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Abstract: MODIS (Moderate Resolution Imaging Spectroradiometer) land product subsets can provide
high-quality prior knowledge for the quantitative inversion of land and atmospheric parameters.
Using the LSR (Land Surface Reflectance) dataset, dust storm remote sensing monitoring in this
study was carried out via quality control and data synthesis. A dynamic threshold supported dust
storm monitoring method was proposed based on a monthly synthesized LSR database, which is
produced using MODO09A1 data. The apparent reflectance of clear-pixels with different atmospheric
conditions was simulated by the radiative transfer model. A pixel can be identified as a dust pixel if
the apparent reflectance is larger than that of the simulated data. The proposed method was applied
to the monitoring of four dust storms, the results of which were evaluated and analyzed via visual
interpretation, MICAPS (Meteorological Information Comprehensive Analysis and Process System),
and the OMI Al (Ozone Monitoring Instrument Aerosol Index) with the following conclusions:
the dust storm monitoring results showed that most of the dust areas could be accurately detected
when compared with the true color composite images, and the dust monitoring results agreed well
with the MICAPS observation station data and the OMI AI dust products.
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1. Introduction

Dust storms refer to strong winds that roll up a large amount of sand and dust from the ground and
make the horizontal visibility less than 1 km. They have the characteristics of sudden occurrence and
short duration. Dust storms are a severe regional weather phenomena that has extremely destructive
effects on the ecosystem. They can not only accelerate soil desertification and cause serious atmosphere
pollution, but can also result in a negative influence on human health, agricultural production,
transportation, and communication, and have feedback effects on regional and global climate change by
interfering with ocean biogeochemistry such as the iron and nitrogen cycle to the oceans [1-6]. Primary
research methods for dust storms include remote sensing monitoring and surface observations [7].
Since the surface observations are sparsely distributed, especially in desert areas and adjacent arid
and semi-arid areas, it is difficult to determine the dust source regions and the transport pathways.
With multi-source, dynamic, current, and accurate properties, satellite remote sensing technology
has the characteristics of wide coverage, continuous space, and fast and dynamic observation, which
can play an important role in dust storm monitoring. With the rapid development of satellite remote
sensing technology, dust storm remote sensing monitoring has been widely used for monitoring,
tracking, forecasting, and disaster assessment [8-10].

Dust storm monitoring mainly uses the difference of the reflectance between dust and the typical
surface or the cloud in the visible, near infrared bands and brightness temperature in the thermal
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infrared bands, and sets appropriate thresholds to distinguish dust pollution pixels from clear pixels or
cloudy pixels. Under cloudless conditions, the reflectance of dust storm in visible and near infrared
bands is much different with the typical surface because of the strong scattering characteristics of dust
storm. Di et al. analyzed the radiance response characteristics of the Indian National Satellite (INAAT)
3D, and built the Enhanced Dust Index (EDI) for dust identification via apparent reflectance at 0.65 pm
(visible band) and 1.63 um (short-wave infrared band) [11]. Yang et al. used the reflectance threshold
of blue band to detect the dust from the clear pixels [12]. Because of the scattering difference caused
by particle size and the absorption difference caused by water content, there are obvious radiation
differences between dust storm and cloud in visible and near infrared bands. Roskovensky and Liou
used the reflectance of 0.54 pm, 0.65 um, 0.86 pm, 1.38 um to study the difference between the dust
storm and cirrus clouds, and proposed an effective method for detecting dust storm from cirrus [13].
The information in visible and near infrared bands has been widely used in dust storm monitoring
from different sensors, but the information obtained in such wavelength is significantly affected by the
surface composition, especially in areas covered by thin dust storm. Due to the complexity of surface
spectral features, it is very difficult to set the appropriate threshold to distinguish all types of surface
and different characteristics of dust storm, so the stability of this method is relatively poor.

The scattering of large particles in the dust storm results in a negative brightness-temperature
difference in the wavelength range of 10 to 12 um. Typically, the 11 um brightness temperature of
dust storms is lower than the 12 pm brightness temperature; whereas the typical surface brightness
temperature is the opposite. Therefore, dust storm detection with infrared bands has been adopted
multiple satellite sensors with the methods of thermal infrared split windows (11 and 12 um channels),
etc. [14,15]. Ackerman monitored dust storms occurring over the Arabian Peninsula, Africa, and the
Southwest United States based on the brightness temperature difference between 11 pm and 1 pm
and proved that the negative difference between 11 pm and 12 um is helpful to detect and track
sandstorms [16]. Using the 16 AIRS (Atmospheric Infrared Sounder) observation channels observations
data in the thermal infrared region, Xu, et al. developed a DSSI (Dust Spectral Similarity Index), which
was calculated from the accumulated brightness temperature differences, to detect the dust storm,
and used for several Asia dust events observed in northern China, results shows it can reach a high
accuracy [17]. However, such methods are not stable and are influenced by many factors, which often
cause huge misidentification for dust scenes. For example, it has been reported that water cloud often
displays a similar spectrum with dust storm in the split window channels [15]. Moreover, some thermal
infrared bands are affected by other factors, such as the application of 8.6 um bands is susceptible to
the influence of SO, absorption [18].

Although many kinds of dust storm detection methods have been developed, but it is still difficult
to achieve high accuracy whether it is based on visible near infrared band, thermal infrared band, or
combination of the two kinds of bands. The main reason is the complexity of the surface structure
and the diversity of dust characteristics. Most of the existing detection methods are based on fixed
threshold method to distinguish dust storm from typical surface and cloud-covered areas. When thin
dust storm covered over different surface types, mixed pixels consisting of surface and dust may have
very complex radiation characteristics that make it difficult to distinguish between them by using fixed
thresholds in limited bands or band combinations [19]. The main reason for the above problems is that
the surface features are unknown, otherwise, the dust contaminated pixels can be identified according
to the change in the radiation from the dust to the surface.

Aimed toward alleviating the shortcomings of the fixed threshold method, Liu et al. developed
a dynamic reference brightness temperature differences (DRBTD) algorithm to improve the dust
detection. Using long-term MODIS data, the linear relationship between the brightness temperature
of the 12 and 11 pm channels and brightness temperature of 8.6 and 11 pm channels in clear sky
was analyzed. The dust detection thresholds are dynamically generated according to the observed
brightness temperatures [20]. The application of this method is limited by the dependence on
long time clear sky conditions and the need for surface stability in a long time range. In order to
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determine the suitable dust identification methods for different regions, the spatial distribution of
background BTD in mainland China was analyzed by She et al., and the dust identification thresholds
of brightness temperature difference were determined according to the characteristic of the land surface
reflectance [21]. This method effectively improves the detection accuracy of dust storms, but its spatial
adaptability is limited due to the complex relationship between reflectance in short wave band and
brightness temperature in thermal infrared band.

Based on the above problems, a dynamic threshold method for dust monitoring supported by
surface reflectance products was proposed in this paper. Surface reflectance data were obtained by
using 1000 m resolution surface reflectance products of a long time series to support dust monitoring.
With the support of surface reflectance, the possible range of satellite reflectance under cloud-free and
dust-free conditions can be calculated, and the threshold related to surface reflectance can be set to
identify dust. The first part of this paper describes a brief review of the topic and previous research
performed in this area; the second part presents the process of atmospheric radiation transmission,
the spectral characteristics of dust and a typical surface, the generation process of the surface reflectance
database, and the method of dynamic threshold of dust identification; the third part tests and verifies
the four dust storms processes. Finally, the main work and results of this paper and the main problems
are introduced.

2. Methods
2.1. Principles

2.1.1. Atmospheric Radiation Transfer

Radiance received by remote sensor in the visible to NIR (Near Infrared) band can be described as

p

m - Fy(ta, ts)T(Ta, tho) (1)

L(Ta, s, o, @) = Lo(Ta, s, o, P) +
where L is the total radiance received by the satellite sensor; Ly is the atmospheric path radiation; 7, is
the AOD (Aerosol Optical Depth); us and i, are the cosine of the solar and observation zenith angles;
¢ is the relative azimuth of the sensor and the sun; p is the surface reflectance; S is the atmospheric
backscattering ratio; F; is the downward total radiation to the land surface; and T is the transmissivity
between the land surface and satellite sensor.

It can be seen from Equation (1) that the signals received by the satellites are the result of the
combined action of the Earth’s surface and the atmosphere. If dust in the air covers different types of
surfaces, its pixel reflectance will be different. It is difficult to distinguish dust from the surface pixels
by a single threshold. Moreover, the intensity of dust also affects the signal received by the satellites.

Apparent reflectance is usually used in dust monitoring, which can be calculated by

. mxLxd? ?
P~ ESUN x cos 0
where d is the mean Earth-Sun distance; ESUN is the solar flux at the top of the atmosphere; and g is
the solar zenith angle.

2.1.2. Spectrum Properties of Dust Storms and the Typical Land

Radiation difference is the main basis for distinguishing dust from the surface. To study the
spectral properties of dust and other surface objects, pixels of thick dust, thin dust, cloud, snow/ice,
desert/Gobi, and vegetation were selected from the images of several dust storm events from 2013
to 2016 in Western and Northern China. Figure 1 shows the spectrum of different targets at MODIS
bands 1-7. This shows that cloud and snow/ice possessed high reflectance in the visible and NIR
band, and that dust reflectance was higher than the vegetation, and lower than the cloud and snow/ice;
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moreover, the reflectance of desert/Gobi was obviously lower than thick dust, but was similar to thin
dust. According to the reflectance difference, a fixed threshold could be set to separate dust from other
land objects. However, the reflectance of real remote sensing images is much more complex than the
spectral features shown in Figure 1. Most pixels are mixed pixels, and the spectral information of
one pixel is the compound information of several land objects. The reflectance of the mixed pixel is
determined by all of the components in the pixel and can be described by the function of the product
of the respective objects’ spectrum and their respective proportions [19,22,23]. However, it is difficult
to achieve the high-precision detection of dust by using the simple fixed threshold method. The main
reason is that the surface reflection characteristics are unknown. A fixed threshold cannot identify
dust above different surface types with a unified standard. In order to solve this problem, this paper
proposed using the existing surface reflectance database to provide the prior knowledge of the surface,
and on this basis, to identify dust.
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Figure 1. The spectrum of different targets at MODIS bands 1-7.
2.2. Land Surface Reflectance Data Set Construction

Due to the high quality of MOD09 (MODIS Surface Reflectance) products, they have been used as
important prior data for quantitative inversion of land and atmospheric parameters from satellite data.
Table 1 shows the description of MODO09 products.

Table 1. MODO09 product description (Collection 5).

Name Description Pixel Size Temporal Granularity
MOD09GQ MODIS band 1-2 daily surface reflectance 250 m Daily
MODO09GA MODIS band 1-7 daily surface reflectance 500 m, 1 km Daily
MOD09Q1 MODIS band 1-2 surface reflectance 250 m 8-Day
MOD09A1 MODIS band 1-7 surface reflectance 500 m 8-Day

MOD09CMG MODIS band 1-7 surface reflectance 0.05 Deg Daily

MODO09A1 data were collected to build the surface reflectance database in this article.
The MOD09A1 dataset was the 8-day gridded product of the surface reflectance acquired by Terra
after atmospheric, aerosol, and cirrus cloud correction and included seven bands covering the visible
to NIR wavelengths at a spatial resolution of 500 m. Research data were derived from the EOSDIS
(Earth Observation Satellite Data and Information System) of NASA, which website address is
https://search.earthdata.nasa.gov/search. Considering that the surface reflectance remains unchanged
in a period of time [19,24], four MODO09A1 images are produced in a month, where the pixel with the
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lowest surface reflectance is set as the pixel value using the minimum synthesis technique with the
following equation:

I(i, j) = Min(L (i, ), 12(,)), 133, j), 4 (3, 1) ®)

where [ is the composite imagery; I;, I, I3, and I are the four MODO09A1 images in one month,
respectively; and i and j are the row and column value, respectively, in an image.

Global MOD09A1 data from 2015 and 2016 were applied in this paper, which were preprocessed
by projection transformation and mosaic to produce a 1 km spatial resolution via bidirectional linear
interpolation. After vector clipping, the global land surface reflectance dataset of 2015-2016 was
constructed via the method of minimum synthesis. Figure 2 is a true color composite image (RGB:
band1, band4, band3) of a partial surface reflectance image in Asia (34°-50°N, 99°~128°E) May 2015
using the LSR dataset for demonstration, which shows that the synthesized pixel is basically composed
with clear pixel and can clearly present land cover types. Therefore, the constructed global LSR dataset
can provide surface reflectance at a fixed spatial and temporal location [25,26].
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Figure 2. True color composite surface reflectance image in May 2015 using the LSR dataset.

2.3. Dust Storm Remote Sensing Monitoring Supported by the LSR Dataset

2.3.1. MODIS Data

MODIS captures data from 36 bands within the wavelength range of 0.4~14.4 um covering the
visible, NIR, and TIR (thermal infrared) bands. With a bandwidth of 2330 km, MODIS observes the
Earth every 1-2 days at spatial resolutions of 250 m, 500 m, and 1 km. MODIS data have high temporal,
spatial, and spectral resolution and can provide rich information for dust storm monitoring. According
to the spectrum curves in Figure 1, bands 1, 3, 4, 6, and 7 in the visible, NIR, and SWIR (Short-wave
Infrared) bands were used for dust storm monitoring. Table 2 shows the parameters of the chosen
bands for MODIS.

Table 2. Parameters of the chosen bands for dust storm detection from MODIS.

Band Wavelength (um) Central Wavelength (um) Spatial Resolution
1 0.620~0.670 0.645 250 m x 250 m
3 0.459~0.479 0.469 500 m x 500 m
4 0.545~0.565 0.555 500 m x 500 m
6 1.628~1.652 1.64 500 m x 500 m
7 2.105~2.155 2.13 500 m x 500 m
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2.3.2. Dynamic Threshold Method

The atmospheric radiation transfer equation indicates that, considering the aerosol model, the
atmospheric and observation geometry are known factors, so the apparent reflectance can be obtained
from the surface reflectance. In this study, MODIS bands 1, 3, 6, and 7 were simulated by inputting the
parameters of surface reflectance, atmospheric model, AOD, observation geometry, aerosol type, etc.
to the radiation transfer model 65 (Second Simulation of the Satellite Signal in the Solar Spectrum)
to obtain the apparent reflectance of clear sky [27,28]. Table 3 shows the surface, atmospheric, and
geometric parameters used for the simulation, etc. Figure 3 is a curve that simulates the maximum
apparent reflectance of a satellite at a specific solar zenith angle and a satellite zenith angle, and the
functional relation between LSR and apparent reflectance was computed from Equations (4)—(8).

Table 3. Surface, atmospheric, and geometric parameters used for the simulation.

Parameters Parameter Setting
Surface reflectance 0.01, 0.1:0.1:0.8
Aerosol optical depth 0.00001, 0.05:0.05:0.8
Solar zenith angle 0:6:72
View zenith angle 0:6:72
Relative azimuth angle 0:12:180
Atmospheric model Midlatitude summer, Midlatitude winter
Aerosol model Urban model, Continental model, Maritime model, Desert model
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Figure 3. Relationships between the surface reflectance and apparent reflectance under different solar
and satellite azimuth angles. (a) Blue band; (b) Red band; (¢) SWIR1 band; (d) SWIR2 band.

According to atmospheric radiation transfer theory and the functional relation in Equations (1) and
(2), the pixel surface reflectance from the LSR dataset was input into the equations for the derivation
of the simulated apparent reflectance, which was then compared with real remote sensing imagery.
A pixel was a dust pixel if the real apparent reflectance was larger than that of the simulated one,
resulting in dynamic threshold identification for each pixel.
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Dust storm monitoring with the dynamic threshold method was performed via the following
equations:

pp’ = 0.664 - pp + 0.056 - cos a cos f + 0.099 4)
pr’ = 0.746 - pr 4 0.027 - cos a cos B + 0.049 (5)
Peivir = 0-899 - pswir1 + 0.008 - cos o cos B + 0.015 (6)
Powiry = 0-874 - pswirz + 0.005 - cos a cos B + 0.009 @)

Dust pixel is identified by

R; = p; - p}’ >0,i = B,R,SWRI1, SWRI2
R = RpURR URswri1 U Rswirz

®)

where p’ is the simulated apparent reflectance in different bands; p; is the surface reflectance; and i is
B (Blue band, B3), R (Red band, band1), SWRI1 (Short-wave Infrared1, band6), and SWRI2 (Short-wave
Infrared2, band?). a and { are the solar and satellite zenith angle; p* is the apparent reflectance; R; is
the dust detection result for each band; and R is the final dust detection result. If the real apparent
reflectance p is larger than the simulated one p}’, in other words, if R; is positive, the pixel is a
dust pixel.

2.3.3. Cloud Identification

Cloud is commonly produced when dust storms occur. Cloud pixels are easily misidentified
as dust pixels in dust storm monitoring using the dynamic threshold method, so it is necessary to
separate possible cloud pixels. Figure 1 shows that cloud has high reflectance in the visible and NIR
bands, where the third band of the blue band was the high value sector while the seventh band in the
SWIR band was the low value sector. Therefore, cloud was identified using the negative reflectance
difference of band 3 and band 7 [29-31]. The NDDI (Normalized Difference Dust Index) was built via
normalization processing:

NDDI = (PEWIRz - P%)/(PEWIRZ + p%) ©

where pg,,.., and py, are the apparent reflectance of MODIS band 7 and band 3. The pixel was identified
as a dust pixel if NDDI > 0, or was a cloud pixel.

3. Results and Discussion

Dust storms usually occur in the arid and semi-arid areas of the desert and its surrounding area in
late winter and early spring [32-35]. North Africa, the Middle East, Middle and South Asia, East Asia,
North America, and Australia are dust storm prone areas, where Western China is part of the Middle
Asia dust storm prone area, and Northern China is part of the East Asia dust storm prone area [36-38].
To study dust storm monitoring using the dynamic threshold method, four dust storms that occurred
on 27 March, 2015, 15 April, 2015, 4 March, 2016, and 5 May, 2016 in north and west China (30°-60°N,
90°-130°E) were monitored, and the results were verified by MICAPS data, and OMI Al data. Table 4
shows the time of the MODIS data obtained used for dust detected and the time of the validated data
from MICAPS and the OMI AL
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Table 4. Dust storm image and estimation data acquiring times.

Imaging Time (UTC) MICAPS Observing Time (UTC) OMI AI Data Acquiring Time (UTC)

04:20 3:00 05:14
27 March 2015 27 March 2015 27 March 2015
03:15 03:00 04:09
15 April 2015 15 April 2015 15 April 2015
06:10 06:00 06:56
04 March 2016 04 March 2016 04 March 2016
03:00 03:00 03:58
05 May 2016 05 May 2016 05 May 2016

3.1. Introduction to Validation Data

MICAPS is a human—computer interaction system that supports weather forecast production.
It processes kinds of meteorological information such as ground observation data, aerological sounding
data, satellite cloud data, numerical forecast data, radar data, typhoon path data, urban forecast data,
etc. MICAPS supports a medium-term, short-term, and instant weather forecast platform by retrieving
various meteorological data, showing the meteorological graphics and images as well as the processing
and editing images [34,39,40].

Ground observation sites record ground and aerological sounding data every three hours including
weather condition, visibility, wind direction and speed, atmospheric pressure and rainfall, etc. Table 5
shows the MICAPS dust weather codes for evaluating the monitoring results, based on which, dust
data can be extracted for accuracy verification and results evaluation. As MODIS imagery has a wide
range and large span, observation data captured at 11 am and 2 pm (Beijing time), which are close to
the imaging time, were adopted for the monitoring experiments.

Table 5. MICAPS code for dust weather.

Code Code Meaning Code Code Meaning
6 Dust in suspension 7 Floating dust
8 Dust devil 9 Dust storms
30 Milddust storms weakened in the past hour 31 Mild dust storm
32 Milddust storms enhanced in the past hour 33  Strong dust storms decreases in the past hour
34 Strong dust storms 35  Strong dust storms enhanced in the past hour

OMI Al data obtained from sensor of OMI, which is one of the key sensors aboard the Aura
with a resolution of 13 km x 24 km, realizing global Earth observation every day. The OMI has a
wavelength of 270 nm-500 nm, covering two UV (ultraviolet) channels, UV1 (270-310 nm) and UV2
(310-365 nm) as well as one visible channel VIS (365-500 nm). The Al (Aerosol Index) is defined as the
residual of measured UV radiance and simulated radiation derived from equivalent reflectance [41].
The OMI near-UV aerosol algorithm (OMAERUV) calculates the Lambert Equivalent Reflectance (LER)
at 388 nm (Rjs) by assuming that the atmosphere scattering is purely Rayleigh, and the atmosphere is
bounded by an opaque Lambert reflector [42]. The LER at 354 nm is calculated via R}g:

obs

Al = -1001og, [ ——2—] (10)

il *
1554 (R3sy)

where Iggi is the radiation recorded by the remote sensor and Ig‘g’i is the calculated LER value.
Al is the aerosol index for aerosols that can absorb UV radiation such as dust or smoke. The Al is
close to 0 for cloud droplets or particles without absorption ability, or the Al is positive. Al is a good

sand indicator that can provide strength and a range of information of absorptive dust aerosol and
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is positively correlated with AOD [41,43,44]. The OMI-Aura_L2-OMAERUYV product was used to

validate the sand monitoring results.

3.2. Results Evaluation

Figures 4-7 show the comparison among MODIS RGB image (image (a)), dust storm monitoring

results (image (b)), MICAPS data (image (c)), and OMI Al data (image (d)).
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data (c), and OMI Al data (d) on 4 March, 2016.
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Figure 7. Comparison between the dust storm monitoring result (b), MODIS RGB image (a), MICAPS

data (c) and OMI Al data (d) on 5 May, 2016.

Image (c) in Figures 4-7 shows the dust monitoring result of the MICAPS ground observation
sites, where the red dots are the sites with a dust weather records and the blue dots are the sites with
no dust weather records. The statistics show that there were 168 observation sites with dust weather
records, 60 of which were in agreement with the monitoring results, and there were 106 sites covered
with clouds and two without records, as shown in Table 6. The reason for the two observation sites
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without records was that the observing time was not consistent with the imagery acquiring time,
so the dust region in the imagery was not the same as the observing data. A comparison with the
MICAPS observation data indicated satisfactory accuracy for dust storm monitoring using the dynamic
threshold method.

Table 6. Validation of the monitoring results with the MICAPS data.

Imagery Acquirin Ground Sites Ground Sites Ground Sites Cloud Covered  Ground Sites
"lg"ir;); (U("}’ 0) 8 Observing Number Number with Ground Sites Number with
Time (UTC) Accurate Results Number No Record
04:20 03:00 9 6 ’ 1
27 March 2015 27 March 2015
03:15 03:00
15 April 2015 15 April 2015 18 7 n 0
06:10 06:00
04 March 2016 04 March 2016 116 34 81 1
03:00 03:00
05 May 2016 05 May 2016 % 13 12 0
Ground sites amount 168 60 106 2

Image (d) in Figures 4-7 shows that the dust aerosol range from OMI Al was basically in common
with the monitoring results, especially for the day on May 5, 2016. However, for the detection result of
the other days, the spatial distribution was not completely consistent. The main reason is the difference
of time and space scale. Table 3 reveals that the OMI Al imaging time was 46—60 min later than that
of MODIS.

4. Conclusions

Conventional fixed threshold methods are easily affected by mixed pixels and atmospheric factors,
resulting in poor monitoring results. This paper analyzed the spectral properties and mixed pixels
of six typical land objects and proposed a dust storm monitoring method using dynamic threshold
supported by the LSR dataset. The 8-day gridded MOD09 A1 data were used to build the global LSR
dataset via minimum synthesis and then simulated the relations of surface reflectance and apparent
reflectance via 6S to realize pixel identification using the dynamic threshold. The method was applied
to four dust storms, and the visual interpretation showed that the spatial distribution of the dust
monitoring results were consistent with the true color composite images. The results showed that
the dust monitoring results agreed well with the MICAPS observation stations data. The OMI Al
validation was basically the same as the monitoring results. Although dust storm monitoring using
the dynamic threshold acquired satisfactory results, the following problems still need to be solved
in subsequent studies: (1) It assumes that the LSR remains the same in a period of time, while in
fact, the LSR changes with natural and artificial factors; (2) dust information cannot be monitored
completely because of cloud cover; and (3) the monitoring results of cloud edges, high reflectance land
surface, and dust edges need to be improved.
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