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Abstract: Climate change and variability, soil types and soil characteristics, animal and microbial
communities, and photosynthetic plants are the major components of the ecosystem that affect carbon
sequestration potential of any location. This study used NASA’s Soil Moisture Active Passive (SMAP)
Level 4 carbon products, gross primary productivity (GPP), and net ecosystem exchange (NEE) to
quantify their spatial and temporal variabilities for selected terrestrial ecosystems across Texas during
the 2015–2018 study period. These SMAP carbon products are available at 9 km spatial resolution
on a daily basis. The ten selected SMAP grids are located in seven climate zones and dominated by
five major land uses (developed, crop, forest, pasture, and shrub). Results showed CO2 emissions
and uptake were affected by land-use and climatic conditions across Texas. It was also observed
that climatic conditions had more impact on CO2 emissions and uptake than land-use in this state.
On average, South Central Plains and East Central Texas Plains ecoregions of East Texas and Western
Gulf Coastal Plain ecoregion of Upper Coast climate zones showed higher GPP flux and potential
carbon emissions and uptake than other climate zones across the state, whereas shrubland on the
Trans Pecos climate zone showed lower GPP flux and carbon emissions/uptake. Comparison of
GPP and NEE distribution maps between 2015 and 2018 confirmed substantial changes in carbon
emissions and uptake across Texas. These results suggest that SMAP carbon products can be used to
study the terrestrial carbon cycle at regional to global scales. Overall, this study helps to understand
the impacts of climate, land-use, and ecosystem dynamics on the terrestrial carbon cycle.
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1. Introduction

Global warming and climate change continue to be a subject of global interest. Climate change has
and will continue to impact terrestrial ecosystems [1]. Feedbacks from the terrestrial ecosystems will
also affect future climate change. There are several climate change mitigation methods that are being
developed and evaluated. One of these methods is soil carbon sequestration, which attenuates climate
change by acting as a carbon sink for anthropogenic CO2 emissions [2]. It is important to understand
the carbon emissions and uptake dynamics of terrestrial ecosystems to study carbon sequestration
potentials under changing climate [3].

Carbon sequestration potential of an ecosystem is a function of climate, land management
practices, land-use patterns, soil types and soil characteristics, and topographic heterogeneity [4–10].
Some studies concurred that any ecosystem site could either be a carbon sink (negative flux) or a
carbon source (positive flux) depending on the weather patterns [11,12]. However, an ecosystem can
be a sink for carbon one year and source another, but it must be a sink for a longer period (>10 years)
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to support carbon sequestration [13]. Ecosystem management also impacts carbon sequestration
potentials. For example, deforestation and change in land-use cause loss of biomass and a significant
amount of carbon dioxide to be released to the atmosphere [14].

Forests are known for their large atmospheric carbon sequestration potentials [15]. For example,
40% of the global terrestrial biomass is stored in tropical forests [16]. There are more long-term studies
of CO2 dynamics in forests than in grasslands or any other ecosystem. However, carbon sequestration
potential of grasslands and pastures is still debatable as some researchers demonstrate that these land
uses are carbon neutral, while other researchers provide evidence that grasslands can be significant
sources or sinks for atmospheric CO2 [17,18]. However, CO2 exchange between the land surface and
atmosphere suggests that land surface could be managed to increase uptake and storage of CO2, and
thus become carbon sinks. Moreover, the loss of CO2 to the atmosphere by aerobic respiration is a
non-linear function of temperature for a wide range of soil moisture content [19].

Several researchers have extensively studied the relationship between land-use change and
spatiotemporal variation of carbon fluxes [20–23]. Some researchers found the concentration of
atmospheric CO2 increasing due to many anthropogenic activities, including land-use changes and
burning of fossil fuels [24–28]. It is important to understand the effects of land-use change on carbon
sequestration [5]. Deng et al. (2016) [29] conducted a literature review on the land-use change impact
on the carbon cycle. The review covered research conducted in 29 countries at 160 different sites.
They concluded land-use change has a significant impact on carbon stocks. However, they also
deduced land-use change did not consistently result in either increasing or decreasing carbon stocks.
For example, converting farmland to grassland or forestland to grassland increased the carbon stocks,
whereas a conversion from grassland to farmland or forest to farmland decreased the carbon stocks.

Quantifying the atmospheric CO2 flux is necessary to determine the carbon sequestration potential
of an ecosystem. Several CO2 monitoring approaches have been used to quantify carbon sequestration
in an ecosystem such as biomass and soil carbon inventory studies using different sensing methods,
for example, in-situ CO2 flux monitoring using eddy covariance flux tower, remote measurements
through geostationary satellites, and ecosystem models [30]. However, in-situ CO2 measurements are
limited and only available at a point scale, which cannot be used to study spatiotemporal distributions
of CO2 at a larger scale [31–33]. Knowledge of quantifying the dynamic state of the terrestrial carbon
cycle is important to understand the ecosystem response under a changing climate. However, it is
difficult to measure and remains poorly quantified at a global scale [34].

An understanding of the relationship between regional carbon fluxes in the forms of gross primary
productivity (GPP) and net ecosystem exchange (NEE) with environmental changes is necessary to
understand the response of ecosystems to global climate changes [35–38]. GPP, a critical parameter for
carbon cycle and climate change, is the total amount of carbon fixed by plants through photosynthesis
in an ecosystem [39–42]. Accurate measurement or estimate of GPP is essential for the carbon cycle
and climate change studies [43,44]. Net Ecosystem Exchange between the ecosystem and atmosphere
represents the balance between GPP and ecosystem respiration and plays a critical role in climate
change science [45,46]. NEE of the ecosystem is a measure of the balance between carbon uptake
by vegetation GPP and carbon losses through total ecosystem respiration rate (Re), and loss due
to disturbance [47]. The Re is the sum of plant autotrophic respiration (Ra) and soil heterotrophic
respiration (Rh).

Gross primary productivity and NEE of ecosystems can also be quantified using process-based
biogeochemical models [48] and satellite remote sensing [49]. For example, Byrne et al. (2018) [50]
used four Terrestrial Biosphere Models (TBMs): (i) Carnegie-Ames Stanford Approach (CASA),
(ii) Simple Biosphere model version 3 (SiB3), (iii) Canadian Terrestrial Ecosystem Model (CTEM), and
(iv) Joint UK Land Environment Simulator (JULES) to examine GPP, NEE, and Re. On the other hand,
Mao et al. (2017) [51] used the Boreal Ecosystem Productivity Simulator (BEPS) model to identify NEE
for the bamboo forest. Remote sensing products such as vegetation type, NDVI, and other vegetation
indices were used to estimate GPP [52]. One of the main advantages of satellite remote sensing method
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is that it estimates atmospheric CO2 at the global scale; however, its coarse spatial resolution is a
major disadvantage [53]. On the other hand, satellite data combined with in-situ measurements and
modeled data can be the best approach to monitoring and evaluating carbon fluxes at various spatial
and temporal scales [51,54]. For example, Yi et al. (2013) [55] used the carbon flux model integrated
with remotely sensed Normalized Difference Vegetation Index (NDVI) and in-situ meteorology data to
quantify GPP and NEE over a pan-boreal/Arctic domain and found that drought and temperature had
larger impacts on GPP and NEE.

Currently, there are various satellites in operation to estimate carbon fluxes globally [32].
For example, Soil Moisture Active Passive (SMAP) and Moderate Resolution Imaging Spectroradiometer
(MODIS) are in operation to estimate NEE (SMAP)/NPP (MODIS) and GPP, respectively, at different
spatial and temporal resolutions. Many studies have used MODIS GPP to study the carbon cycle
associated with terrestrial ecosystems [56–58]. On the other hand, since SMAP was launched in
2015, only a few studies have used SMAP NEE and GPP to study the carbon cycle and terrestrial
ecosystem [59,60].

The MODIS algorithm uses light use efficiency (LUE) model to estimate GPP, which may
underestimate ecosystem GPP under varying climatic conditions and vegetation type and overestimate
GPP for water-limiting ecosystems due to lack of explicit representation on soil moisture constraint [52].
In addition, MODIS estimates the GPP but leaves an incomplete picture of NEE due to lack of
information on ecosystem respiration [47]. On the other hand, SMAP Level 4 carbon products
algorithm incorporates soil moisture information, land cover classification and eight-day canopy
fraction of photosynthetically active radiation (FPAR) observation from MODIS to provide detailed
and improved estimations of terrestrial carbon fluxes [59,60].

This study used SMAP Level 4 carbon products to understand the spatial and temporal variability
of carbon fluxes across Texas. Texas is unique among states because of its large size, geographical
location, climate variations, and heterogeneous landscapes, which makes it unique to study ecosystem
dynamics. The main goal of this research was to quantify the carbon sequestration potential across
Texas and study the combined effects of climate and land-use changes on it. Thus, the specific
objectives of this work were to: (1) Evaluate SMAP NEE and GPP products; (2) quantify spatial patterns
and temporal distributions of CO2 flux across Texas; and (3) evaluate the response of CO2 fluxes
to the combined effects of climate and land-use changes in the state of Texas using SMAP Level 4
carbon products.

2. Materials and Methods

2.1. Study Area

The study area Texas (area = 695,622 km2) has ten climate zones and 12 ecological regions [61,62].
The ten climate zones are: High Plains (HP), Low Rolling Plains (LRP), East Texas (ET), Edwards
Plateau (EP), South Central (SC), Trans Pecos (TP), Upper Coast (UC), North Central (NC), Southern
(S), and Lower Valley (LV). The twelve ecoregions are: Arizona/New Mexico Mountains (ANM),
Chihuahuan Deserts (CD), High Plains (HP), Southwestern Tablelands (SWT), Central Great Plains
(CGP), Cross Timbers (CT), Texas Blackland Prairies (TBP), Edwards Plateau (EP), East Central Texas
Plains (ECTP), South Central Plains (SCP), Southern Texas Plains (STP), and Western Gulf Coastal Plain
(WGCP) (Figure 1). All of the climate zones have multiple ecoregions, which show significant diversity
in landscapes, topography, and land-use in the state. ANM ecoregion is very small in area and can be
included in CD ecoregion. CD ecoregion has desert valleys, plateaus, and wooded mountains, and
receives the lowest precipitation in the state. HP ecoregion, a relatively high-level plateau, is mostly
covered with cropland. SWT and CGP ecoregions, characterized as a rolling plain, are mostly covered
with prairie grasslands. CT and TBP ecoregions are located in north-central Texas. CT is covered with
high-density trees and regular plains and prairies, whereas TBP is covered with tall grass and prairies.
EP ecoregion, known as the Texas Hill Country, has many springs, stony hills, and steep canyons. SCP,
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located in south-west Texas, is covered with thorny shrubs and trees and scattered patches of palms
and subtropical woodlands, whereas WGCP, located along the coast of Gulf of Mexico, is covered with
cropland, tall prairies, and marshland. SCP and ECTP ecoregions are dominated by forestland and
pastureland, respectively. SCP ecoregion is covered with pines and oaks and characterizes the forest of
the East Texas Pinewoods, whereas ECTP ecoregion is covered with strips of prairie grassland and can
be described as oak savannah mixed with grassland [63].
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Figure 1. (a) Climate zones and their corresponding land-use, and (b) ecological regions and climate
zones in the study area. White crosses are the locations of ten select Soil Moisture Active Passive
(SMAP) grids. The inset figure (9 km × 9 km, not in scale) is a selected SMAP grid, covering Prairie
View A&M University (PVAMU) research farm, to evaluate SMAP Gross Primary Productivity (GPP)
and Net Ecosystem Exchange (NEE).

Texas is dominated by deserts, pine forests, shrubland, and cropland. It shares the Rio Grande
River with Mexico, and its size and physical geography influence its diverse climate. Three geographical
features, which significantly influence the climate of Texas, are the Rocky Mountains, Central and
Eastern parts of the continent of North America, and the Gulf of Mexico. The Rocky Mountains
influence Texas climate by acting as a barrier to air traveling from east to west or west to east. While
the Central and Eastern parts of the continent of North America act as a pathway for airflow into Texas,
the Gulf of Mexico, a source of moisture, helps to moderate Texas temperature [64].

Ten research sites (ten SMAP grid cells) from seven climate zones, which include five major land
uses, were selected in this study. We selected only one SMAP grid cell from each land-use because the
size of one grid cell is 9 km by 9 km, which is large enough to cover homogenous agricultural field or
landscape of selected land-use type.

The selected climate zones are HP, ET, EP, SC, TP, UC, and NC (Figure 1). The Upper Coast climate
zone receives the highest amount of precipitation, whereas the Trans Pecos receives the lowest amount
of precipitation in Texas (Figure 2). In general, the climate zones of the eastern and southern parts of
the state receive higher rainfall compared to the climate zones located in the north and west. Texas’
climate varies widely across the state, from humid and hot in the east and south to arid and cool in the
west and north (Figure 2). The temperature gradually increases from south-east to north-west across
the state. Forests are the predominant land-use type in the eastern parts, whereas shrublands are the
predominant land-use type in the western parts of the state. However, most southern and northern
regions of the state are dominated by cropland.
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Figure 2. Cumulative distribution of precipitation (a), and average annual distribution of temperature
across Texas (b) using precipitation and temperature data from 2001–2018. The cumulative precipitation
plot for each climate zone was developed using National Climatic Data Center (NCDC) daily
precipitation data, whereas the annual average temperature (calculated using NCDC daily temperature
data) was used to develop the spatial average temperature map across Texas. The x-axis of the
cumulative distribution of the precipitation plot includes a fraction of time, which means 0.5 represents
50% of the time (9 years for this plot), and 1.0 represents 100% of the time (18 years for this plot).

This study includes five major land uses: Cropland, forestland, pastureland, shrubland, and
open-developed land. Two research sites, dominated by cropland, are located at UC and HP climate
zones and WGCP and HP ecoregions, whereas two research sites, dominated by forestland, are located
at ET and TP climate zones and SCP and CD ecoregions. Similarly, two research sites, dominated by
pastureland, are located at ET and NC climate zones and ECTP, and TBP ecoregions; two research sites,
dominated by shrubland, are located at TP and EP climate zones and EP and CD ecoregions; and two
research sites, dominated by developed land, are located at ET and SC climate zones and WGCP and
TBP ecoregions. These climate zones and their corresponding land uses and ecoregions are shown in
Figure 1 and Table 1. The geophysical characteristics of each location are also presented in Table 1.

Table 1. Research site locations (center of the SMAP grid cell) and their corresponding climate zone,
land-use, and soil texture. Note: Full names of climate zone and ecoregion are presented in Figure 1.

Location Latitude (◦ ) Longitude (◦ ) Climate Zone Ecoregion Land-Use Soil Texture

UC Cropland 29.03 −96.19 UC WGCP Cropland Sandy Loam
HP Cropland 33.15 −102.27 HP HP Cropland Sand
ET Forestland 31.18 −94.75 ET SCP Forestland Loam
TP Forestland 30.69 −104.12 TP CD Forestland Silt Loam

ET Pastureland 31.04 −95.89 ET ECTP Pasture Hay Loam
NC Pastureland 31.48 −96.88 NC TBP Pasture Hay Clay
TP Shrubland 30.71 −102.79 TP CD Shrubland Loam
EP Shrubland 30.86 −100.21 EP EP Shrubland Clay

ET Developed land 30.08 −95.98 ET WGCP Developed land Sandy Loam
SC Developed land 29.93 −97.69 SC TBP Developed land Clay

2.2. Data

This study used SMAP Level 4 carbon products (L4C) available at 9 km spatial and daily temporal
resolutions [47,65]. Soil Moisture Active and Passive (SMAP), an environmental research satellite, was
launched on 31 January 2015, by the National Aerospace Space Administration (NASA) to monitor
global carbon fluxes, soil moisture and freeze/thaw state at different spatial and temporal resolutions
using radar and radiometric instruments. However, with the failure of the SMAP active radar, only
passive data were available from 31 March 2015, onwards.
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This study relied on model-derived data products of surface and root zone soil moisture and
carbon net ecosystem exchange compiled using SMAP L4C products, which provided daily estimates
of NEE to determine the spatial and temporal patterns of CO2 fluxes across Texas. This study also
analyzed modeled SMAP GPP component to understanding the spatial and temporal distributions of
GPP for five major land-use categories in seven different climate zones across Texas.

The SMAP NEE is not a direct measurement or observation from the satellite, rather, it is a modeled
estimate which includes daily root-zone soil moisture inputs to constrain GPP, surface soil moisture
to constrain heterotrophic respiration (Rh), and other input parameters to estimate daily NEE [60].
Uncertainty is reported on an annual basis as NEE root mean square error (RMSE) considering all
sources of errors such as input data (e.g., temperature, soil moisture), heterogeneity (e.g., land-use
heterogeneity), and model parameterization. The total annual and daily uncertainty are estimated as
30 g C m−2 year−1 and 1.6 g C m−2 d−1, respectively [47]. John et al. [60] validated SMAP NEE using
in-situ EC flux tower observations from 26 validation sites located all over the world. They found NEE
performance within the targeted accuracy threshold (RMSE ≤ 1.6 g C m−2 d−1) for NEE over 66% of
the global domain.

SMAP L4C products were obtained from Earthdata web-based database developed by NASA
called the Earth Observing System Data Information System (EOSDIS) [66]. The 2011 land-use data,
used in this study, were obtained from the National Land Cover Database (NLCD) [67]. The NLCD
provides nationwide land-use data at a 30-m spatial resolution.

2.3. Methods and Analysis

This study used SMAP L4C daily products from 1 April 2015 to 31 December 2018. The daily GPP
and NEE estimates were converted into monthly. Monthly (for selected six months) spatial maps of
GPP and NEE were developed for each land-use and associated climate zone during the study period.
The monthly values of the GPP and NEE data were used to develop time series plots at ten sites to
understand the temporal variations of CO2 flux at each location associated with particular land-use.
These graphs were used to quantify the temporal and seasonal variations of CO2 flux as extracted from
SMAP Level 4 carbon products. These time series plots were also used to compare the GPP and NEE
for the different land uses during the study period.

The SMAP NEE and GPP data were evaluated at Prairie View A&M University (PVAMU) site
at satellite footprint (Resolution = 9 km), which was an open-developed area. An eddy covariance
(EC) flux tower was installed (April 2016) at PVAMU to monitor carbon fluxes and climatic and
hydrologic variables. SMAP NEE and GPP products were evaluated using in-situ NEE and GPP data.
The half-hourly CO2 flux data were used to estimate daily NEE and GPP. Assuming loss of disturbance
negligible, NEE data were partitioned into GPP and Re using GPP = Re – NEE, where daytime NEE is
the difference between GPP and Re and night-time NEE is equal to ER. Therefore, GPP is negligible
during the night-time.

It should be noted that no other EC flux tower’s measurements were available in the state
during the study period. Therefore, no other locations were used to validate SMAP GPP and NEE
measurements. A sequence of time series plots was developed to identify the sensitive months when
GPP and NEE values were changing or abruptly changed during the study period. Based on the
changes in seasonal distributions of GPP and NEE, six different months (Apr, May, Jun, Aug, Sep, and
Dec) of 2015 and 2018 were used to develop spatial distribution maps of GPP and NEE (Figure 3).
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Figure 3. Daily gross primary productivity (GPP) and NEE at Upper Coast (UC) and High Plains
(HP) for cropland during 2015 and 2016 to select the critical month of each year to develop spatial
distribution maps. A sequence of time series plots was developed to identify the sensitive months
when GPP and NEE values were changing or abruptly changed during the study period. Based on the
changes in seasonal distributions of GPP and NEE, six different months (Apr, May, Jun, Aug, Sep, and
Dec) of 2015 and 2018 were used to develop spatial distribution maps of GPP and NEE.

In addition, changes in spatial coverage between 2015 and 2018 for specified GPP/NEE range were
calculated. First, the spatial area for specified NEE and GPP ranges were calculated for the selected
months of 2015 and 2018 (Table 2). Then, the change in spatial coverage of specified NEE and GPP
ranges between the selected months of 2015 and 2018 were calculated by subtracting the spatial area
of specified GPP and NEE ranges of 2015 from 2018 for each month. ArcGIS (Spatial Analyst-Zonal
Statistics tool) was used to summarize average GPP and NEE for all of the selected land-use categories
in each climate zone [68].

The daily GPP and NEE values (g C m−2 d−1) were used to estimate annual GPP and NEE values
(g C m−2 year−1) in each climate zone (Table 3). First, annual GPP and NEE were estimated at each pixel
in every climate zone. Then, average GPP and NEE were computed in each climate zone. Additionally,
GPP and NEE values were used to calculate the standard deviation (SD) of annual carbon fluxes each
year in each climate zone. Since SMAP L4C data were available only for nine months in 2015, this year
was excluded from the analysis.

The monthly GPP and NEE (2015–2018) data from two climate zones with the same land-use were
used to calculate the coefficient of determination (R2) and p-values each year. Box and whisker plots
were developed using monthly GPP and NEE values at select locations of each climate zone dominated
by one of five major land uses across Texas.
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Table 2. Change in spatial coverage of specified (particular) NEE and GPP ranges between selected months of 2018 and 2015 across Texas. All of the values for
respective months are in percentage.

NEE.
(g C m−2 mo−1) Apr May Jun Aug Sep Dec GPP (g C m−2 mo−1) Apr May Jun Aug Sep Dec

−175 to −150 0.01 −0.05 −0.06 0 to 50 25.70 17.67 19.02 −8.15 −4.82 16.48
−149 to −125 0.05 −0.04 −0.15 51 to 100 −11.43 6.21 23.75 −21.55 −15.39 −15.75
−124 to −100 0.15 −0.02 −0.28 101 to 150 −6.22 −8.28 2.24 −10.89 21.05 −0.72
−99 to −75 0.73 −7.94 −0.57 −0.08 151 to 200 −14.80 −14.04 −13.65 4.06 2.48
−74 to −50 0.04 0.92 −42.17 −2.49 −2.55 201 to 250 6.40 −8.39 −19.06 8.46 −1.92
−49 to −25 8.42 3.38 −13.18 −13.97 −17.15 251 to 300 0.34 5.75 −11.82 6.28 −1.18
−24 to 0 −15.92 −30.90 32.30 −7.74 −18.44 −4.41 301 to 350 0.77 −0.66 7.58 −0.20
1 to 25 10.77 24.71 30.99 25.25 36.18 5.14 351 to 400 0.27 0.18 5.71 −0.01

26 to 50 −3.27 0.85 0.11 2.05 0.20 >400 0.04 8.49
51 to 75 −0.04 0.06 −1.10
76 to 100 0.17
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Table 3. Annual NEE and GPP estimates in each climate zone across Texas. The standard deviation
(SD) values are presented inside parentheses.

Climate
Zone

GPP (g C m−2 year−1) NEE (g C m−2 year−1)

2016 2017 2018 2016 2017 2018

HP 811 (207) 811 (216) 625 (199) −90.2 (42) −93.2 (47) 23.2 (45)
LRP 897 (139) 819 (115) 616 (117) −102.4 (41) −86.4 (32) 57.1 (31)
NC 1402 (198) 1241 (194) 1032 (191) −160.7 (40) −98.9 (37) 41.3 (28)
ET 1907 (161) 1818 (187) 1657 (217) −102.4 (47) −66.4 (47) 42.1 (62)
TP 525 (133) 478 (121) 408 (103) −64.9 (45) −47.7 (42) 0.1 (34)
EP 1093 (229) 944 (204) 820 (203) −149.4 (51) −87.1 (41) 3.1 (42)
SC 1623 (210) 1490 (248) 1366 (231) −206.7 (56) −150.0 (51) −57.1 (44)
UC 2070 (348) 2027 (355) 1941 (352) −89.6 (62) −90.6 (64) −30.4 (66)
S 1219 (211) 1065 (188) 1056 (198) −149.7 (79) −78.9 (67) −44.9 (59)

LV 1540 (369) 1444 (375) 1411 (325) −65.7 (55) −9.6 (56) 48.8 (84)

3. Results

3.1. Evaluation of Satellite CO2 Using In-Situ Measurements

Open-developed land of the PVAMU research farm, located in East Texas climate zone, was
used to evaluate SMAP NEE product. Net ecosystem exchange data were collected from the EC flux
tower at 30-min intervals and converted into daily and monthly values. The footprint area of SMAP
satellite is 9 km × 9 km, while the flux tower has a 400 m × 400 m footprint area. This study compared
daily and monthly in-situ and SMAP GPP and NEE (Figure 4). Despite considerable scale difference
between these two measurements, there were reasonable agreements between in-situ measurements
and SMAP GPP and NEE estimates. In addition, the agreement was better during certain months than
others. For example, Figure 4 shows reasonable agreement between in-situ measurements and SMAP
NEE estimates during the June–August, and November–December periods. However, GPP showed
better agreement during the winter. At most of the ecosystems, carbon productivity tended to increase
during summer and reduce during winter while carbon exchange tended to be negative (carbon
sinks) during summer and positive (carbon sources) during winter (Figure 4). For a quantitative
assessment, the performance of SMAP NEE and GPP were evaluated using correlation coefficient (R),
and root mean square error (RMSE). The correlation coefficient of 0.42 and 0.43 (daily) and 0.54 and
0.67 (monthly), respectively, for NEE and GPP, can be considered a reasonable agreement between
in-situ measurements and SMAP estimates considering the scale difference between the two datasets.
In addition, RMSE of 2.42 g C m−2 d−1 and 32.1 g C m−2 mo−1, respectively, for daily and monthly
NEE values can generally be considered good, but are higher than the estimated uncertainty threshold
which is mainly due to the land-use heterogeneity at this location. Additionally, RMSE of 2.96 g C m−2

d−1 and 62.5 g C m−2 mo−1, respectively, for daily and monthly GPP values can also be considered
reasonable at these scales.



Remote Sens. 2019, 11, 1733 10 of 29
Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 29 

 

 
Figure 4. Daily and monthly SMAP and in-situ GPP and NEE at PVAMU Research Farm (2016–2018). 
The unit of RMSE is the same as of GPP and NEE. 

3.2. Carbon Fluxes at Different Climate Zones 

Annual and monthly GPP and NEE values were compared in each climate zone for the selected 
months from 2015 to 2018 (Figures 5 and 6 and Table 3). While some climate zones showed higher 
GPP and NEE values in one year than another year, others showed lower. For example, each climate 
zone showed high GPP values from spring to fall and low in winter each year; however, in 
comparison, UC and ET climate zones showed the highest GPP values and TP and EP climate zones 
showed lowest GPP values during the same period. Each of the selected climate zones showed 
highest GPP (168–479 g C m−2 mo−1) in August 2018 except EP, S, and LRP climate zones, which had 
highest GPP in June 2015 (154–190 g C m−2 mo−1), and TP climate zone which had highest GPP in 
September 2016 (82 g C m−2 mo−1). Each of the selected climate zones showed the lowest GPP in 
December, but not necessarily in the same year. For example, all of the climate zones had lowest GPP 
in December 2017 (22–51 g C m−2 mo−1), except HP, S, and ET climate zones, which had lowest GPP 
in December 2016 (17–51 g C m−2 mo−1) because hurricane Harvey (late summer in 2017) brought 
heavy precipitation, which may cause change in vegetation growth in some of the climate zones 
(Figure 5). 

In addition, each climate zone showed the highest carbon emission (+ve NEE) and carbon uptake 
(−ve NEE), respectively, in December (13.3–52.1 g C m−2 mo−1) and in June (−74.3 to −47.3 g C m−2 

mo−1), except HP and TP climate zones, which had the highest carbon emissions and carbon uptakes, 
respectively, in May (6.8–12.2 g C m−2 mo−1) and in June (−49 to −22.6 g C m−2 mo−1). 

Figure 4. Daily and monthly SMAP and in-situ GPP and NEE at PVAMU Research Farm (2016–2018).
The unit of RMSE is the same as of GPP and NEE.

3.2. Carbon Fluxes at Different Climate Zones

Annual and monthly GPP and NEE values were compared in each climate zone for the selected
months from 2015 to 2018 (Figures 5 and 6 and Table 3). While some climate zones showed higher GPP
and NEE values in one year than another year, others showed lower. For example, each climate zone
showed high GPP values from spring to fall and low in winter each year; however, in comparison,
UC and ET climate zones showed the highest GPP values and TP and EP climate zones showed
lowest GPP values during the same period. Each of the selected climate zones showed highest GPP
(168–479 g C m−2 mo−1) in August 2018 except EP, S, and LRP climate zones, which had highest GPP
in June 2015 (154–190 g C m−2 mo−1), and TP climate zone which had highest GPP in September 2016
(82 g C m−2 mo−1). Each of the selected climate zones showed the lowest GPP in December, but not
necessarily in the same year. For example, all of the climate zones had lowest GPP in December 2017
(22–51 g C m−2 mo−1), except HP, S, and ET climate zones, which had lowest GPP in December 2016
(17–51 g C m−2 mo−1) because hurricane Harvey (late summer in 2017) brought heavy precipitation,
which may cause change in vegetation growth in some of the climate zones (Figure 5).

In addition, each climate zone showed the highest carbon emission (+ve NEE) and carbon uptake
(−ve NEE), respectively, in December (13.3–52.1 g C m−2 mo−1) and in June (−74.3 to−47.3 g C m−2 mo−1),
except HP and TP climate zones, which had the highest carbon emissions and carbon uptakes,
respectively, in May (6.8–12.2 g C m−2 mo−1) and in June (−49 to −22.6 g C m−2 mo−1).

UC and ET climate zones had the highest NEE in December and April 2016 (43.8 and
52.1 g C m−2 mo−1), whereas the lowest NEE (−63.2 and −58.5 g C m−2 mo−1) in June 2016 and
2015. In 2015, NC and LRP climate zones had the highest and lowest NEE in December and June
(NC/LRP; 21.3/13.3 and −66.2/−47.3 g C m−2 mo−1), respectively. Five climate zones (SC, ET, S, LV,
and EP) showed highest NEE (12.4–43.8 g C m−2 mo−1) in December 2016 and lowest NEE (−74.3 to
−47.7 g C m−2 mo−1). However, two climate zones (NC and LRP) showed the highest and lowest NEE
(NC/LRP; 21.3/13.3 and −66.2/−47.3 g C m−2 mo−1) in 2015.
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Compared to August 2015, the largest spatial change in GPP was observed in August 2018 in
UC, ET, SC, S, and some portions of EP and NC climate zones. However, the lowest change in GPP
was observed in December in all climate zones except some portion of the UC climate zone (Figure 7).
In addition, all climate zones except some portions of UC and ET climate zones showed a change in
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carbon emission and uptake in June. HP, TP, and some portions of EP and LRP climate zones showed a
change in carbon uptake in April and May (Figure 8). Compared to 2016 and 2017, HP and NC climate
zones had lower GPP in 2018 (Figure 9). Besides, there was a decreasing trend in carbon uptake from
2016 to 2017.
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In comparison, carbon uptake changed into carbon emission in most of the climate zones
in 2018 (Figure 9). One of the main reason for this change was the impact of wetness (rain),
which increased from 2015 to 2017 and decreased in 2018. Each climate zone had different annual
GPP, but UC and TP climate zones had the highest (1941–2070 g C m−2 year−1) and the lowest
(408–525 g C m−2 year−1) annual GPP each year, respectively. In addition, TP climate zone had the
lowest spatial variability (SD = 103–133 g C m−2 year−1) each year, but UC climate zone had highest
spatial variability (SD = 352 g C m−2 year−1) in 2018, whereas LV climate zone had highest spatial
variability (SD = 369–375 g C m−2 year−1) in 2016 and 2017. Each climate zone showed a decreasing
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trend of annual GPP from 2016 to 2018. HP and LRP climate zones showed similar annual GPP each
year, but HP climate zone had larger spatial variability than LRP climate zone. Similarly, SC and LV
climate zones showed similar annual GPP each year, but LV climate zone had larger spatial variability
than LRP climate zone (Table 3).
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All climate zones showed carbon uptake in 2016 and 2017, and carbon release in 2018 except UC, SC
and S climate zones, which continuously showed carbon uptake from 2016 to 2018. Each climate zone
showed a decreasing trend of annual carbon uptake from 2016 to 2018 except HP and UC climate zones,
which had slightly higher carbon uptake in 2017 than 2016. LV climate zone showed the highest annual
carbon release (48.8 g C m−2 year−1) in 2018 and lowest annual carbon uptake (−9.6 g C m−2 year−1)
in 2017. On the other hand, highest annual carbon uptake (−206.7 g C m−2 year−1) was observed in
SC climate zone in 2016, and lowest annual carbon release (0.1 g C m−2 year−1) was observed in TP
climate zone in 2018. In 2018, the largest (84 g C m−2 year−1) and smallest (28 g C m−2 year−1) spatial
variability in annual NEE were observed in LV and NC climate zones, respectively.

3.3. Spatial Distributions of Carbon Fluxes for the Selected Major Land Uses

Figures 7 and 8 compare the spatial distribution of monthly GPP and NEE between 2015 and
2018 in all climate zones. In addition, Table 2 compares the change in spatial coverage of specified
NEE and GPP ranges between selected months of 2018 and 2015 across Texas. Based on the estimated
GPP range during the study period, this study assumed monthly GPP values >301, 100 to 300, and
<100 g C m−2 mo−1, respectively, as a high, an average, and a low GPP. Similarly, NEE values >75, 25
to 75, and <0–25 g C m−2 mo−1, respectively, assumed to be high, average, and low carbon emissions,
whereas NEE values <−75, −25 to −5, and >−25 and <0, g C m−2 mo−1, respectively, assumed to be
high, average, and low carbon uptakes during the study period. These classifications will help to
compare GPP and NEE values at a different location across Texas. To interpret the changes between
2015 and 2018, the GPP and NEE values were grouped into nine and eleven classes, respectively
(Table 2). All of the positive values indicate 2018 had higher spatial coverage for particular NEE and
GPP ranges than 2015, whereas all of the negative values indicate 2015 had higher spatial coverage for
particular NEE and GPP ranges than 2018.
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3.3.1. Spatial Distributions of GPP

All climate zones showed low GPP in December 2015 and 2018. UC and ET climate zones
showed higher GPP during May–September in 2015 and May–August in 2018 than other months. In
comparison, the observed monthly GPP from May to September in 2015 was lower than in 2018. For
example, UC and ET climate zones showed GPP > 401 g C m−2 in August 2018 and <400 g C m−2 in
August 2015. Forest and pasturelands of ET climate zone showed GPP increased from April to June in
2015, and April to May in 2018, but decreased from May to June in 2018. On the other hand, cropland
of UC climate zone had higher GPP than the HP climate zone during the study period, which shows
these two locations had a different climate (Figure 7).

Forestland of ET and TP climate zones had different GPP distributions during the study period.
The observed GPP in ET climate zone was low to high (51–100 g C m−2 mo−1 (December) to
>400 g C m−2 mo−1 (August)), whereas it was low (<50 g C m−2 mo−1 (December)) to average
(101–150 g C m−2 mo−1 (August)) in the TP climate zone during the study period. On the other hand, GPP
decreased from August to September in 2015 and 2018 at both climate zones. The pasture-dominated
region of ET and NC climate zones showed an increasing trend from April to June and decreasing
trend from August to December. However, ET climate zone had higher GPP than NC climate zone
(Figure 7).

The eastern portions of TP and EP zones were dominated by shrubland. Shrubland in TP climate
zone showed low GPP throughout the study period except in August 2018, whereas EP climate zone
showed an average GPP, but an increasing trend from April to June in 2015 and an increasing trend
from April to May, but a decreasing trend from May to June in 2018. However, EP zone showed a
decreasing trend of GPP from August to December. In August 2018, shrubland-dominated areas of
TP and EP climate zones showed the average and high GPP, respectively. The developed land of ET
climate zone showed higher GPP than the SC climate zone each month during the study period, except
in December when both zones showed low GPP (Figure 7).

During April to June, and December, the area with low GPP (<50 g C m−2 mo−1) increased by 16
to 26% in 2018 from 2015, whereas during August and September, it decreased by 5 to 8% (Table 2).
While there were no consistent changes in spatial coverage observed for the particular GPP ranges
in any month, some of the months had higher changes in spatial coverage for low to average (0 to
300 g C m−2 mo−1) GPP range, whereas other months had higher changes in spatial coverage for high
GPP range (>301 g C m−2 mo−1). For example, May and August 2018 had, respectively, 0.04% and
8.49% more area than 2015, having GPP greater than 400 g C m−2 mo−1. The changes in spatial coverage
analysis showed 16.47% more area in December 2015 had GPP from 51 to 150 g C m−2 mo−1 than in
December 2018. In addition, 32.45% more area in April 2015 had GPP from 51 to 200 g C m−2 mo−1

than in April 2018. In May, 1.04% more area had GPP from 301 to 400 g C m−2 mo−1 in 2018 than in
2015 whereas, in September, 0.21% more area had GPP from 301 to 400 g C m−2 mo−1 in 2015 than in
2018. However, in June, 0.66% more, and 0.18% less area had GPP from 301 to 400 g C m−2 mo−1 in
2018 than in 2015 (Table 2).

The analysis showed warmer and wetter climate zones, and months had higher GPP than the
cooler and dryer zones and months during the study period. Moreover, some croplands and forestland
showed higher GPP than shrub and pasturelands.

3.3.2. Spatial Distributions of NEE

NEE is used to quantify carbon uptake (−ve NEE) and carbon release or emission (+ve NEE) of a
given ecosystem. All climate zones showed carbon emission in December except some portion of the
climate zones located along the western boundary of Texas. UC and ET climate zones had high carbon
emission in December, whereas UC and LV climate zones had high carbon uptake in June. However,
the HP climate zone had high carbon uptake in August (Figure 8).

NEE (either carbon emission or carbon uptake) values from two different land uses at one climate
zone, or the same land-use at two different climate zones were not consistent during the study period.
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For example, cropland of UC and HP climate zones had, respectively, carbon emission and carbon
uptake in April 2015, which were reversed in April 2018 (Figure 8). The carbon emission rate decreased
from April to June and increased from August to December each year in these two climate zones.

Forestland of ET and TP zones had significantly different NEE each month except August
and September. For example, ET and TP climate zones had carbon emissions and carbon uptakes,
respectively, in April 2015, which were reversed in April 2018. In December, TP climate zone had
low carbon emission, whereas ET climate zone had high carbon emission. Pastureland of ET and
NC climate zones showed similar NEE distributions each month, except September and December.
Pastureland of ET climate zone had high carbon emission, whereas the NC climate zone had low
carbon emission in December each year. However, ET and NC climate zones had low carbon emission
and low carbon uptake, respectively, in September 2018, whereas both climate zones had similar NEE
distributions in September 2015.

Shrubland of EP and TP climate zones had low carbon uptakes in April and May 2015 and low
carbon emissions in April and May 2018, respectively. Both climate zones had average carbon uptakes
in June 2015 and low carbon emissions in June 2018. However, both climate zones had similar NEE
distributions from August to December. Developed land of both climate zones showed similar NEE
distributions from April to June 2015 and April to May 2018 and different NEE distributions during
the rest of the months. For example, developed land of the ET climate zone showed an average carbon
emission, whereas the SC climate zone showed low carbon emission in December 2015 and 2018.
Similarly, developed land of the ET climate zone had an average carbon uptake, and the SC climate
zone had low carbon uptake from August to September in 2015 and 2018 (Figure 8).

In May, the area with high carbon uptake (<−75 g C m−2 mo−1) increased by 0.94% in 2018 from
2015; then in June and August, it decreased by 9.1% (Table 2). While there were no consistent changes
in spatial coverage observed for particular NEE ranges in any month, some of the months had higher
changes in spatial coverage for an average (−74 to −25 g C m−2 mo−1) NEE range, whereas other
months had higher spatial changes for low NEE range (−24 to 0 g C m−2 mo−1). Areas with carbon
emission range −74 to −25 g C m−2 mo−1 in June 2018 were 55.37% lower than in June 2015. However,
each month in 2018, carbon uptake range 1 to 25 g C m−2 mo−1, had a higher area than in 2015 (Table 2).
The changes in spatial coverage analysis showed 4.41% more area had low carbon uptake (−24 to
0 g C m−2 mo−1) in December 2015 than in December 2018 and 15.92% more area had low carbon
uptake in April 2015 than in April 2018. In May, 30.9% more area had low carbon uptake in 2015 than
in 2018, whereas, in June, 32.3% more area had low carbon uptake in 2018 than in 2015 (Table 2).

The analysis showed, in comparison, warmer and dryer climate zones and months had more
carbon emission than the warmer and wetter zones. However, the dryer and cooler climate zones and
months had more carbon uptakes across the state.

3.4. Temporal Distributions of Carbon Fluxes for the Selected Major Land Uses

The temporal distribution of monthly GPP and NEE of each land-use category in one climate zone
was compared with the distribution of monthly GPP and NEE of the same type of land-use in another
climate zone. Time series plots of monthly precipitation, temperature, GPP, and NEE were developed
across all ten locations to understand the temporal variations of these parameters for ten ecosystems
during the study period (Figure 10). Graphs of each land-use in two different climate zones showed
monthly and seasonal variations of precipitation, temperature, GPP, and NEE (Figure 10). Monthly
GPP and NEE values were plotted to observe variations in the rate of carbon production and CO2

exchange during the study period for each land-use.
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Figure 10. Temporal distributions of monthly precipitation, GPP (a–e) and NEE (f–j) of five major
land-use categories: Cropland (crop), forestland (forest), pastureland (pasture), shrubland (shrub)
and developed land (developed) at each selected climate zone in Texas. Note: HP = High Plains;
LRP = Low Rolling Plains; ET = East Texas; EP = Edwards Plateau; SC = South Central; TP = Trans
Pecos; UC = Upper Coast; NC = North Central; S = Southern; LV = Lower Valley.

3.4.1. Temporal Distributions of GPP

Developed land of ET climate zone showed higher monthly GPP as compared to SC climate zone
(Figure 10a). Both locations had higher GPP during the summer and lower GPP during the winter. ET
climate zone had highest and lowest GPP (404 and 42 g C m−2 mo−1) in July 2015 and December 2018,
whereas SC climate zone had the highest and lowest GPP (224 and 33 g C m−2 mo−1) in June 2015 and
December 2018. Each summer, except 2018, compared to other seasons, these climate zones received
higher precipitation during the study period. However, ET climate zone received more precipitation
than the SC climate zone. R2 and p-values (0.78 to 0.56 and 0.0195 to 0.0001) for GPP for developed land
in ET and SC climate zones showed reasonable correlations each year (Table 4). In comparison, 50% of
monthly GPP values were between 100 and 295, and 68 and 167 g C m−2 mo−1, respectively, in ET and
SC climate zones. Figure 11a shows a larger range of GPP in ET climate zone than SC climate zone.
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Table 4. Coefficient of determination (R2) and p-value (inside parentheses) for each land-use category
at two different climate zones. It shows the correlation between GPP and NEE for the same land-use
type at two climate zones. Note: The bold values are greater than the 0.05 significance level.

Coefficient of Determination (R2)

LAND-use
GPP NEE

2015 2016 2017 2018 2015 2016 2017 2018

Developed
land

(ET, SC)

0.56
(0.0195)

0.70
(0.0006)

0.78
(0.0001)

0.63
(0.0022)

0.50
(0.0322)

0.62
(0.0024)

0.77
(0.0002)

0.57
(0.0045)

Forestland
(ET, TP)

0.67
(0.0068)

0.50
(0.0106)

0.33
(0.0501)

0.21
(0.1392)

0.81
(0.0009)

0.53
(0.0071)

0.17
(0.1813)

0.03
(0.5779)

Shrub land
(EP, TP)

0.95
(<0.0001)

0.68
(0.0010)

0.44
(0.0188)

0.75
(0.0003)

0.93
(<0.0001)

0.64
(0.0017)

0.20
(0.1435)

0.61
(0.0027)

Cropland
(HP, UC)

0.79
(0.0013)

0.69
(0.0008)

0.61
(0.0028)

0.53
(0.0072)

0.59
(0.0155)

0.45
(0.0178)

0.40
(0.0284)

0.27
(0.0819)

Pastureland
(ET, NC)

0.95
(<0.0001)

0.99
(<0.0001)

0.61
(0.0026)

0.76
(0.0002)

0.94
(<0.0001)

0.93
(<0.0001)

0.45
(0.0170)

0.50
(0.0097)
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Figure 11. Box and Whisker plots of monthly (a) GPP distributions and (b) NEE distributions for five
major land uses at each selected climate zone in the state of Texas. Note: C = cropland, F = forestland,
P = pastureland, S = shrubland, and D = developed land. The white circles represent the mean, the
solid horizontal lines represent the median, and gray circles represent outliers. Upper horizontal
line = maximum, lower horizontal line= minimum, top of the box = upper quartile, bottom of
the box = lower quartile, upper quartile to maximum = upper whisker, and the lower quartile to
minimum = lower whisker.
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Forestland of ET climate zone showed highest (255 g C m−2 mo−1) and lowest (65 g C m−2 mo−1)
GPP in June 2015 and December 2018. Forestland in ET climate zone showed higher GPP during the
summer between June and August each year except in 2017, when the highest GPP was observed
in September and the lowest GPP in December of each year. Forestland of TP climate zone showed
higher GPP during the summer from June to August except in 2016, when the highest and lowest GPP
were observed in September and December (Figure 10b). Figure 11a shows a significantly different
GPP distribution for forestland in ET climate zone than TP. Each summer, compared to other seasons,
these climate zones received higher precipitation during the study period. However, the ET climate
zone received more precipitation than the TP climate zone. In comparison, 50% of GPP in the ET
climate zone was higher than 106 g C m−2 mo−1 and lower than 210 g C m−2 mo−1 whereas 50%
of GPP in TP climate zone was lower than 111 g C m−2 mo−1 and higher than 35.5 g C m−2 mo−1.
Moreover, in comparison, the mean, median, and range of GPP in the TP climate zone were significantly
different from those of the ET climate zone. However, R2 values of 0.67 and 0.50 and p-values of
0.0068 and 0.0106, respectively, in 2015 and 2016 for forestland in two climate zones showed reasonable
correlations, whereas the R2 values of 0.33 and 0.21, and p-values of 0.0501 and 0.1392, respectively, in
2017 and 2018 for forestland in two climate zones showed poor correlations (Table 4).

Shrubland of EP climate zone showed higher GPP than shrubland of TP climate zone. However,
both locations dominated by shrubland in these climate zones had similar seasonal variations in GPP
(Figure 10c). These shrublands also had the highest GPP during the summer and lowest during
the winter (Figure 10c). Both EP and TP climate zones had the highest GPP, respectively, 145 and
44 g C m−2 mo−1 in June 2015. Each summer, as compared to other seasons, these climate zones
received slightly higher precipitation during the study period. However, the EP climate zone received
slightly more precipitation than the TP climate zone. The R2 values and p-values (0.95 to 0.68 and
<0.0001 to 0.0010), for GPP for shrubland in EP and TP climate zones showed very good correlations
each year except in 2017, when R2 value and p-value were 0.44 and 0.0188, respectively (Table 4).
Figure 11a shows a higher median and mean and larger range of GPP values in EP climate zone than
TP climate zone.

Cropland of UC climate zone showed highest GPP during the summer of each year, which was
more than double the HP climate zone (Figure 10d). For example, July 2015, June 2016, June 2017, and
July 2018 showed the highest GPP values 355, 330, 373, and 366 g C m−2 mo−1 in the UC climate zone,
respectively, whereas August 2015, September 2016, August 2017, and August 2018 showed the highest
GPP values, respectively, 185, 162, 184, and 137 g C m−2 mo−1 in the HP climate zone, which had
one to two months of time lag between the observed GPP peaks in two climate zones. Each summer,
compared to other seasons, these climate zones received higher precipitation. However, the ET climate
zone received more precipitation than the SC climate zone. The analysis showed an increasing trend of
GPP from early April 2015, which continued to increase through the summer and decreased from June
to December of each year. The lowest GPP (15–21 g C m−2 mo−1) was observed in December of each
year in both climate zones. Yet, the observed lowest GPP in the HP climate zone was lower than the
UC climate zones by an average of 25 g C m−2 mo−1. R2 values and p-values from 2015 to 2018 (0.79
to 0.53 and 0.0013 to 0.0072) for GPP for cropland in HP and UC climate zones showed reasonable
correlations each year (Table 4). Figure 11a shows higher median, mean, and larger range of GPP
values in the UC climate zone than the HP climate zone.

Pasturelands of ET and NC climate zones showed higher GPP during summer and lower GPP
during winter with a sharp change (from high to low) between July and August (Figure 10e). Since ET
and NC climate zones share boundaries, and select grids were close to each other, both had similar
seasonal variations of GPP. However, pastureland of the ET climate zone showed slightly higher GPP
than the NC climate zone. Each summer except 2015, compared to other seasons, these climate zones
received higher precipitation during the study period. However, the ET climate zone received slightly
more precipitation than the NC climate zone. In addition, R2 values and p-values (0.99 to 0.76 and
<0.0001 to 0.0002) for GPP for shrubland in EP and TP climate zones showed excellent correlations
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each year, except in 2017, when the R2 value and p-value were 0.61 and 0.0226, respectively (Table 4).
Figure 11a shows a higher median, and mean of GPP values in the ET climate zone than the NC, but
both climate zones had similar ranges of GPP.

3.4.2. Temporal Distributions of NEE

Developed land-use of the ET climate zone showed higher monthly carbon emission and uptake
compared to the SC climate zone (Figure 10f). Both climate zones had carbon emissions during
the late fall and spring (November–April) and carbon uptakes during the summer and early fall
(May–September). However, both climate zones had the highest carbon emissions and uptakes in a
different month each year. For example, in 2015, ET and SC climate zones had the highest carbon
emission, respectively, in April and March, whereas the highest carbon uptake was, respectively, in
July and October/December (two peaks). Both climate zones showed slightly different median, and
mean NEE (Figure 11b). However, the ET climate zone had larger NEE range than the SC climate
zone. Additionally, NEE of developed land in the ET and SC climate zones showed slightly better
correlations in 2016 and 2017 than in 2015 and 2018 (Table 4).

Forestland of the ET and TP climate zones showed the highest carbon uptake, respectively, in
July 2015 and August 2017 (Figure 10g). Forestland of the ET climate zone had higher carbon uptake
every year than the TP climate zone except in 2017. In August 2017, the TP climate zone had NEE
of −71.4 g C m−2 mo−1 and the ET climate zone had NEE of −51.7 g C m−2 mo−1. While forestlands
of ET and TP climate zones showed some similarity in the temporal distribution of NEE (highest
carbon uptake during summer in both zones), TP had very low carbon emission every year (0.4 to
1.4 g C m−2 mo−1) except in May 2017, when this zone had NEE of 22.4 g C m−2 mo−1. Forestland
of the TP climate zone had a smaller NEE range than forestland in the ET climate zone (Figure 11b).
In comparison, mean, and range of NEE in TP climate zone were significantly different than the ET
climate zone. The NEE median was close to each in both climate zones. R2 values of 0.81 and 0.53 and
p-values of 0.0009 and 0.0071 in 2015 and 2016 for NEE for forestland in two climate zones showed
very good correlations, and R2 values of 0.17 and 0.03, and p-values of 0.1813 and 0.5779 in 2017 and
2018 for NEE for forestland in two climate zones showed poor correlations (Table 4).

Shrublands of EP and TP climate zones showed similar seasonal variations in carbon emission and
uptake during the study period (Figure 10h). However, the EP climate zone dominated by shrubland
had slightly higher carbon emission than the TP climate zone. Similarly, it had a slightly higher carbon
uptake than the TP climate zone in 2015–2016 and lower in 2017–2018. The ET climate zone had the
highest carbon emission (18.3 g C m−2 mo−1) in March 2018, and the TP climate zone had the highest
carbon emission (12.6 g C m−2 mo−1) in May 2018. On the other hand, the highest carbon uptake in EP
(−43.3 g C m−2 mo−1) and TP (−32.4 g C m−2 mo−1) climate zones were observed in April 2015. R2

values and p-values (0.93 to 0.61 and <0.0001 to 0.0027) showed very good correlations for NEE for
shrubland in EP and TP climate zones each year except in 2017, when R2 value and p-value were 0.20
and 0.1435 (Table 4). Both zones showed similar means and medians of NEE. However, the shrubland
at the EP climate zone showed larger NEE range than the TP climate zone (Figure 11b).

Cropland of both climate zones showed higher carbon uptakes and emissions, respectively, during
the summer and winter. However, cropland of the UC climate zone had more than double carbon
emission and uptake during the peak of the year. For example, in 2015, the UC climate zone had the
highest carbon uptake (−130.5 g C m−2 mo−1) in July, whereas the HP climate zone had the highest
carbon uptake (−52 g C m−2 mo−1) in August (Figure 10i). R2 values and p-values from 2015 to 2018 for
NEE for cropland in HP and UC climate zones (0.59 to 0.27 and 0.0155 to 0.0819) showed good to poor
correlations (Table 4). Figure 11a shows similar medians and means, but a larger range of GPP values
in UC climate zone than HP climate zone. The primary y-axis has GPP and NEE (g C m−2 mo−1) on
the left and average monthly temperature (◦C) on the right.

Distributions of NEE for Pastureland in NC and ET climate zones were very similar. Both climate
zones showed carbon uptake during the summer and carbon emission during the winter (Figure 10j).
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Since ET and NC climate zones share boundaries, and the selected grids were close to each other, both
locations showed similar seasonal variations of NEE. However, pastureland of the ET climate zone had
a slightly higher carbon uptake and carbon emission than the NC climate zones. The highest carbon
uptake was observed in 2015, which continued to decrease until 2018 in both climate zones. The carbon
emissions were found to be continuously increasing from 2015 to 2018. In addition, R2 values and
p-values (0.94 to 0.93 and <0.0001) for NEE for shrubland in EP and TP climate zones showed excellent
correlations in 2015 and 2016, whereas R2 values and p-values (0.45 to 0.50 and 0.0170 to 0.0097) NEE
for shrubland in EP and TP climate zones showed reasonable correlations in 2017 and 2018 (Table 4).
Figure 11b shows a higher median and mean of NEE values at the NC climate zone than the ET, but
the ET climate zone had a larger range of NEE than the NC.

4. Discussion

Quantitative comparison of carbon fluxes in different climate zones and ecoregions can explain
how climate change impact GPP and NEE distributions of various land uses. This study showed GPP
was gradually increasing when seasons became hotter and more humid (Figure 10a–e). Moreover,
the spatial distribution of GPP was dependent on climate zones (Figure 7). Based on the qualitative
analysis of the GPP distributions, some climate zones could be considered as “climate zones with
high GPP” or “climate zones with low GPP.” For example, the TP climate zone showed low GPP for
most of the months except in May and June 2015, and August 2015 and 2018 (Figure 7). Forestland of
ET climate zone showed highest GPP in most of the months except in May and June 2015 and 2018,
August and September 2015, when cropland of UC climate zone had higher GPP than forestland of ET
climate zone. In addition, the forestland of the ET climate zone had higher GPP than the TP climate
zone during the study period. Forestland of ET climate zone had higher GPP than the TP climate zone
because the ET climate zone had dense forests and received a higher amount of precipitation than
that of TP climate zone. Moreover, ET climate zone was covered by two ecoregions, SCP in the east
and ECTP in the west. SCP and ECTP ecoregions were dominated by forestland and pastureland,
respectively. This study supports the finding of Ma et al. (2015) [69], who explained that forests always
store much larger amounts of carbon than other terrestrial ecosystems.

TP climate zone was mostly covered by Chihuahuan Deserts (CD) ecoregion, which included
desert valleys, plateaus, and wooded mountains and received the lowest amount of precipitation [70].
In contrast, the ET zone received the highest amount of precipitation after the UC climate zone. UC and
ET climate zones showed highest GPP during the study period because they continuously maintained
dense vegetation/forest and received higher precipitation most of the year than other climate zones.
The humid UC was known to support well-vegetated wetlands dominated by grasses and other
temperate-climate plants such as forests and shrubs. GPP values in the UC climate zone were high
because the prevailing climatic condition supported well-vegetated cropland and prairies, which meant
higher rates of photosynthesis [71]. GPP values in other climate zones varied according to seasons. For
example, NC and EP climate zones showed low to average GPP during the study period. However,
GPP distribution in the NC climate zone was slightly higher than the EP climate zone because the NC
climate zone received more precipitation than the EP climate zone. TP and UC climate zones had the
lowest and the highest GPP, respectively, which is consistent with the climate conditions, and the land
uses in those zones.

Amount of precipitation, temperature, and wind speed, which characterize each climate zone,
impact the productivities and types of land-use in the climate zone. Temperature, types of land-use,
and precipitation played a significant role in the spatial distribution of GPP across the state. While ET
and NC climate zones shared boundaries, pastureland in the ET zone showed higher GPP than the
NC zone because ET had a more seasonal tropical climate, which supported increased aboveground
biomass during spring and summer than NC (Figure 7). Since both selected pasturelands were in two
different climate zones and their climatic conditions were slightly different, the dissimilarities between
these locations could be attributed to their vegetation growth and characteristics.
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While EP and TP climate zones shared boundaries, comparatively, the EP climate zone was more
humid than the TP climate zone. Consequently, shrubland of EP zone had more GPP than the TP
climate zone. However, shrubland in EP and TP climate zones showed large differences in GPP
distribution during summer (June–August), although GPP distributions were similar from fall to
winter (Figure 7). Their similarities could be attributed to the same vegetation while their differences
could be attributed to differences in climate at the two locations.

Open-developed land, which also included trees, grasses, pastures, various infrastructures, etc.,
made it unique compared to other land uses in this study. Developed land in the ET climate zone
showed low GPP (<100 g C m−2 mo−1) in December suggesting a significant impact of low precipitation
and temperature, which could be responsible for the major decline in productivity. Seasonal climatic
conditions in ET support vegetation’s growth. These conditions do not occur consistently in SC climate
zone. SC is rather known for its natural diversity, which included semi-arid ecosystems, sweeping
grasslands, and swampy, humid bayous. However, GPP was found to be higher on land uses in
such climate zones (e.g., ET), which experienced more frequent higher rainfall, higher temperature
variations, and higher humidity.

Climatic conditions, types of land-use, and seasonal changes impacted the spatial distribution of
NEE across the state. When NEE distributions of identical land-use were compared at two different
climate zones, these climatic conditions showed a significant impact on the net ecosystem exchange.
All climate zones showed carbon emission in December. However, UT and ET climate zones showed
highest carbon emissions, and TP climate zone showed the lowest carbon emissions in December
because the UC climate zone received more than double the precipitation during this month. During
the summer, all of the climate zones showed carbon uptake except HP, LRP, and TP, which had carbon
emission in some of the summer months in 2018. These could be due to the effect of intermittent seasonal
rainfall and change in land-use, which were identified as environmental drivers that impact carbon
exchange in an ecosystem, as well as temperature variations across the climate zones. In comparison,
climate zones dominated by forest, pasture, and crop showed more carbon uptake from April to
September each year except HP cropland and TP forestland, because these climate zones received a
low amount of precipitation, had higher elevation and lower temperature.

Each climate zone showed a decreasing trend and smaller variability in annual GPP from 2016 to
2018. However, it showed higher annual variability in GPP between the climate zones. The humid
climate zones located close to the coast and dominated by forest, pasture, and croplands, had higher
annual GPP than the semi-arid climate zones dominated by shrub and croplands. Additionally, humid
climate zones that had more developed lands showed larger spatial variability (SD) in annual GPP due
to land-use heterogeneity.

The seasonal effects on NEE were different in the tropical ET, UC, NC, and SC climate zones than
in semi-arid TP, HP, and parts of EP climate zones, which explains different effects of seasonal changes
on NEE distributions at these climate zones. NEE distributions changed from carbon emission in
April to carbon uptake by June, whereas carbon uptake in August was changed to carbon emission
by December. It shows that a tropical wet climate enhances carbon uptake, whereas the arid climate
enhances carbon emission.

East Texas, dominated by forestland and pastureland, showed a balance between seasonal
variations in carbon emission and uptake, whereas other climate zones, dominated by other land
uses (e.g., developed land, cropland) showed a poor balance between seasonal variations in carbon
emission and carbon uptake. However, climate zones dominated by shrubland showed little or
no carbon emission during the study period. These findings aligned with previous studies, which
showed shrublands had more consistent carbon uptake than grass or pasturelands because of the
longer growing season and lower ecosystem respiration, although they show similar productivity [72].
Shrublands of EP and TP climate zones had the smallest NEE variations among all of the locations.
This could be due to a water deficit during winter, which caused a reduction in ecosystem respiration,
and GPP tended to decline in an ecosystem as water supply reduced, changing the ecosystem from a
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carbon source to sink [73]. In addition, each land-use and climate zone showed an increase in carbon
emission or decrease in carbon uptake after the rain events. These findings support the previous
studies, which showed CO2 dissolved in rainwater released when soil pore occupied by CO2 was
replaced by rainwater [74].

Each climate zone showed a decreasing trend in annual NEE and transition from carbon uptake
to carbon release from 2016 to 2018. However, it showed higher annual variability in NEE between the
climate zones. The humid climate zones (UC, S, and SC) located close to the coast and dominated by
forest, pasture, and croplands, showed an annual balance of carbon uptake from 2016 to 2018 except
LV climate zone, which had an annual balance of carbon uptake from 2016 to 2017 and annual balance
of carbon release in 2018. All other climate zones (HP, LRP, NC, ET, TP, and EP) showed an annual
balance of carbon uptake from 2016 to 2017 and annual balance of carbon release in 2018. In 2017,
hurricane Harvey could have some impact in UC, SC, and S climate zones, which caused annual
balance of carbon uptake until 2018.

Change in spatial coverage of particular NEE and GPP ranges between selected months of
2018 and 2015 showed more GPP production in some parts of the state and less in others (Table 2).
The reason for the low or high range of GPP and NEE values in any year in a climate zone of the
state could be attributed to the types of vegetation and climate variability associated with the climate
zone and ecoregion or the location. The study showed select land uses of two climate zones had
significantly different temporal GPP and NEE distributions except for pasturelands of NC and ET
climate zones (Figure 11). Quantitatively, the majority of land uses had a smaller range of GPP
(119–213 g C m−2 mo−1) and NEE (62–149 g C m−2 mo−1) except developed land of ET, cropland
of UC and shrubland of TP climate zones. Developed land of ET climate zone had the largest GPP
range (362 g C m−2 mo−1), and NEE (240 g C m−2 mo−1) and shrubland of TP climate zone had the
smallest GPP range (80 g C m−2 mo−1) and NEE (45 g C m−2 mo−1). The large variations in GPP
and NEE for different land-use and climate zones indicated that the climate variability and land-use
change, in combination, have a significant impact on GPP, carbon emissions, and carbon uptakes
(Figure 11). The analysis showed that increased GPP and NEE during the summer and winter tended
to be compensated by the reduced GPP and NEE during the winter and summer, respectively, resulting
in little or no change in annual GPP and NEE. GPP peaked during summer and was lowest in winter,
whereas NEE had the highest carbon uptake in summer and highest carbon release in winter.

Overall, the study showed a significant impact of climate and land-use change on the spatial and
temporal distributions of GPP and NEE across Texas. Moreover, cropland, forestland, and shrubland
showed more carbon uptake than carbon emission, which can help in soil carbon sequestration.

5. Conclusions

It is important to understand the changes in gross primary productivity (GPP) and net ecosystem
exchange (NEE) under changing climate and land-use change. This study used soil moisture active and
passive (SMAP) Level 4 carbon products to quantify spatial and temporal distributions and changes
of GPP and NEE for selected terrestrial ecosystems across Texas. The SMAP’s carbon products were
compared and analyzed for monthly, and annual measurements of GPP and NEE for five land uses
and ten locations from seven climate zones during the study period.

This study used EC (GPP and NEE) measurements from one location of the study area to evaluate
the performance of SMAP (GPP and NEE) estimates at daily and monthly time scales. However, it
should be recognized that no other EC NEE measurements were available to evaluate across Texas
during the study period.

This study revealed significant effects of climate and land-use change on spatial and temporal
distributions of GPP and NEE in Texas. Results showed that the carbon net exchange rates vary with
the climate and land-use change across Texas. While the same land-use at two different climate zones
had a different rate of NEE and GPP, different land uses within the same climate zone had different



Remote Sens. 2019, 11, 1733 25 of 29

net ecosystem exchanges and productivity rates. Carbon dioxide fluxes at the selected locations were
found to be impacted by both climatic conditions and land-use change.

GPP and NEE distributions showed high CO2 exchange at locations with a significant amount of
frequent rainfall, higher temperature, and dense vegetation, because these factors had a positive impact
on the amount of organic matter input to soil carbon. For example, croplands had higher GPP and
NEE in the UC climate zone but a lower value in the HP climate zone. However, climatic conditions
were found to have a lesser impact on CO2 exchange at some land uses like pastureland and shrubland.
These land uses showed a minor increase in CO2 flux even under similar climatic conditions compared
to croplands or forestlands. GPP and NEE fluxes showed strong seasonality under the influence of
temperature, precipitation, and land-use in each climate zone.

While the eddy covariance method made it possible to measure NEE with precision and contributed
to the identification of the characteristics of carbon emission/uptake activities of various global
ecosystems, there were few EC towers active in the state. Therefore, remotely sensed carbon products
were very helpful to study the ecosystem. The limitation encountered in this study is the inability to
cover all the land uses in the state, which would have provided a more robust analysis and possibly
more accurate estimations of carbon productivity and net carbon exchange.

Further, it is recommended to evaluate SMAP carbon products in different climate zones and
land-use categories using in-situ measurements. It is also recommended to conduct further research by
including SMAP soil organic carbon (SOC) and soil heterotrophic respiration (Rh) to quantify terrestrial
components of the carbon cycle in the Texas environment.

Finally, this study provides useful information on the terrestrial carbon cycle, which is important
for understanding the global carbon cycle, carbon resource management, and carbon sequestration.
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