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Abstract: Solar-induced fluorescence (SIF) has been empirically linked to gross primary productivity
(GPP) in multiple ecosystems and is thus a promising tool to address the current uncertainties in
carbon fluxes at ecosystem to continental scales. However, studies utilizing satellite-measured SIF in
South America have concentrated on the Amazonian tropical forest, while SIF in other regions and
vegetation classes remain uninvestigated. We examined three years of Orbiting Carbon Observatory-2
(OCO-2) SIF data for vegetation classes within and across the six Brazilian biomes (Amazon,
Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal) to answer the following: (1) how does
satellite-measured SIF differ? (2) What is the relationship (strength and direction) of satellite-measured
SIF with canopy temperature (Tcan), air temperature (Tair), and vapor pressure deficit (VPD)? (3) How
does the phenology of satellite-measured SIF (duration and amplitude of seasonal integrated SIF)
compare? Our analysis shows that OCO-2 captures a significantly higher mean SIF with lower
variability in the Amazon and lower mean SIF with higher variability in the Caatinga compared to
other biomes. OCO-2 also distinguishes the mean SIF of vegetation types within biomes, showing that
evergreen broadleaf (EBF) mean SIF is significantly higher than other vegetation classes (deciduous
broadleaf (DBF), grassland (GRA), savannas (SAV), and woody savannas (WSAV)) in all biomes.
We show that the strengths and directions of correlations of OCO-2 mean SIF to Tcan, Tair, and VPD
largely cluster by biome: negative in the Caatinga and Cerrado, positive in the Pampa, and no
correlations were found in the Pantanal, while results were mixed for the Amazon and Atlantic Forest.
We found mean SIF most strongly correlated with VPD in most vegetation classes in most biomes,
followed by Tcan. Seasonality from time series analysis reveals that OCO-2 SIF measurements capture
important differences in the seasonal timing of SIF for different classes, details masked when only
examining mean SIF differences. We found that OCO-2 captured the highest base integrated SIF and
lowest seasonal pulse integrated SIF in the Amazon for all vegetation classes, indicating continuous
photosynthetic activity in the Amazon exceeds other biomes, but with small seasonal increases.
Surprisingly, Pantanal EBF SIF had the highest total integrated SIF of all classes in all biomes
due to a large seasonal pulse. Additionally, the length of seasons only accounts for about 30% of
variability in total integrated SIF; thus, integrated SIF is likely captures differences in photosynthetic
activity separate from structural differences. Our results show that satellite measurements of
SIF can distinguish important functioning and phenological differences in vegetation classes
and thus has the potential to improve our understanding of productivity and seasonality in the tropics.
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1. Introduction

Tropical vegetation accounts for the majority (60%) of terrestrial gross primary productivity
(GPP), the largest component of the carbon budget, e.g., [1–5]. Although tropical ecosystems play a
critical role in the global carbon budget, our understanding of local and regional variability in gross
primary production (GPP) is severely limited. These limitations arise due to the complexity of tropical
ecosystems, as well as difficulties collecting and scaling data from systems such as eddy covariance flux
instruments e.g., [3,6–10]. Satellite-based measurements of solar-induced fluorescence (SIF) developed
in recent years are providing a new tool to measure photosynthetic activity from local to global
scales. SIF is a by-product of the photosynthetic process, thus is mechanistically coupled to vegetation
functioning in contrast to optical reflectance-based vegetation indices (VIs), such as the normalized
difference vegetation index, which is often used to model or predict productivity [9,11–17]. SIF data
from satellite platforms have been demonstrated to be related to plant photosynthetic functioning,
have been shown to scale linearly with modelled and flux tower GPP, have empirical links with crop
and deciduous forest GPP in temperate zones, and captured differences in relative productivity of
different vegetative classes in temperate regions [11,12,14,18–29].

Studies also suggest SIF is an earlier indicator of vegetation stress than other remote sensing
vegetative health indices [20,30–37]. Global scale studies utilizing satellite-based SIF measurements and
vegetation classes based on the International Geosphere Biosphere Programme (IGBP) classifications
have shown significant vegetation class-specific SIF~GPP relationships, except for tropical evergreen
broadleaf forest (EBF) [12,15,28,29,38–42]. Li, Xiao [41], in particular, examined the vegetation
class-specific SIF for eight vegetation classes for the entire globe (deciduous broadleaf forest (DBF),
EBF, grasslands (GRA), savanna (SAV), evergreen needleleaf forest (ENF), open shrubland (OSH),
crop (CRO) and mixed forests (MF)) and found significant differences in SIF among some classes at
global scale as well as SIF~GPP relationships for all but EBF [42]. Thus, the SIF~GPP relationship
remains elusive for tropical forests (EBF) and unexamined for other vegetation types, such as DBF, GRA,
SAV in the tropical regions. There is a consensus in the literature that improving our understanding of
regional photosynthetic activity in tropical regions is urgent and SIF has the potential for addressing
the gaps in our knowledge by improving characterization of productivity of tropical vegetation types at
multiple scales [12,13,21,43–45], however, of the studies utilizing satellite-based SIF in South America,
the focus has only been on Amazon evergreen broadleaf forest (EBF) e.g., [22]. Thus, other tropical
vegetation and areas outside the Amazon are relatively unstudied.

Tropical vegetation, including tropical forests, appear to have seasonal cycles, yet the magnitudes,
timing, and seasonal variation in carbon fluxes, greenness, GPP, leaf area index (LAI), structural changes,
for example, are more complex than those observed in more temperate regions [46–49] due to the less
pronounced cycles and the high degree of biodiversity in tropical regions [9,35,39,40,50–54]. Vegetation
phenology influences spatiotemporal variability of ecosystem productivity and the measures of
seasonality are related to fluxes in the carbon cycle, i.e., GPP responds to timing of seasons [9,30,55–59].
Understanding phenology of tropical vegetation, and tropical forests in particular, is critical to
understanding the current functioning of tropical biomes and predict responses to a changing
climate [2,4,47,60–63]. Currently, our understanding of tropical vegetation seasonality and seasonality
response to different environments remains uncertain [1,22,49]. While the Amazon tropical forest
has been studied at multiple scales, no studies have yet analyzed seasonal cycles of SIFd in Amazon
tropical forests in relation to other, lesser studied vegetation classes and biomes [47,49,63]. Past studies
utilizing VIs have suggested that the seasonality of photosynthesis in the Amazon is related to leaf
phenology responses to high light availability in the dry season triggering a “green up” [63–65],
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but recent studies employing SIF from satellites [35], enumerating sun-sensor geometry and the
atmospheric contamination of VIs [64,66–68] have questioned the “green up” results. Satellite-based
VIs have been used widely in past studies to explore and understand the seasonal rhythms and
phenology as well as drivers, again mostly focused on temperate regions and tropical forests in
the Amazon. The remaining questions regarding Amazonian tropical forest phenology, the lack of
investigation of other vegetation and regions in Brazil, coupled with recent advancements in dedicated
SIF instrumentation onboard satellites, improved spectral resolution, and improvements in data
processing and retrieval techniques prompt us to address phenology of different vegetation types
across Brazil using satellite SIF [15,27,28,42,51,69–71].

Temperature (T) and vapor pressure deficit (VPD) are influential factors affecting photosynthesis
and are important inputs to model productivity [72–76]. As temperature increases, generally,
SIF decreases, especially at very high temperatures which increase non-photochemical quenching
(NPQ) and excess absorbed energy is given off as heat by the plant [13,77,78]. Higher VPD levels
induce water stress and usually indicate higher temperature and lower soil moisture conditions,
also triggering an increase in NPQ and reducing SIF [79]. Considering the relationships of T and
VPD to productivity is challenging in the tropics due to sparse or scale mismatched data, and data
issues become increasingly complex across tropical spatial gradients containing multiple vegetation
types [35,47,50,80]. Studies have examined temperature, water availability and VPD as drivers of
satellite-based SIF in temperate regions and where ground-based measurements or climate data have
been co-located and show resulting SIF-GPP relationships are reduced in high temperature or high
VPD [13,42,81,82]. Environmental conditions, including water availability and VPD, have also been
examined in relation to satellite-based SIF in the Amazon and correlations were found between water
stress conditions and increased variability in SIF measurements, yet specific relationships among VPD,
T, and SIF remain uncertain in Amazon tropical forests and unexamined for other vegetation and
biomes [22,35,83,84]. Measurements of canopy temperature (Tcan) have been shown to differ from
air temperature (Tair) in a tropical forest canopy by as much as 7 degrees Celsius and display better
agreement with GPP [85].

Brazil contains 19% of the world’s flora, the world’s largest area of tropical forest, the highest
carbon stocks and thus contributes significantly to global productivity, terrestrial biomass,
and biodiversity [4,35,62,75,86–89]. Among the six biomes of Brazil (Amazon, Atlantic Forest, Caatinga,
Cerrado, Pampa, and Pantanal), most studies are focused on the Amazon [3,90–94]. Brazil’s tropical
savanna is the second most dominant vegetation cover at an estimated 20–35% and it contains the region
considered to be the most biodiverse savanna in the world [90,95,96]. Savanna ecosystems in Brazil
have been identified as biodiversity hotspots and critical carbon sinks yet they are some of the most
endangered ecosystems in the world with conversion to agriculture, fires, and clearing of vegetation
exceeding the rate of deforestation in the Brazilian Amazon [90–98]. For these reasons, studies
examining tropical forest and savanna productivity in Brazil have dominated the research landscape.
Each Brazilian biome, however, is a mosaic of vegetation types, and in addition to tropical forests and
savannas, include deciduous broadleaf forest, grasslands, and woody savannas among others.

Previous studies examining SIF in the tropics have primarily focused on filtering SIF data for the
single vegetation class evergreen broadleaf forest (EBF) for comparison to SIF and other remote sensing
indices from satellites, flux tower data, or leaf level measurements or response to climate events such as
drought [22,35,47,60,99–101]. These studies have taken important steps to understand satellite SIF in
relation to GPP, light use efficiency (LUE), and drivers of photosynthetic function (i.e., light availability,
water availability, temperature, vapor pressure deficit) and to interpret SIF data (i.e., sensor geometry,
canopy structure, sensor degradation). In our approach, however, we investigated the degree to which
satellite-based SIF may or may not capture differences in magnitude and seasonality among tropical
vegetation classes that exist within similar climatic and geographic regions as a means to understand
SIF before filtering or combining vegetation classes or making comparisons to other quantities. To our
knowledge, no studies have been conducted to examine the biome-level photosynthetic activity of
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EBF outside the Amazon or have compared SIF of EBF to other vegetation classes in Brazil. Therefore,
an examination of the spatiotemporal patterns of SIF for different vegetation classes within and
among biomes is an important step to understanding the relative productivity and drivers of tropical
vegetation SIF beyond the Amazonian tropical forest [47,60,100].

We examined three years of Orbiting Carbon Observatory-2 (OCO-2) SIF data in the six Brazilian
biomes (Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal) to answer the following:
(1) how does SIF in vegetation classes within and across Brazilian biomes differ? (2) What is the
relationship (strength and direction) of SIF with canopy temperature (Tcan), air temperature (Tair),
and vapor pressure deficit (VPD) among vegetation classes within and across biomes? (3) How does
the phenology of SIF (duration and amplitude of seasonal integrated SIF) compare among vegetation
classes within and across biomes?

2. Materials and Methods

2.1. Study Areas: Brazilian Biomes

In this study, biome refers to the six main biomes of Brazil as defined by the Ministério do Meio
Ambiente (MMA) as regions sharing morphoclimatic and phytogeographical characteristics: Amazon,
Caatinga, Cerrado, Pampa, Pantanal, and Atlantic Forest [102]). Figure 1 shows the Brazilian biome
limits utilized in this study. These biomes are used as a large spatial scale basis for comparisons of
the high resolution satellite-based SIF measurements across regions for the whole country of Brazil,
which covers an area of about 850 million ha [103]. Table S1 shows a list of all abbreviations used in
the study.

The Amazon is the largest biome (about 50–60% of all Brazil) with a humid tropical climate,
low seasonal temperature variability, approximately 1000–2000 mm of annual precipitation, containing
approximately half the world’s tropical rainforest, and critical for biodiversity and the global carbon
balance [84,104,105]. The Cerrado is second in area to the Amazon (about 22–25%), with about
1200–1800 mm of precipitation, experiences seasonal periods of tropical followed by dry climate, and has
a great diversity of vegetation types and canopy covers, with savanna, woody savanna, dry grasslands,
wet grasses, and tropical forests, often heavily fragmented for agriculture [96,97,106–108]. The Pantanal
is one of the largest wetlands in the world (160,000 km2) with a dynamic yearly flooding regime and is
a United Nations Educational, Scientific and Culture Organization (UNESCO) World Heritage site
containing tropical wetlands with arid tropical species alongside dry shrubland and grasses as well as
xeric species [109–111]. The Pantanal contains a unique hydrologic structure of seasonal inundation fed
by the upper Paraguay River and average yearly rainfall of 1000–1400 mm, alternating patterns of salt
and freshwater lakes (bahias and salinas), and the highest species diversity and concentration of wildlife
in the world, yet it makes up only about 2% of the area of Brazil [109,110,112–115]. Despite often
being referred to as a desert, the Caatinga is a semi-arid region, making up about 10% of the country,
has only about 700 mm of rainfall per year, falling sometimes erratically with high temperatures
and low humidity [116,117]. and the dominant vegetation is woody shrub land and savanna with
abundant xerophytic species, but contains mosaics of seasonally dry tropical forests and is one of the
most populated semi-arid regions of the world [96,103,116–119]. The Atlantic Forest covers a wide
longitudinal area and has been heavily fragmented to only about 10% of the native vegetation remaining
after once having about 150 million ha of rainforest [88,120]. The Atlantic Forest makes up about 13%
of the country’s area and much of this is along the Atlantic coast having vegetation ranging from
deciduous and tropical forest to mangroves and vast managed forestry plantations, other agriculture,
and urban areas [88,120–123]. The average rainfall in the Atlantic forest varies greatly from coastal
areas (more than 4000 mm/year) to inland (~1000 mm/year), along elevation gradients (~1600 mm/year
at sea level to up to 3600 mm/year in high altitude mountain regions) and along the latitudinal expanse
of the biome [120]. The Pampa is the southernmost border biome, occupies approximately 2% of
Brazil, and has a transition from tropical to temperate climate, thus having four seasons, supporting
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grasslands and deciduous forest, and a large amount of agricultural development [124,125]. The Pampa
lies within the South temperate zone with subtropical and temperate climates averaging approximately
1200–1600 mm/year precipitation [124].

Figure 1. Map of Brazilian biome limits for the study. The six biomes are shown in color on the large
map. The inset in the upper right corner is South America with the shaded region representing the
extent of Brazil.

2.2. Orbiting Carbon Observatory-2 (OCO-2) SIF

Launched in 2014, the Orbiting Carbon Observatory-2 (OCO-2, NASA) satellite collects SIF
observations globally, offering the opportunity to measure photosynthetic activity of vegetation
at higher resolution than was possible before and to employ them to address gaps in knowledge
about GPP and carbon fluxes in the tropics. OCO-2 based SIF measurements provide superior
spatial and spectral resolution, data acquisition techniques, and retrieval precision than previous
satellite-based SIF measurements. This allows for improved validation and better determination
of SIF-GPP relationships [27,44,100]. OCO-2 collects spectral data from 757 to 775 nm (the Oxygen
absorption-A band; O2A) at approximately 1330 local time (LST) allowing accurate, high resolution
retrievals of instantaneous solar-induced fluorescence (SIF) within the Fraunhofer lines at 757 and
771 nm at a spectral resolution of 0.042 nm (FWHM = 0.042 nm) [44]. OCO-2 acquires 24 spectra per
second producing eight cross-track spectra each covering about 2 km × 1.3 km spatial area, called a
footprint, over a narrow swath width with maximum of approximately 10 km. At the Equator, the swath
width narrows due to slit rotation and the instrument records spectra of only one ground footprint with
all eight independent cross-track spectra [15]. The revisit period is every 16 days. Through 2 July 2015
each revisit time alternated between glint and nadir mode for the instrument, thus the repeat time for a
set of nadir measurements is every 32 days. Since 2 July 2015, the instrument alternates modes for every
orbit. Nadir mode measurements are recommended for studies such as this one because it follows a
similar ground track each revisit time (allowing detection of temporal changes), has a higher spatial
resolution, better signal-to-noise ratio and more consistent measurements under varying atmospheric
conditions and topography than does glint mode [15,27,44,126,127]. OCO-2’s coverage is global,
however, there are gaps between the points and swaths. Continuous spatial coverage is sacrificed for
the fine spatial sampling of each OCO-2 footprint. This fine spatial sampling and high resolution SIF
measurements provide the opportunity to more accurately address SIF of specific vegetation classes
within and across biomes than previous satellite-based platforms used for SIF. Nonetheless, while
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OCO-2 SIF data have high spectral and spatial resolution, individual footprints are noisy, thus analyses
in this study follow previous studies utilizing averaging in space and time [9,12,15,23,42,44,128].

The OCO-2 SIF Lite product (version 8r, “r” indicating retrospective dataset) data from September
2014–October 2017 for South America was downloaded and processed. The entire OCO-2 dataset is
missing August 2017 due to the sensor not collecting during that period. The data were read in, filtered
for nadir mode, and relevant variables, such as IGBP class, VPD, 2m temperature (air temperature,
Tair), and skin temperature (canopy temperature, Tcan) were retained for all OCO-2 footprints from
the dataset. The source of these environmental variables is the European Centre for Medium-Range
Weather Forecasts (ECMWF) and is included in the OCO-2 product. Brazil OCO-2 SIF footprints
were co-located with shapefiles of Brazilian biomes from Ministério do Meio Ambiente (MMA,
http://mapas.mma.gov.br/i3geo/datadownload.htm [102]) and all footprints in Brazil extracted and
flagged for biome location. Instantaneous SIF (SIFinst) was calculated using the average of instantaneous
SIF measured at 757 nm and instantaneous SIF at 771 nm times a factor of 1.7 based on the OCO-2 Data
Product User’s Guide and previous literature [15,28,126,129,130] as follows:

SIFinst = SIF757nm+1.7SIF771nm
2 (1)

SIFinst was normalized for differences in sun angle and daily changes by application of the daily
mean correction factor (DCF), which is a time averaged first order approximation of a daily average
SIFd [14,126,130,131]. The DCF varies with time and latitude because these relate to the variation of
the solar zenith angle (SZA) and length of the day, thus having a seasonal cycle. Although this cycle is
weaker in the tropics than higher latitudes, applying the DCF to SIF is recommended for examination
of seasonal cycles, comparing SIF across large spatial scales, and when examining OCO-2 based SIF
to other products with different collection times [15,27,131,132].The DCF approximately accounts for
the length of day and variability of the solar zenith angle (sza) using pure geometric incoming light
scaling for the location in ten-minute time steps. SIFd is calculated with the following equation

SIFd =
SIF757 or 771 nm

cos(sza(tm))

∫ t = tm+12h
t = tm−12h cos(sza(t))dt (2)

where sza is the solar zenith angle from the OCO-2 dataset and tm is the time of measurement [14,126,130]
The programming for downloading and processing of OCO-2 data was completed using the

interactive data language (IDL; Harris Geospatial, Inc., Boulder, Co.).

2.3. Statistical Analysis for Differences in Mean SIFd between Biomes and Vegetation Classes

The monthly average of all SIFd observations within a biome were calculated for all vegetation
classes aggregated (AVC) and an analysis of significant differences in the overall three year mean SIFd of
the biomes was performed to investigate differences in SIFd measured among biomes. To compare the
variability of SIFd measurements among biomes, the coefficient of variation (CV) of monthly average
SIFd was calculated for each biome and an analysis of differences performed. The data were tested for
normality and significant differences by examining the residuals, qq-plot, and histogram of residuals
of a two-way analysis of variance (ANOVA) and post hoc testing of differences was performed using
Tukey’s honestly significant difference test.

We then subset and filtered SIFd observations in each biome for key vegetation classes based on the
IGBP (Table S2, [56]): Deciduous Broadleaf Forests (DBF), Evergreen Broadleaf Forests (EBF), Grasslands
(GRA), Savannas (SAV), and Woody Savannas (WSAV). The average of all SIFd observations occurring
in each month within a biome were calculated for each of the key vegetation classes. These natural
(non-crop) classes composed the five largest proportions of SIFd measurements calculated in biomes
which are expected to have distinct SIFd signals and phenological cycles. Exclusion of Open Shrublands
(OSH) and Closed Shrublands (CSH), for instance, was due to the mixed deciduous and evergreen
foliage contained in these classes (Table S2) in conjunction with low proportions of SIFd measurements.
To investigate differences in SIFd measured among vegetation classes within biomes and to test for

http://mapas.mma.gov.br/i3geo/datadownload.htm
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interaction between biome and vegetation class, statistical analysis of significant differences in the
mean SIFd were performed following the procedures comparing AVC SIFd among biomes (previous
paragraph). Table S3 provides the values for the distribution of OCO-2 SIF observations by biome and
vegetation class for the study.

2.4. Correlation with Environmental Variables: Tcan, Tair, VPD

To investigate the strength and direction of these relationships, Spearman correlations were
calculated between SIFd and the environmental variables: Tskin, T2m, VPD for each vegetation class
in each biome. All statistical analysis and figures from statistical and seasonality analysis were
completed in R version 3.4.2, RStudio version 1.0.153 and the packages: dplyr, tidyverse, ggplot2,
and zoo [133–137].

2.5. Seasonality Metrics Extraction

In order to explore the behavior that may be masked by analysis of means, especially temporal
patterns, we undertook an analysis of seasonality for the vegetation classes in the biomes. We generated
time series of vegetation-specific SIFd for each biome to inspect the interannual variability of SIFd

measurements (Figure S11). Based on this inspection, we determined that the Pampa DBF data had too
many missing consecutive months for the study period to be reliable. We then applied the TIMESAT
algorithms to each of the other vegetation class’ SIFd time series for each biome to calculate seasonality
metrics [47,138]. TIMESAT was designed to analyze time series data from satellite sensors and generate
seasonality metrics such as start of season, end of season, peak of season, season length, base value,
maximum value, amplitude value, rates of increase and decrease, large (total) and small (pulse)
integrals [138,139] (Figure 2). The time series of SIFd for each vegetation class within each biome were
smoothed using the median of a moving window by more than one standard deviation. After the
time series were smoothed, we used the TIMESAT double logistic functions fitting method setting.
The average of the seasonality metrics for seasons detected over the three-year study period (n = 2) in
each time series was calculated to represent annual metrics for SIFd seasonality of each vegetation class
in each biome. A sample diagram of raw and fit data is shown in Figure 2. The algorithm determines
the base as the average of the left and right minimum values, and the amplitude as the difference
between the base value and the maximum (labels d and g, respectively, Figure 2). The time for begin
and end of season are determined using 0.5 of the amplitude from the left and right, respectively,
following methods for determining seasonality parameters in the literature [47,56,140].

From TIMESAT results, the per-season base integrated SIFd and the pulse integrated SIFd were
analyzed to quantify annual SIFd productivity for each vegetation class in each biome. The length
of season (LOS) in days was calculated for each vegetation class in each biome. The mean LOS for a
biome was calculated as the average of the SIFd LOS of DBF, EBF, GRA, SAV and WSAV SIFd within
that biome. We examined differences in means of LOS among biomes utilizing the Kruskal Wallace test
and Pairwise Wilcoxon Tests. Additionally, we used a generalized linear model (GLM) to determine if
length of SIFd season would explain the variation found in the total integrated SIFd.
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Figure 2. Example diagram of TIMESAT seasonality of SIFd metrics. Based on raw and fit data for the
Cerrado SAV SIFd. The blue curve in the figure is the raw SAV SIFd data in the Cerrado from August
2015–August 2016 (post interpolation if any were needed) and the fit data is plotted in orange. The area
under the fit curve yields integrated SIFd for the base and seasonal pulse, the SIFd values for start,
max, and end of season are calculated, and the timing of start, end, and maximum time are identified.
From these, the length of season can also be calculated. (a) season start time, (b) season end time,
(c) length of season, (d) base value, (e) time of middle of season, (f) maximum value, (g) amplitude,
(h) seasonal pulse integrated value, (i) base integrated value. Adapted from Eklundh and Jönsson [139].

3. Results

3.1. Comparison of SIFd among Biomes

We found that Amazon AVC SIFd is significantly different (mean = 0.38 Wm−2nm−1sr−1; Figure 3
and Table S4) than all other biomes (ANOVA, p < 0.001; Tukey’s HSD, p < 0.001; Table S5) and the
Caatinga AVC SIFd is significantly different (mean = 0.13 Wm−2nm−1sr−1; Figure 3 and Table S4) than
all other biomes (ANOVA, p < 0.001; Tukey’s HSD, p < 0.001; Table S5), as might be expected based on
prior understanding of biomass and chlorophyll content of vegetation in the biomes. No significant
differences in AVC SIFd were found among the Atlantic Forest (0.24 Wm−2nm−1sr−1; Figure 3 and
Table S4), Cerrado (0.24 Wm−2nm−1sr−1; Figure 3 and Table S4), Pampa (0.21 Wm−2nm−1sr−1; Figure 3
and Table S4), and Pantanal (0.25 Wm−2nm−1sr−1; Figure 3 and Table S4) biomes’ AVC SIFd. We found
OCO-2 captured the lower spatial variability measured using CV of mean SIFd in Amazon AVC SIFd

(mean CV = 0.46, p < 0.001) than all other biomes and the higher CV for the Caatinga (mean CV = 1.39,
p < 0.01). No significant differences in variability of SIFd were found among the Atlantic Forest (mean
CV = 0.77), Cerrado (mean CV = 0.78), Pampa (mean CV = 0.72), and Pantanal (mean CV = 0.63)
biomes. Figures S1–S7 show plots of the residuals versus fitted values, qq-plot, and histogram of
residuals of the two-way ANOVA.
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Figure 3. (a) Differences in (a) SIFd for all vegetation classes aggregated (AVC) for each biome. (b) CV
of monthly SIFd for all vegetation classes aggregated (AVC) for each biome. Boxplots representing the
minimum, 1st quartile, mean, 3rd quartile, and maximum SIFd for vegetation classes in each Brazilian
biome are shown. Outliers are represented by dots. Significant differences in means indicated by group
symbols A, B, C.

3.2. Comparison of SIFd among Vegetation Classes within Biomes

Our analysis of mean OCO-2 SIFd measurements distinguished forest from other classes’ SIFd in
the cases of EBF, but not DBF. In every biome, we found EBF SIFd to be significantly different than all
other vegetation classes (Tukey’s HSD, p < 0.001) Figure 4, panels a-f, Tables S4 and S6). Amazon EBF
SIFd had the highest mean of any class in any biome (mean = 0.38 Wm−2nm−1sr−1) (Figure 4, panels a–f,
Tables S4 and S6). However, DBF SIFd was not significantly different than GRA, SAV, or WSAV in any
of the biomes. Among the non-forest classes, mean SIFd analysis based on measurements from OCO-2
were partially able to distinguish GRA SIFd from SAV SIFd, but not able to differentiate SAV SIFd from
WSAV SIFd. In the Amazon, GRA SIFd was significantly lower than all other classes (mean = 0.26,
p < 0.01) Figure 4 panel a Tables S4 and S6). In the Atlantic Forest, Caatinga, and Cerrado GRA SIFd

(mean = 0.25, 0.14, 0.20 Wm−2nm−1sr−1, respectively; Table S4) was not significantly different than SAV
SIFd (mean = 0.25, 0.16, 0.23 Wm−2nm−1sr−1, respectively; Table S4) but, GRA SIFd in the Pampa and
Pantanal biomes (mean = 0.23, 0.22 Wm−2nm−1sr−1, respectively; Table S4) were significantly lower
than SAV SIFd (mean = 0.27, 0.25 Wm−2nm−1sr−1, respectively; Tukey’s HSD, p < 0.05) (Figure 4, panels
b–f, Tables S4 and S6). No difference was found among SAV, and WSAV SIFd in any of the biomes.
The results of a two-way ANOVA showed there was a significant interaction between biome and
vegetation class on SIFd (ANOVA F (20,1056) = 1.922). Therefore, to further investigate the comparison
means of SIFd of vegetation classes across biomes would require an exploration of the combination of
biome and vegetation class as main effects.
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Figure 4. Differences in monthly mean SIFd among vegetation classes within each biome. Boxplots
representing the minimum, 1st quartile, mean, 3rd quartile, and maximum SIFd, for vegetation classes
in each Brazilian biome are shown. Outliers are represented by dots. Significant differences in means
indicated by group symbols A, B, C.

3.3. Monthly Mean SIFd Correlations to Tcan, Tair, and VPD

In the Amazon, DBF and EBF SIFd were not significantly correlated with Tcan, Tair or VPD.
The range of values for Tcan, Tair, and VPD for DBF and EBF were smaller than other vegetation classes
and the range of SIFd values slightly smaller (Figures S2–S4). Amazon GRA, SAV and WSAV SIFd

were significantly negatively correlated with Tcan, Tair, and VPD (r between −0.72 and −0.35, p < 0.05,
Table 1). Amazon GRA, SAV, and WSAV SIFd had the strongest correlation with VPD (r = −0.81,
r = −0.6, r = −0.55, respectively, p < 0.001) and less correlated with Tair (r = −0.72, r = -0.35, r = 0.40,
respectively, p < 0.001) and Tcan (r = −0.7, r = −0.35, r = 0.41, respectively, p < 0.001), which were
similar in strength and direction with SIFd in these classes. This indicates that variations in SIFd are
more driven by changes in VPD than to Tcan or Tair. Correlations between Amazon GRA SIFd are
stronger than SAV and WSAV SIFd (Table 1).

We found few significant relationships of vegetation class SIFd with Tcan, Tair, or VPD in the
Atlantic Forest, but all those found were positive. Atlantic Forest EBF SIFd was significantly related to
Tcan, Tair, and VPD (r = 0.71, 0.74, and 0.6, p < 0.001, respectively; Table 1). WSAV SIFd was positively
correlated with Tcan and Tair (r = 0.45, 0.54, p < 0.001, respectively (Table 1), but not with VPD. No other
correlations among SIFd and Tcan, Tair, or VPD were found in the Atlantic Forest.

In the Caatinga all vegetation classes’ SIFd were significantly negatively correlated to Tcan

(r between −0.51 and −0.82, p < 0.01, Table 1) and Tair (r between −0.37 and −0.75, p < 0.05: Table 1)
and with VPD (r between −0.57 and −0.85, p < 0.01; Table 1). Caatinga SIFd in all classes (DBF, EBF,
GRA, SAV, WSAV) had the strongest relationship with VPD (r = −0.57, −0.71, −0.85, −0.81, and −0.77,
p < 0.001, respectively; Table 1) followed by Tcan (r = −0.51 p < 0.01, r = −0.69, −0.82, −0.85, −0.78,
and −0.74, p < 0.001, respectively: Table 1), then Tair (r = −0.37 p < 0.01, r = −0.57, −0.75, −0.73,
and −0.66, p < 0.001, respectively; Table 1). Caatinga DBF SIFd has the weakest correlations with Tcan,
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Tair and VPD of the vegetation classes in the Caatinga. Tcan, Tair, and VPD relationship strengths are
more similar for EBF, GRA, SAV, and WSAV SIFd in the Caatinga than for DBF and EBF SIFd with
Tcan, Tair.

Relationships of vegetation class SIFd with climatic variables are similar in the Cerrado to those in
the Caatinga and the ranges of values for Tcan, Tair, and VPD are more similar for the Caatinga and
Cerrado than for the other biomes (Table 1, Figures S2–S4). In the Cerrado, all vegetation class’ SIFd

are significantly negatively correlated with Tcan, Tair and VPD (r between −0.50 and −0.80, p < 0.01;
Table 1). Correlations of Cerrado SIFd are strongest between VPD and SIFd (VPD: r between −0.69
and −0.80, p < 0.001: Table 1) in every vegetation class, followed by Tcan (r between −0.52 and −0.70,
p < 0.01), then Tair (r between −0.50 and −0.61, p < 0.01; Table 1). The Cerrado SIFd relationships
deviate from the Caatinga in that Cerrado EBF SIFd has weaker relationships with all variables (Tcan,
Tair, and VPD) than the other classes’ SIFd, while we found that DBF SIFd had the weakest relationships
with variables for all classes.

In the Pampa, all vegetation class’ SIFd are significantly positively correlated with Tcan, Tair and
VPD (r between 0.46 and 0.83, p < 0.01; Table 1) in contrast to the negative correlations to Tcan, Tair,
and VPD found for all vegetation classes’ SIFd in the Caatinga and Cerrado. The Pampa had the lowest
maximum Tcan and Tair values of any biome (311K and 308K, respectively; Figures S8 and S9) and Tcan

and Tair values reached lower values in the Pampa biome compared to any other biome. DBF SIFd in
the Pampa had the strongest relationship with VPD (r = 0.59, p < 0.01; Table 1) while all other vegetation
classes (EBF, GRA, SAV, WSAV) were most strongly correlated with Tcan (r = 0.52 p < 0.01, 0.77 p <

0.001, 0.82 p < 0.001, 0.83 p < 0.001, respectively; Table 1). EBF SIFd in the Pampa showed the lowest
correlation to VPD relative to Tcan and Tair, the only vegetation class with the weakest relationship to
VPD. Note the DBF sample size was the smallest of all the vegetation classes in all biomes of the study
(n = 52, resulting in n = 24 for monthly average SIFd), which may have influenced the results (Table 1).

In the Pantanal, no significant relationships were found for any vegetation class’ SIFd with Tcan,
Tair, or VPD. Values of Tcan and Tair were the highest and the range of VPD values was the widest in
the Pantanal of all the biomes (Figures S8–S10).

Table 1. Relationships (r values) between monthly SIFd and Tcan, Tair, and VPD for vegetation classes
in each biome. p-values indicated by stars: *** = p < 0.001, ** = p < 0.01, * = p < 0.05, no stars indicate
non-significant relationships.

Tcan

Amazon Atlantic Forest Caatinga Cerrado Pampa Pantanal

DBF SIFd 0.15 0.25 −0.51 * −0.70 *** 0.55 ** −0.15

EBF SIFd 0.03 0.71 *** −0.69 *** −0.52 ** 0.52 ** −0.07

GRA SIFd −0.70 *** −0.17 −0.82 *** −0.58 *** 0.77 *** −0.09

SAV SIFd −0.35 * 0.19 −0.78 *** −0.60 *** 0.82 *** −0.07

WSAV SIFd −0.41 * 0.45 ** −0.74 *** −0.61 *** 0.83 *** −0.04

Tair

Amazon Atlantic Forest Caatinga Cerrado Pampa Pantanal

DBF SIFd 0.15 0.14 −0.37 * −0.61 *** 0.55 ** −0.13

EBF SIFd 0.03 0.74 *** −0.57 *** −0.50 ** 0.46 ** −0.01

GRA SIFd −0.72 *** −0.07 −0.75 *** −0.52 ** 0.76 *** −0.06

SAV SIFd −0.35 * −0.31 −0.73 *** −0.56 *** 0.79 *** −0.05

WSAV SIFd −0.40 * 0.54 *** −0.66 *** −0.55 *** 0.82 *** −0.02



Remote Sens. 2019, 11, 1746 12 of 26

Table 1. Cont.

VPD

Amazon Atlantic Forest Caatinga Cerrado Pampa Pantanal

DBF SIFd 0.16 0.10 −0.57 *** −0.80 *** 0.59 ** −0.29

EBF SIFd 0.01 0.60 *** −0.71 *** −0.69 ** 0.47 ** −0.23

GRA SIFd −0.81 *** −0.19 −0.85 *** −0.72 *** 0.74 *** −0.22

SAV SIFd −0.60 * 0.03 −0.81 *** −0.79 *** 0.74 *** −0.24

WSAV SIFd −0.55 * 0.31 −0.77 *** −0.77 *** 0.78 *** −0.19

* p < 0.05; ** p < 0.01; *** p < 0.001, Bolded r values greater or equal 0.70.

3.4. Seasonality of SIFd

EBF SIFd has the highest base integrated SIFd of all vegetation classes in the Amazon as well as in
any vegetation class in any other biome (2.6 Wm−2nm−1sr−1 Figure 5, panels a–f). Vegetation classes in
the Amazon have higher base integrated SIFd than their counterparts in other biomes, and generally
show that the base integrated SIFd of the Amazon, in terms of continuously high SIFd, would be
higher year-round than other biomes. Base integrated SIFd of EBF in the Amazon exceeds all other
classes in all other biomes (by 0.33 to 2.27 Wm−2nm−1sr−1). Base integrated SIFd for GRA in the
Caatinga has the lowest value of any class in any biome at 0.33 Wm−2nm−1sr−1 (Figure 5, panel c).
The Amazon, Caatinga, Cerrado, and Pantanal GRA base integrated SIFd was lower than the other
than vegetation classes’ base integrated SIFd in each of their respective biomes (1.29, 0.33, 0.7, 0.83,
and 0.93 Wm−2nm−1sr−1, respectively).

The seasonal pulse integrated SIFd values are represented as the upper bars (orange) in the stacked
bar plot (Figure 5). The largest seasonal pulse SIFd is found in the Pantanal for EBF (2.42 Wm−2nm−1sr−1).
The Pampa SAV and WSAV seasonal pulse integrated SIFd are the next larger seasonal pulse (1.88 and
1.78 Wm−2nm−1sr−1, respectively, Figure 5, panels a and e). The smallest seasonal pulses are in the
Amazon and Atlantic Forest (Figure 5). Amazon DBF has the smallest seasonal pulse integrated SIFd

compared to other vegetation classes within the Amazon and across all other vegetation classes in all
biomes (0.18 Wm−2nm−1sr−1) (Figure 5, panel a).

The sum of the base and seasonal pulse integrated SIFd values represent the total seasonal
integrated SIFd (Figure 5). Total integrated SIFd of EBF exceeds all other classes in all other biomes by
0.07 to 1.10 Wm−2nm−1sr−1. When the total seasonal integrated SIFd is considered, the Pantanal EBF
integrated SIFd has the highest overall value of 3.79 Wm−2nm−1sr−1 (Figure 5, panel f), followed closely
by Amazon EBF at 3.31 Wm−2nm−1sr−1 (Figure 5, panel a), compared to all other vegetation classes in
all other biomes. EBF total integrated SIFd was the highest within each biome compared to all other
vegetation classes (2.63–2.79 Wm−2nm−1sr−1, Figure 5, panel a–f). GRA total integrated SIFd in the
Atlantic Forest has the lowest value of all vegetation classes in all biomes (1.53 Wm−2nm−1sr−1, Figure 5,
panel b). Within the biomes, GRA total integrated SIFd was lowest in the Amazon (1.76 Wm−2nm−1sr−1,
Figure 5, panel a), Atlantic Forest, Cerrado (2.05 Wm−2nm−1sr−1, Figure 5, panel d), and Pantanal
(2.39 Wm−2nm−1sr−1, Figure 5, panel f). SAV total integrated SIFd was the lowest value in the Caatinga
(1.67 Wm−2nm−1sr−1, Figure 5, panel c).
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Figure 5. Stacked bar plots of vegetation class-specific per season base (lower bars, blue) and seasonal
pulse (upper bars, orange) integrated SIFd for the (a) Amazon (b) Atlantic Forest (c) Caatinga (d) Cerrado
(e) Pampa and (f) Pantanal. Values for integrated SIFd are printed on the corresponding bars.

The length of season (LOS) for each vegetation class in each biome calculated from TIMESAT
showed that the values differed for vegetation classes within biomes (Figure S12). For example,
Amazon EBF SIFd LOS was the longest at 185 days and Amazon GRA SIFd LOS was shortest at 104
days (Figure S12). Pampa WSAV has the longest calculated SIFd LOS at 2015 days and Atlantic Forest
GRA SIFd has the shortest at 99 days (Figure S12). The mean SIFd LOS for a biome (the average of
the SIFd LOS of DBF, EBF, GRA, SAV and WSAV within that biome) resulted in: Pantanal (193 days),
Cerrado (168 days), Caatinga (167 days), Pampa (157 days), Amazon (145 days), and Atlantic Forest
(135 days) (Figure S13). The only significant difference in mean SIFd LOS was between the Pantanal
and Pampa (p < 0.05), Pantanal and Atlantic Forest (p < 0.01), and the Pantanal and Amazon (p < 0.05)
(Figure S13). A comparison of the SIFd LOS of each vegetation class and the total integrated SIFd for
each vegetation class is shown in Figure 6. Our results show that the length of season only explains
30% of the variation in total integrated SIFd (Figure 6; adjusted R2 = 0.30, intercept = 0.68, slope = 0.01,
p < 0.01). For every increase of one day in the length of season, on average, there is only a small
corresponding increase in total integrated SIFd of 0.01 Wm−2nm−1sr−1.
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Figure 6. Total integrated SIFd versus length of season with generalized linear model represented
(black line) and gray region represents 95% confidence interval (adjusted R2 = 0.30, intercept = 0.68,
slope = 0.01, p < 0.01).

4. Discussion

Here, we compare differences in the mean and seasonal distribution of SIFd for the country of
Brazil by biome and vegetation classes within biomes. The results of our analyses and significant
interaction between vegetation class and biome demonstrates that average values for vegetation classes
should consider the biomes in which they occur. Furthermore, average values (Figure 4) do not capture
important seasonal dynamics (Figures 5 and 6), which show that high mean values can result from low
rates of productivity over a longer period of time or high seasonal pulses that may be brief (Figure 5,
Figures S12 and S13).

Through an examination of differences in mean and seasonality of SIFd from satellite we were
able to construct a more complete picture of vegetation photosynthetic activity of regions in Brazil
as captured by OCO-2, a satellite-based instrument. In the Amazon, we found that mean SIF for
the biome was highest and variation of SIFd lowest of all other biomes, which was not surprising
based on our understanding of the effects of biomass and chlorophyll content on vegetation remote
sensing measurements. To our knowledge, however, no studies have previously shown these results.
Mean EBF SIFd was highest of vegetation classes within the Amazon and highest of EBF SIF in all
biomes. Positive correlations between mean GRA, SAV, and WSAV SIF and Tcan, Tair, and VPD were
found in the Amazon and the strongest correlations were with VPD, indicating that a higher VPD is
correlated with higher SIFd for these classes. However, a lack of correlation of DBF and EBF SIF with
Tcan, Tair, and VPD may be attributed to the relatively small range of values for SIF, Tcan, Tair, and VPD
for DBF and EBF in the Amazon. Looking at seasonal metrics shows SIFd seasonal dynamics in the
Amazon that are masked by analysis of mean SIFd. Although Amazon EBF had the highest mean SIFd

than any other vegetation class in all biomes, investigating the seasonality of SIF revealed that the
Pantanal had a stronger seasonal pulse of integrated SIFd, higher total integrated SIFd and the longest
growing season length. In contrast, Amazon forests remained productive throughout the year (based
integrated SIFd) with little seasonality (pulse integrated SIFd). Overall, values for VPD in the Amazon
were the lowest of the biomes in the study, just behind the Pampa, and Tcan and Tair were relatively
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moderate, which indicates the most favorable photosynthetic conditions and is supported by the high
rates of base integrated SIF relative to other biomes and higher base integrated SIFd for the Amazon
found in the study (Figure 5, Figures S8–S10).

For the Atlantic Forest, mean SIFd for the biome was not different from the Cerrado, Pampa,
or Pantanal. Mean EBF SIFd was higher than other vegetation classes in the Atlantic Forest and was
correlated positively with Tcan, Tair, and VPD, and the strongest of these was with Tair. While mean
WSAV SIFd was not significantly different than SAV and GRA, it had a significant correlation with
Tair most strongly, then with Tcan next, and neither SAV nor GRA were correlated with these climate
variables. This suggests that for these classes Tair is more influential compared to the other biomes.
Seasonality analysis showed that EBF had the highest integrated base and total integrated SIFd, but DBF
had the highest seasonal pulse integrated SIFd of the Atlantic Forest vegetation classes. The lack of
difference in means and correlations between SIFd and environmental variables for some vegetation
classes in the Atlantic Forest may have resulted from several factors. First, the range of latitudes
spanned by the Atlantic Forest biome is large (approximately 29◦, ~−3◦ to−30◦) having a corresponding
large range of changes in solar angles as well as environmental conditions, the altitudinal range is large,
and the Atlantic Ocean borders this latitudinal gradient, driving differences in rainfall and vegetation
composition [120]. These conditions are expected to have an impact when averaging over space and
time to mask trends and relationships [120,141]. Second, the degree of deforestation in the Atlantic
Forest original vegetation is over 88% of the original forest and the remaining forest fragments are small
(<50 ha) and isolated [120,142]. This mosaic of highly anthropogenic vegetation would make it difficult
to capture the proper vegetation classification at these coarse scales and highlights the possibility that
the vegetation classification may need to be improved or at higher resolution to capture vegetation
class specific relationships to the environment in future studies. Third, much of the biome has been
converted to cropland with asynchronous cycles of harvest and planting and it may be reasonable
that croplands erroneously included in the classes examined, especially GRA and SAV, due course
resolution or misclassification, would additionally affect the results and mask trends [120,142].

Investigating the biome level mean SIFd and mean SIFd among vegetation classes in the Caatinga
only confirmed expectations, while comparisons to climate variables and analysis of seasonality further
elucidated the root behavior of SIFd in the Caatinga. Mean SIFd of the Caatinga was lowest among
all biomes, had the highest variability, and mean SIFd among vegetation classes in the Caatinga had
lower magnitudes than their counterparts in other biomes. This was anticipated based on the dry
climate and vegetation makeup of dry shrubland, seasonally dry tropical forest, and xeric in contrast
to other biomes [116,117]. However, correlations of mean SIF to Tcan, Tair, and VPD for the Caatinga
were all negative and strongest between mean SIFd and VPD followed by Tcan, just as they were in the
Cerrado. This indicates mean SIFd responds similarly in these two biomes, but in contrast to the others,
potentially related to their similar latitudinal ranges and climate. Seasonality analysis revealed more
intricate differences in the Caatinga. Base integrated SIFd in the Caatinga for all vegetation classes
was lowest of the biomes and seasonal pulse integrated SIFd was not lowest, indicating that the base
integrated SIFd is responsible for the overall lower mean SIFd (Figure 5). The lengths of individual
vegetation class SIF seasons varied from those of the Cerrado (Figure S12), but the average length of
the seasons for SIF in the Caatinga was not different than other biomes and was calculated within one
day of the Cerrado (Figure S13). Taken together, these results support findings of previous studies
showing that VPD and productivity of grasslands and seasonally dry tropical forest (measured with
NDVI) vary widely and that change in climate conditions (VPD) in the wet season correlates with
greater productivity [116]. However, the IGBP classification utilized in our study does not allow us to
distinguish seasonally dry tropical forest or to match our results in-kind to previous studies. In order
to distinguish particular vegetation class productivity behavior in future work, improved classification
resolution or alignment of classification with other studies, including a seasonally dry tropical forest,
would be an important component to better understand productivity in the Caatinga.
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We found the Cerrado mean AVC SIFd was not different from the Atlantic Forest, Pampa, and
Pantanal at the biome level, but was different than the Caatinga and Amazon. Also, analysis of mean
SIFd among vegetation classes did not further distinguish the Cerrado. However, the Cerrado and
Caatinga mean SIFd correlations to Tcan, Tair, and VPD were negative and strongest with VPD followed
by Tcan, in contrast to other biomes, especially the Pampa, where mean SIFd correlations were positive
and strongest with Tcan. and in contrast to the Pantanal, where no significant correlations of mean
SIFd with Tcan, Tair, nor VPD occurred (Table 1). These results suggest that to capture variation in
vegetation function, it is necessary to investigate the individual vegetation class SIFd in the context of
climate variables because differences in the response of SIF in the Cerrado and Pampa would have
been missed without investigating correlations of SIFd with Tcan, Tair, and VPD.

The Cerrado was further distinguished from the Atlantic Forest, Pampa, and Pantanal biomes
by seasonality analysis of SIFd. In the Cerrado, for instance, base integrated SIFd is lower for all
classes than Atlantic Forest, while total and pulse integrated SIFd is higher all vegetation classes.
So, year-round SIFd in the Cerrado is less than in the Atlantic forest, but there is a higher degree of
seasonality, likely driven by more pronounced cycle of environmental factors in the Cerrado versus
the Atlantic Forest. Cerrado EBF base integrated SIFd exceeds the base integrated SIFd in the Pampa
and Pantanal, but has a smaller seasonal pulse, while GRA, SAV, and WSAV SIFd in the Cerrado
have lower base and seasonal pulses compared to the Pampa and Pantanal. These results indicate
that the climate in the Pampa and Pantanal is more favorable to GRA, SAV, and WSAV productivity
year-round and seasonally than the Cerrado, but only seasonally for EBF SIFd. Thus, productivity of
GRA, SAV, and WSAV in the Cerrado is more hindered than in the Pampa or Pantanal, likely due to the
climate of the Cerrado being warmer and drier than the Pampa and drier than the Pantanal (Figure 5).
In all three biomes, however, the largest values of SIFd are captured in the EBF classes, consistent
with higher biomass as expected. Furthermore, our seasonality analysis indicates the average length
of season in the Cerrado is not different than any other biome (within one day of the Caatinga),
but differences occur in seasonal and year-round levels of SIFd, indicating that OCO-2 SIF captures
photosynthetic activity differences. To capture subtler spatiotemporal differences, we suggest it is
necessary to investigate more than differences in means based on temporal patterns that would be
missed without seasonality analysis.

In the Pampa, there were no differences in mean SIFd at the biome level with the Atlantic Forest,
Cerrado, and Pantanal and analyses of mean differences in SIF among vegetation classes did not reveal
any contrasts with the other biomes. However, the Pampa was unique having positive correlations with
climate variables compared to other biomes, which likely result from the cooler and more temperate
climate (i.e., lower values of Tcan, Tair, and VPD; Figures S2–S4) in the Pampa compared to the other
biomes [124]. The stark contrast of Tcan and Tair ranges in the Pampa (from 286K to 311K) to the ranges
in the Caatinga and Cerrado (from 297K to 319K) paired with lower VPD values in the Pampa then the
Caatinga and Cerrado highlight the contrast in this Brazilian biome. The Pampa grassland dominate
the vegetation and its’ phytogeography in in contrast to the biomes to its North. It is for these reasons
the Pampa was expected to display different behavior, which the satellite-based SIF from OCO-2 was
able to capture. It was expected that the seasonality analysis may reveal a more distinct pattern in the
Pampa, such as shorter length of seasons, yet, aside from the most uniform lengths of seasons among
the vegetation classes (maximum difference in length of seasons = 30), this was not the case in this
study. Also unique to the Pampa biome, we showed that Tcan in the Pampa is the most correlated
with all vegetation classes’ SIF, except DBF. The opposite is true for DBF SIFd, where Tcan is the least
correlated, however, the low number of samples of DBF in the Pampa and their lack of representation
in the time series consistently make these results less reliable.

Based on mean SIFd analysis, the Pantanal would not appear to have clear distinctions from the
other biomes. No difference in biome level mean SIFd for the Pantanal was found with the Atlantic
Forest, Cerrado, and Pampa and, like other biomes mean SIF for EBF in the Pantanal was significantly
higher than all other classes in the Pantanal. Yet analyses of mean SIFd relationships to Tcan, Tair,
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and VPD and seasonality analysis revealed important distinctions in the Pantanal. Unique to the
Pantanal, we found no significant correlations with Tcan, Tair, and VPD. This may be indicative of the
unique patterns of evapotranspiration in this biome that is a seasonally flooded wetland, whose climate
and phytogeographical distribution is unique to Brazil and the world, emphasized by its status as a
UNESCO world heritage site [109,124,143]. Values of Tcan, Tair and VPD for the Pantanal reach the
highest values of all the biomes in the study, the mean SIFd length of season is longer than other
biomes, and vegetation class total integrated SIFd is higher for all classes except SAV in the Pantanal
compare to other biomes. Furthermore, seasonality analysis shows that total integrated SIFd of EBF
in the Pantanal exceeds total integrated SIFd of EBF in the Amazon due to a large seasonal pulse of
EBF in the Pantanal. The degree to which the total integrated SIFd in the Pantanal exceeded the other
biomes’ total integrated EBF prompted us to investigate outliers and anomalies carefully, yet none were
found with these methods. These results suggest that these unique conditions give rise to vegetation
responses we do not yet understand due to a lack of research in this region. To better understand
SIFd, productivity, and the climate influences on SIFd in the Pantanal, more detailed climate and SIFd

data are needed. We suggest higher resolution SIFd data coupled with vegetation indices, such as
the photochemical reflectance index and enhanced vegetation index, measured in conjunction with
temperature and precipitation, for instance.

Mean EBF SIFd is significantly higher relative to other classes within each biome highlighting the
rate of SIFd for EBF is significantly higher in most climatic and geographic regions than its vegetation
neighbors (Figure 4). These results are consistent with studies, such as Li et al. (2018), who examined
OCO-2 SIF measurements and GPP from flux towers at 64 sites across the globe and found tropical
forests had higher SIF in comparison with other vegetation classes [42]. However, the same study
showed SIFd in GRA was lower, while, we show mean SIFd of GRA is not significantly different
than other vegetation class mean SIFd in four biomes (Atlantic Forest, Caatinga, Pampa, Pantanal;
Figure 4) and total integrated GRA SIFd in the Caatinga exceeds DBF and SAV total integrated SIFd.
We acknowledge, however, their study did not include data from South America and specifically
examined locations with flux towers, making it difficult to compare results directly, highlighting the
importance of scale and sampling location on results, and emphasizing the need for more multiscale
data and research of a variety of tropical vegetation classes [42].

We examined relationships of SIFd to Tcan, Tair, and VPD, to identify potential relationships between
SIFd and the environment. Temperature is one of the most influential abiotic factors on photosynthesis
and GPP, affecting physiological functioning, distribution and range shifts, and competitive success
of species e.g., [4,7,8,13,140,144–148]. Most research has focused on Tair to examine the relationships
between plant function and temperature, but recent studies have shown that Tair may not capture
thermal properties of vegetation microclimate and environment. Tcan has been shown to differ
from Tair in that Tcan is generally warmer than Tair and more coupled to water and radiative
processes [140,146,149–152]. VPD influences stomatal conductance and, as such is a good metric
for water stress conditions, thus lower values of VPD are generally associated with more favorable
photosynthetic activity conditions for vegetation. Our results show that most biomes are most strongly
related to VPD and then Tcan, followed by Tair. These results support recent studies showing that Tcan

is potentially more related to photosynthetic function in tropical regions than Tair and serve to provide
incentive to further elucidate SIFd relationships to these variables [85,153].

We compared total integrated SIFd to the length of season and found that the length of season
explains only 30% of the variation in total integrated SIFd (Figure 6; Adjusted R2 = 0.30, m = 0.01,
p < 0.001); therefore, differential physiological functioning (photosynthetic activity) responses of
vegetation classes’ SIF to environmental factors are potentially more influential on the seasonal levels
of SIFd. This result is an important first step to understanding productivity of multiple tropical
vegetation classes.

Our study quantifies relative SIF among vegetation classes within and across biomes. These results
are most certainly also related to structure and incoming and radiation and tightly coupled to the
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latitude and elevation of each biome. To test and separate these factors, further study is needed
at sub-biome levels fusing satellite SIF data with tower and/or unmanned aerial vehicle data on
productivity for better defining the SIF-GPP relationship across scales in the tropics.

5. Conclusions

This study demonstrated that important differences in SIFd within and across biomes can be
captured and quantified with satellite SIFd observations from OCO-2. Spatial patterns and variability
investigated at biome level through statistical analyses of the observations yielded: (1) EBF SIFd in
every class had higher integrated SIF than other classes within each biome. (2) The highest mean SIF of
EBF occurred in the Amazon. (3) SIF is most strongly correlated with vapor pressure deficit (VPD) for
most vegetation classes in most biomes, followed by canopy temperature (Tcan), although the strength
and direction of the correlations depend on biome. Phenological analysis examined beyond mean
differences determined that: (1) Amazon SIFd had the highest year-round values of integrated SIFd

and the smallest seasonal pulse integrated SIFd; (2) complex patterns of year-round and seasonal SIFd
are captured by satellite measurements of SIF. (3) Pantanal EBF had the highest total integrated SIFd

due to a large seasonal pulse, and (4) the SIFd length of season for vegetation classes only explains
30% of the variation in total integrated SIFd; thus, the length of season is probably more closely tied to
leafing patterns and leaf area, whereas integrated SIFd captures variations in photosynthetic activity
separate from structural differences. In other words, SIF and traditionally used vegetation indices
may similarly define the length of seasons (vegetation indices and SIF both increase with leaf area
increases), but peak season responses where traditional vegetation indices tend to saturate, are being
better captured by SIF. To our knowledge, no studies have examined OCO-2 data for a comparison of
vegetation class-specific SIF or phenology in the tropics. Because SIF is more mechanistically coupled
to photosynthetic activity than more commonly used vegetation indices in remote sensing studies of
ecosystem dynamics, our results provide novel satellite estimates of differences in productivity across
biomes and vegetation types and these measurements quantify differences in SIF in continuous units
(Wm−2nm−1sr−1), also in contrast to vegetation indices.
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