSSC than in SSRN and FDSSC. In fact, the training time for one epoch in AUSSC is only slightly longer than in FDSSC or SSRN. However, AUSSC requires far more training epochs. The regular updating of graphics cards and the use of high performance graphics cards, such as the NVIDIA GeForce RTX 2080Ti, could effectively alleviate this problem.





5. Conclusions


In this study, refined spectral and spatial features in HSIs were used as core concepts to design an end-to-end CNN-based framework for HSI classification. This alternately updated convolutional spectral–spatial network utilizes alternately updated spectral and spatial blocks and primarily includes small convolutional kernels in three different dimensions to learn HIS features, combining them into advanced features.



The learning of deep refined spectral and spatial features by alternately updated blocks makes our method superior to other deep learning-based methods, as this allows it to achieve a high classification accuracy. Furthermore, experimental results also demonstrated that the center loss function can slightly improve the classification accuracy of hyperspectral images. Results showed that when 200 training samples were used from different HSI data sets, the AUSSC achieved the highest classification accuracy among the deep learning-based methods for all three data sets. Additionally, using different training samples, the AUSSC was also found to be the best method in terms of OA for all HSI data sets. However, the AUSSC has a longer training time than other conventional algorithms. In a future study, network pruning will be used to reduce the heavy calculation of the deep model.
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Figure 1. An overview of the proposed end-to-end alternately updated spectral–spatial convolutional network (AUSSC). “Conv” refers to the convolution operation. The operations denoted by “Some operations” are presented in detail in Section 2.4. “Logits” refers to the output of the last fully connected layer. Classification results are acquired after the Softmax operation. 
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Figure 2. The structure of convolutional kernels in the 3D CNN-based method without a specific architecture. (a) 3D-CNN; (b) SSRN; (c) The proposed method. “Concat” refers to the concatenate operation. 
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Figure 3. Two stages of alternately updated spectral blocks with three convolutional layers. 
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Figure 4. A representation of the alternately updated spatial block with two different convolutional kernels and three convolutional layers for each convolutional kernel. 






Figure 4. A representation of the alternately updated spatial block with two different convolutional kernels and three convolutional layers for each convolutional kernel.



[image: Remotesensing 11 01794 g004]







[image: Remotesensing 11 01794 g005 550]





Figure 5. The AUSSC proposed for hyperspectral image (HSI) classification of labeled pixels with an input size of 9×9×L. The value L is the number of HSI bands and C is the number of classes. 
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Figure 6. The overall accuracy of the AUSSC with different numbers of convolutional layers and loops in each block. The a+b notation on the x-axis denotes the AUSSC with a convolutional layers and b looping iterations in stage 2 of each block. IP: Indiana Pines data set; KSC: Kennedy Space Center data set; SS: Salinas Scene data set. 
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Figure 7. The overall accuracy of the AUSSC with different numbers of convolutional kernels in the first layer using two blocks. The a+b notation on the x-axis denotes an AUCN with a kernels in the first convolutional layer and b kernels in the two blocks. 






Figure 7. The overall accuracy of the AUSSC with different numbers of convolutional kernels in the first layer using two blocks. The a+b notation on the x-axis denotes an AUCN with a kernels in the first convolutional layer and b kernels in the two blocks.



[image: Remotesensing 11 01794 g007]







[image: Remotesensing 11 01794 g008 550]





Figure 8. The overall accuracy of the AUSSC with different input spatial sizes. 
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Figure 9. The overall accuracy of AUSSC for different center-loss coefficients. 
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Figure 10. Classification results for the Indian Pines data set obtained using different methods. (a) Ground-truth map; (b) SAE-LR; (c) CNN; (d) SSRN; (e) FDSSC; and (f) AUSSC. 
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Figure 11. Classification results obtained from the KSC data set using different methods. (a) Ground-truth map; (b) SAE-LR; (c) CNN; (d) SSRN; (e) FDSSC; and (f) AUSSC. 
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Figure 12. Classification results obtained from the SS data set using different methods. (a) Ground-truth map; (b) SAE-LR; (c) CNN; (d) SSRN; (e) FDSSC; and (f) AUSSC. 
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Figure 13. Classification results obtained from the Houston data set using different methods. (a) Ground-truth map; (b) SAE-LR; (c) CNN; (d) SSRN; (e) FDSSC; and (f) AUSSC. 
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Figure 14. The overall accuracy (OA) of different methods for different numbers of training samples in three HSI data sets. (a) Indiana Pines (IP) data set; (b) Kennedy Space Center (KSC) data set; and (c) Salinas Scene (SS) data set. 
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Figure 15. The overall accuracy (OA) of different methods for different numbers of training samples in the Houston data set. 
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Table 1. Parameters for different convolutional kernels.
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Convolutional Kernels

	
Parameters






	
a×a×m

	
a2m




	
1×1×m

	
a×a×1

	
a2+m




	
1×1×m

	
a×1×1

	
1×a×1

	
a+a+m
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Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data.






Table 2. Color codes for the classes, class types, and sample numbers (SN) for the ground truths of the Indiana Pines (IP) data, Kennedy Space Center (KSC) data, and Salinas Scene (SS) data.





	
Color

	
IP Data

	
KSC Data

	
SS Data




	
Class

	
SN

	
Class

	
SN

	
Class

	
SN






	
 [image: Remotesensing 11 01794 i001]

	
Alfalfa

	
46

	
Scrub

	
347

	
Brocoli_green_weeds_1

	
2009




	
 [image: Remotesensing 11 01794 i002]

	
Corn-notill

	
1426

	
Willow swamp

	
243

	
Brocoli_green_weeds_2

	
3726




	
 [image: Remotesensing 11 01794 i003]

	
Corn-mintill

	
830

	
CP hammock

	
256

	
Fallow

	
1976




	
 [image: Remotesensing 11 01794 i004]

	
Corn

	
237

	
Slash pine

	
252

	
Fallow_rough_plow

	
1394




	
 [image: Remotesensing 11 01794 i005]

	
Grass-pasture

	
483

	
Oak/Broadleaf

	
161

	
Fallow_smooth

	
2678




	
 [image: Remotesensing 11 01794 i006]

	
Grass-trees

	
730

	
Hardwood

	
229

	
Stubble

	
3959
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Grass-pasture-mowed

	
28

	
Swamp

	
105

	
Celery

	
3579




	
 [image: Remotesensing 11 01794 i008]

	
Hay-windrowed

	
478

	
Graminoid marsh

	
390

	
Grapes_untrained

	
11271




	
 [image: Remotesensing 11 01794 i009]

	
Oats

	
20

	
Spartina marsh

	
520

	
Soil_vinyard_develop

	
6203




	
 [image: Remotesensing 11 01794 i010]

	
Soybean-notill

	
972

	
Cattail marsh

	
404

	
Corn_senesced_green_weeds

	
3278
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Soybean-mintill

	
2455

	
Salt marsh

	
419

	
Lettuce_romaine_4wk

	
1068
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Soybean-clean

	
593

	
Mud flats

	
503

	
Lettuce_romaine_5wk

	
1927
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Wheat

	
205

	
Water

	
927

	
Lettuce_romaine_6wk

	
916




	
 [image: Remotesensing 11 01794 i014]

	
Woods

	
1265

	

	

	
Lettuce_romaine_7wk

	
1070
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Buildings-Grass-Trees

	
386

	

	

	
Vinyard_untrained

	
7268
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Stone-Steel-Towers

	
93

	

	

	
Vinyard_vertical_trellis

	
1807




	
Total

	
10,249

	
5211

	
54,129
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Table 3. Color codes for the classes, class types, and sample numbers (SN) for the ground truth of the Houston data.
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NO.

	
Color

	
Class

	
SN






	
1

	
 [image: Remotesensing 11 01794 i001]

	
Grass Healthy

	
1374




	
2

	
 [image: Remotesensing 11 01794 i002]

	
Grass Stressed

	
1454




	
3

	
 [image: Remotesensing 11 01794 i003]

	
Grass Synthetic

	
795




	
4
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Tree

	
1264




	
5
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Soil

	
1298




	
6

	
 [image: Remotesensing 11 01794 i006]

	
Water

	
339




	
7

	
 [image: Remotesensing 11 01794 i007]

	
Residential

	
1476




	
8
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Commercial

	
1354




	
9
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Road

	
1554




	
10
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Highway

	
1424




	
11
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Railway

	
1332




	
12

	
 [image: Remotesensing 11 01794 i012]

	
Parking Lot 1

	
1429




	
13

	
 [image: Remotesensing 11 01794 i013]

	
Parking Lot 2

	
632




	
14
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Tennis Court

	
513




	
15
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Running Track

	
798




	
Total

	
17,036
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Table 4. Overall accuracy (OA), average accuracy (AA), kappa coefficient (K), and accuracy for each HSI category in the Indiana Pines (IP) data set. Data are given as mean ± standard deviation.
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	Methods
	SAE-LR
	CNN
	SSRN
	3D-GAN
	FDSSC
	AUSSC





	OA (%)
	57.44 ± 0.56
	59.84 ± 0.98
	90.47 ± 2.24
	90.69 ± 0.86
	92.12 ± 1.05
	94.55 ± 1.09



	AA (%)
	46.30 ± 1.17
	51.60 ± 1.17
	88.46 ± 3.29
	83.14 ± 1.82
	83.16 ± 5.08
	94.44 ± 1.11



	Κ ×100
	51.04 ± 0.58
	53.97 ± 1.03
	89.12 ± 2.54
	89.62 ± 0.26
	91.02 ± 1.18
	93.77 ± 1.25



	1
	22.89 ± 7.33
	1.33 ± 1.09
	90.00 ± 30.0
	30.21 ± 1.03
	70.00 ± 45.8
	98.33 ± 5.00



	2
	45.46 ± 3.80
	41.53 ± 3.04
	87.35 ± 11.6
	81.79 ± 0.26
	90.38 ± 4.87
	94.60 ± 3.04



	3
	26.69 ± 2.61
	30.91 ± 8.28
	87.18 ± 7.24
	75.93 ± 1.26
	86.48 ± 3.99
	90.06 ± 4.53



	4
	33.80 ± 10.2
	13.28 ± 4.16
	94.28 ± 6.63
	90.08 ± 1.23
	92.34 ± 6.67
	93.73 ± 5.98



	5
	46.82 ± 7.78
	70.80 ± 1.59
	95.89 ± 3.66
	86.39 ± 2.12
	96.65 ± 1.95
	98.59 ± 2.55



	6
	79.64 ± 1.71
	90.78 ± 0.78
	94.09 ± 2.07
	93.28 ± 0.23
	95.11 ± 2.44
	97.84 ± 0.81



	7
	41.45 ± 10.5
	20.74 ± 8.95
	71.98 ± 37.8
	40.71 ± 1.05
	40.00 ± 49.0
	86.57 ± 13.0



	8
	96.57 ± 1.26
	94.93 ± 4.04
	94.13 ± 3.30
	98.11 ± 0.21
	92.51 ± 2.06
	97.22 ± 2.11



	9
	38.82 ± 23.4
	0.00 ± 0.00
	50.0 ± 50.0
	20.00 ± 1.96
	10.00 ± 30.0
	91.61 ± 9.49



	10
	50.47 ± 1.91
	52.53 ± 1.24
	86.47 ± 7.69
	74.28 ± 0.89
	84.87 ± 9.39
	92.40 ± 2.86



	11
	70.89 ± 2.49
	61.88 ± 4.33
	91.88 ± 5.03
	91.12 ± 0.25
	95.32 ± 2.12
	93.97 ± 3.29



	12
	28.41 ± 6.67
	26.57 ± 2.96
	88.93 ± 6.27
	84.99 ± 1.46
	92.45 ± 4.35
	94.52 ± 2.55



	13
	22.57 ± 8.28
	94.03 ± 1.33
	97.15 ± 4.18
	49.75 ± 2.45
	99.70 ± 0.90
	97.67 ± 2.99



	14
	78.23 ± 5.89
	93.74 ± 1.40
	96.03 ± 3.11
	94.38 ± 0.26
	96.39 ± 2.74
	96.65 ± 1.49



	15
	39.57 ± 7.08
	33.46 ± 3.23
	92.00 ± 6.50
	94.47 ± 0.79
	90.36 ± 9.55
	94.63 ± 1.59



	16
	18.59 ± 21.6
	99.12 ± 0.82
	97.98 ± 2.71
	84.22 ± 1.16
	98.01 ± 1.33
	92.70 ± 5.28










[image: Table]





Table 5. OA, AA, Κ, and accuracy for each HSI category in the Kennedy Space Center (KSC) data set.






Table 5. OA, AA, Κ, and accuracy for each HSI category in the Kennedy Space Center (KSC) data set.





	Methods
	SAE-LR
	CNN
	SSRN
	3D-GAN
	FDSSC
	AUSSC





	OA (%)
	57.68 ± 1.74
	69.87 ± 0.36
	96.23 ± 1.40
	96.89 ± 1.24
	96.28 ± 1.26
	98.26 ± 0.70



	AA (%)
	44.99 ± 4.59
	69.59 ± 0.44
	94.58 ± 1.53
	94.14 ± 0.40
	94.58 ± 1.70
	97.48 ± 1.01



	Κ ×100
	52.45 ± 1.94
	65.87 ± 0.37
	95.80 ± 1.56
	96.52 ± 0.26
	95.86 ± 1.41
	98.0 ± 0.78



	1
	81.87 ± 15.5
	4.09 ± 2.79
	97.87 ± 3.50
	98.29 ± 0.42
	97.99 ± 2.24
	99.02 ± 1.02



	2
	52.83 ± 29.6
	85.29 ± 1.91
	94.29 ± 5.66
	79.84 ± 1.45
	93.01 ± 4.35
	96.35 ± 6.83



	3
	35.82 ± 33.2
	69.38 ± 1.94
	85.31 ± 13.7
	98.44 ± 0.14
	86.65 ± 10.3
	98.98 ± 3.05



	4
	0.00 ± 0.00
	32.06 ± 1.78
	84.11 ± 11.4
	86.51 ± 1.12
	76.02 ± 10.7
	87.54 ± 6.86



	5
	21.22 ± 22.4
	52.50 ± 2.09
	82.92 ± 16.0
	98.7 ± 0.14
	86.61 ± 11.2
	94.24 ± 8.50



	6
	0.37 ± 0.51
	58.60 ± 1.40
	96.51 ± 5.23
	100.00 ± 0.00
	96.23 ± 5.82
	97.53 ± 4.94



	7
	23.56 ± 19.0
	99.23 ± 1.54
	93.14 ± 8.05
	97.14 ± 1.06
	97.32 ± 4.68
	96.12 ± 8.69



	8
	66.24 ± 10.1
	62.13 ± 2.46
	97.83 ± 1.67
	72.95 ± 2.10
	97.28 ± 2.27
	98.58 ± 0.87



	9
	51.76 ± 25.0
	86.69 ± 0.31
	99.84 ± 0.22
	99.23 ± 0.09
	99.84 ± 0.18
	99.92 ± 0.13



	10
	20.00 ± 14.4
	73.47 ± 2.67
	99.02 ± 2.38
	100.00 ± 0.00
	100.00 ± 0.00
	99.97 ± 0.08



	11
	89.64 ± 3.48
	90.00 ± 0.00
	99.50 ± 0.73
	100.00 ± 0.00
	98.70 ± 1.63
	99.18 ± 1.29



	12
	51.24 ± 12.0
	93.25 ± 0.43
	99.25 ± 0.85
	96.48 ± 1.23
	99.87 ± 0.22
	99.83 ± 0.25



	13
	90.44 ± 3.00
	97.93 ± 0.22
	99.91 ± 0.21
	100.00 ± 0.00
	100.00 ± 0.00
	100.00 ± 0.00










[image: Table]





Table 6. OA, AA, Κ, and accuracy for each HSI category in the Salinas Scene (SS) data set.






Table 6. OA, AA, Κ, and accuracy for each HSI category in the Salinas Scene (SS) data set.





	Methods
	SAE-LR
	CNN
	SSRN
	3D-GAN
	FDSSC
	AUSSC





	OA (%)
	71.51 ± 0.10
	85.92 ± 2.79
	94.02 ± 2.79
	93.02 ± 1.54
	95.50 ± 0.69
	96.13 ± 0.57



	AA (%)
	78.03 ± 0.14
	91.14 ± 2.02
	97.39 ± 0.63
	89.15 ± 0.39
	97.41 ± 0.32
	97.37 ± 0.53



	Κ ×100
	68.48 ± 0.11
	84.42 ± 3.03
	93.34 ± 3.10
	92.07 ± 1.22
	94.99 ± 0.77
	95.70 ± 0.64



	1
	99.26 ± 0.26
	100.00 ± 0.00
	100.00 ± 0.00
	98.12 ± 1.02
	100.00 ± 0.00
	100 ± 0.00



	2
	98.90 ± 0.22
	99.42 ± 0.77
	98.90 ± 2.00
	94.11 ± 0.12
	99.82 ± 0.42
	99.82 ± 0.45



	3
	80.92 ± 0.84
	64.65 ± 20.8
	98.38 ± 1.40
	76.46 ± 0.28
	95.40 ± 2.60
	95.04 ± 4.35



	4
	98.71 ± 0.11
	98.74 ± 0.34
	98.97 ± 0.94
	100.00 ± 0.47
	98.08 ± 1.55
	97.99 ± 1.47



	5
	74.30 ± 0.19
	97.69 ± 1.63
	98.92 ± 1.46
	88.25 ± 1.89
	99.42 ± 0.61
	98.69 ± 2.31



	6
	99.8 ± 0.03
	99.97 ± 0.06
	99.94 ± 0.16
	99.34 ± 0.36
	99.99 ± 0.01
	99.98 ± 0.05



	7
	99.22 ± 0.09
	99.74 ± 0.17
	99.97 ± 0.01
	99.90 ± 0.67
	99.44 ± 0.79
	99.56 ± 0.65



	8
	78.78 ± 3.10
	56.58 ± 19.7
	89.97 ± 9.86
	89.44 ± 1.13
	90.27 ± 4.42
	92.83 ± 2.96



	9
	0.00 ± 0.00
	99.99 ± 0.01
	99.49 ± 0.66
	100.00 ± 0.00
	99.51 ± 0.43
	99.41 ± 0.21



	10
	74.08 ± 0.84
	86.06 ± 4.35
	98.71 ± 1.75
	98.13 ± 1.00
	96.29 ± 3.27
	98.25 ± 2.22



	11
	93.68 ± 0.28
	85.14 ± 4.31
	96.07 ± 2.01
	96.69 ± 2.12
	96.33 ± 1.51
	93.90 ± 4.29



	12
	99.99 ± 0.03
	92.66 ± 8.38
	99.05 ± 0.65
	99.06 ± 1.04
	98.06 ± 1.72
	98.40 ± 1.60



	13
	99.18 ± 0.06
	98.16 ± 3.06
	98.43 ± 1.88
	77.92 ± 1.68
	99.08 ± 1.22
	98.59 ± 1.41



	14
	94.28 ± 0.49
	97.46 ± 1.87
	98.23 ± 1.64
	78.21 ± 0.67
	98.35 ± 1.66
	96.13 ± 4.98



	15
	57.39 ± 0.96
	85.57 ± 8.72
	83.26 ± 11.8
	70.88 ± 0.45
	88.62 ± 5.21
	89.32 ± 4.69



	16
	0.00 ± 0.00
	96.43 ± 5.90
	100.00 ± 0.00
	90.0 ± 0.12
	99.85 ± 0.30
	99.94 ± 1.70
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Table 7. OA, AA, Κ, and accuracy for each HSI category in the Houston data set.






Table 7. OA, AA, Κ, and accuracy for each HSI category in the Houston data set.





	Methods
	SAE-LR
	CNN
	SSRN
	FDSSC
	AUSSC





	OA (%)
	76.18 ± 3.22
	75.01 ± 0.75
	88.89 ± 2.25
	89.40 ± 1.26
	91.21 ± 1.57



	AA (%)
	75.44 ± 0.14
	76.45 ± 0.58
	91.35 ± 1.71
	91.39 ± 1.02
	93.30 ± 1.04



	Κ ×100
	74.06 ± 3.82
	72.98 ± 0.81
	87.99 ± 2.43
	88.55 ± 1.36
	90.50 ± 1.70



	1
	95.96 ± 0.54
	86.61 ± 2.38
	91.44 ± 5.19
	90.91 ± 5.66
	96.17 ± 2.18



	2
	85.84 ± 0.17
	99.19 ± 0.12
	94.92 ± 3.06
	93.02 ± 8.54
	94.55 ± 3.26



	3
	95.35 ± 0.41
	95.42 ± 0.81
	99.50 ± 0.55
	99.49 ± 1.03
	99.61 ± 0.60



	4
	95.52 ± 0.17
	83.06 ± 1.08
	97.46 ± 2.82
	99.16 ± 0.39
	97.81 ± 2.37



	5
	94.28 ± 0.54
	100 ± 0.00
	96.55 ± 2.40
	96.61 ± 4.08
	97.84 ± 2.78



	6
	69.91 ± 1.26
	87.58 ± 0.24
	99.75 ± 0.74
	100 ± 0.00
	100 ± 0.00



	7
	70.46 ± 0.64
	70.69 ± 3.08
	83.18 ± 8.13
	89.19 ± 3.07
	90.14 ± 7.56



	8
	68.31 ± 2.05
	62.17 ± 1.69
	96.18 ± 4.10
	95.81 ± 4.23
	95.89 ± 4.09



	9
	65.76 ± 0.19
	72.56 ± 4.66
	78.42 ± 6.49
	83.22 ± 7.48
	78.91 ± 6.99



	10
	59.64 ± 0.19
	49.79 ± 3.45
	78.51 ± 8.40
	79.95 ± 5.48
	87.78 ± 5.84



	11
	76.71 ± 0.56
	76.32 ± 3.62
	82.14 ± 87.23
	82.99 ± 7.12
	89.28 ± 7.02



	12
	88.03 ± 0.79
	36.12 ± 8.41
	88.03 ± 6.54
	82.97 ± 6.57
	81.04 ± 8.89



	13
	11.58 ± 0.42
	32.51 ± 5.44
	88.52 ± 8.26
	82.59 ± 8.27
	96.11 ± 0.40



	14
	58.75 ± 0.33
	94.75 ± 1.36
	97.42 ± 3.62
	97.26 ± 3.11
	96.60 ± 3.25



	15
	95.46 ± 0.57
	100 ± 0.00
	98.32 ± 0.88
	97.68 ± 1.56
	97.75 ± 1.46
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Table 8. Training and testing times for CNN-based methods across the four data sets.






Table 8. Training and testing times for CNN-based methods across the four data sets.





	
Data set

	
Time

	
CNN

	
SSRN

	
FDSSC

	
AUSSC






	
IP

	
Training/sec

	
9.25 ± 0.40

	
73.9 ± 5.32

	
63.5 ± 3.72

	
439 ± 4.16




	
Testing/sec

	
0.71 ± 0.11

	
6.84 ± 0.20

	
7.91 ± 0.11

	
11.1 ± 0.21




	
KSC

	
Training/sec

	
8.10 ± 0.51

	
72.0 ± 2.50

	
57.1 ± 4.95

	
420 ± 4.21




	
Testing/sec

	
0.46 ± 0.16

	
2.18 ± 0.07

	
3.40 ± 0.06

	
4.83 ± 0.07




	
SS

	
Training/sec

	
10.1 ± 0.59

	
77.9 ± 3.00

	
63.5 ± 4.02

	
433 ± 3.99




	
Testing/sec

	
2.05 ± 0.11

	
27.0 ± 0.86

	
43.1 ± 0.50

	
58.9 ± 0.47




	
Houston

	
Training/sec

	
10.2 ± 0.55

	
149 ± 4.34

	
83.5 ± 1.26

	
594 ± 4.80




	
Testing/sec

	
1.52 ± 0.05

	
13.9 ± 0.49

	
10.9 ± 0.13

	
11.9 ± 0.18
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