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Abstract: The accurate estimation of the upper layer thickness in a two-layer ocean is a crucial step
in the retrieval of internal solitary wave (ISW) amplitude from synthetic aperture radar (SAR) data.
In this paper, we present a method to derive the upper layer thickness and the consequent ISW
amplitude by combining two consecutive SAR images with the extended Korteweg-de Vries (eKdV)
equation. An ISW case observed twice by the Chinese C-band SAR GaoFen-3 (GF-3) and the German
X-band SAR TerraSAR-X (TS-X) with a temporal interval of approximately 11 min in shallow water
to the southeast of Hainan Island in the northwestern South China Sea was used to demonstrate
the applicability of the method. Using the in situ measurements of temperature and salinity near
the observed ISW, the proposed method yielded an ISW amplitude of −4.52 m, in close proximity
to −5.66 ± 1.24 m derived by applying the classic Korteweg–de Vries (KdV) equation based on the
continuously stratified theory. Moreover, the climatological dataset of the World Ocean Atlas 2013
(WOA13) was also used with the proposed method in the Hainan case, and the results showed that
the method can still provide a reasonable estimate of ISW amplitude in shallow water even when in
situ oceanic stratification measurements are absent. The application of our method to derive the ISW
amplitude from consecutive SAR images seems highly promising with the increasing emergence of
tandem satellites in orbits.

Keywords: internal solitary waves (ISWs); amplitude retrieval; extended Korteweg-de Vries (eKdV)
equation; synthetic aperture radar (SAR)

1. Introduction

Internal solitary waves (ISWs) are a class of high-frequency, non-linear, and non-hydrostatic
gravity waves that are widely observed in the coastal oceans and marginal seas [1–4]. Internal solitary
waves can enhance ocean mixing and are an important link in energy dissipation from the barotropic
tide [5,6]. Additionally, ISWs can have a profound effect on offshore drilling operations [7], nutrients,
pollutants, and sediments transport [8], acoustic propagation [9], and nearshore ecosystems [10].
For these reasons, the generation, propagation, steepening, and dissipation of ISWs have received
much research attention for several decades.

Spaceborne synthetic aperture radar (SAR) is a powerful remote sensing instrument for observing
ISWs [11]. Internal solitary waves can induce variations in surface currents and locally modulate
the distribution and intensity of Bragg waves, which renders the ISWs visible on SAR images as
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alternating bright and dark stripes [12]. Spaceborne SAR data have been widely applied to determine
the properties of ISWs, such as the characteristic half width, crest length, number of waves, propagation
direction, wave speed, and wave amplitude [13–16].

The ISW amplitude refers to the maximum displacement of isopycnals departing from their
equilibrium positions [17]. Knowing the variation in ISW amplitudes is important for understanding
ISW evolution and dissipation processes. Field measurements, such as temperature chains, can
accurately derive ISW amplitudes. However, the ISW amplitudes change significantly during
progression due to the variations in stratification and bathymetry. Field measurements cannot well
capture such variabilities. Therefore, we expect to derive ISW amplitudes from spaceborne remote
sensing data, e.g., SAR data, because SAR has a large swath imaging capability that is independent of
daylight, cloud coverage, and weather conditions.

To date, several types of methods have been proposed to extract ISW amplitudes from SAR
intensity images and most of these methods use an internal wave evolution equation with a continuously
stratified fluid model [17–19] or a two-layer fluid model [20–22]. Although the amplitude estimation
from SAR images by adopting a continuously stratified fluid model has the potential to be more
accurate than the estimations with a two-layer ocean model, this method has the crucial need for
simultaneous or nearly simultaneous SAR and field observations, and thus, the method is difficult
to use in practical applications. Therefore, the simplified two-layer model, which assumes that the
ocean has an upper layer thickness of h1 and a lower layer thickness of h2, is more often used as
an approximation to estimate wave properties when studying long first mode internal waves. The
amplitude estimation based on a two-layer model from SAR intensity data [20–22] generally follows a
few steps: (1) an appropriate equation is selected to describe the wave evolution; (2) the ISW solution
to the wave evolution equation is used to establish the relationship between the ISW amplitude and
the observed ISW signal by SAR; (3) the ISW signal information is extracted from the SAR data;
(4) the upper layer thickness, total water depth, and density difference ∆ρ between the two layers
are determined; (5) the environmental parameters are calculated by h1, h2, and ∆ρ; and (6) the ISW
amplitude is determined based on the relationship established in the second step. Thus, given that
the background stratification information and total water depth are known, the appropriate internal
wave evolution equation, SAR-derived ISW information, and upper layer thickness are crucial for the
amplitude estimation.

In an internal wave study, there are three types of weakly non-linear models that simulate the
propagation characteristics of internal waves under various circumstances: the Korteweg-de Vries
(KdV) equation in shallow water [23,24], the Joseph–Kubota equation in finite-depth water [25,26],
and the Benjamin–Ono equation in deep water [27,28]. One key factor that justifies an appropriate
model is the ratio of the horizontal scale of internal waves to the water depth. As we will show later,
the wavelength in our case is greater than the local water depth. Therefore, we consider the observed
ISWs in this paper to be shallow water non-linear internal waves. For the amplitude estimation of
ISWs in a two-layer shallow water system, Xue et al. [21] suggested that the extended Korteweg-de
Vries (eKdV) equation, which includes a higher-order non-linear term, can obtain more reasonable
amplitude results from SAR images than the classic KdV equation.

The distance among the two adjacent peaks of internal wave patterns on SAR images (peak–peak
distance) or the characteristic half width of internal waves is usually used to establish relationships
with the internal wave amplitude. While the peak–peak distance can be determined by measuring
the locations of positive peaks and negative peaks on the curve of the internal wave backscattering
intensity profile, the characteristic half width is usually derived from SAR images by a few methods,
e.g., the curve fitting method [20], wavelet transform method [29], empirical mode decomposition
(EMD) method [30], and Cramér–Rao Bound method [31]. Among these methods, the curve fitting and
Cramér–Rao Bound methods are more applicable for the information extraction of a single ISW (internal
soliton) and may show little difference for the ISW with small amplitude of the SAR backscattering
intensity [31].
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The accurate estimation of upper layer thickness is crucial in determining the ISW amplitude
using a two-layer water fluid model because the retrieved amplitude is sensitive to the upper layer
thickness [21,22]. Although a variety of methods have been proposed to estimate the upper layer
thickness, such as the maximum buoyancy frequency (Nmax) method, eigenfunction method, empirical
orthogonal function (EOF) method, KdV method, Benjamin-Ono (BO) method, KdV-I method, and
the KdV-II method; the estimations using these methods may have large discrepancies [32] and these
methods based on in situ measurements are costly and can provide only point estimations. Therefore,
some studies have attempted to infer upper layer thickness from SAR images as they can provide
a wide view of ISW evolution with high spatial resolutions around tens of meters. For example,
Zhao et al. [33] proposed that the upper layer thickness can be calculated by determining the polarity
conversion point of the observed ISWs in SAR images, where the depression ISWs are converted into
elevation ISWs and the upper layer thickness is exactly half that of the local water depth. However,
this method is limited to the conversion point estimation. Li et al. [34] and Yang et al. [35] also derived
the upper layer thickness from SAR images under the assumption that the ISW phase speed is close to
the group velocity of ISW packets. Thus, the derived phase speed is an average speed within the whole
tide period instead of the “true” phase speed of ISWs in a certain location, which may lead to large
uncertainties in ISW amplitude estimations. In such cases, the consecutive remote sensing image pairs
within a short time (tandem images) have potential applications in estimating the accurate upper layer
thickness and subsequent amplitudes because ISWs can be observed multiple times in the tandem
images, and therefore, we can derive a more accurate phase speed [36].

Therefore, one can find that although the two-layer model is more practical in retrieving ISW
amplitude from SAR images than the continuously stratified model does, the facing challenge is
the accurate estimation of upper layer thickness. In this study, we proposed a method of deriving
the optimum upper layer thickness based on the accurate estimation of ISW phase speed using a
tandem SAR image pair acquired within a short temporal interval. Consequently, the amplitude of
the ISW is derived. An ISW case repeatedly observed by the Chinese C-and SAR GaoFen-3 (GF-3)
and the German X-band SAR TerraSAR-X (TS-X) with a short temporal interval in shallow water on
southeastern Hainan Island is used to demonstrate the method.

2. Materials and Methods

2.1. Brief Description of the Experiment

An ISW observational experiment was conducted on the southeast of Hainan Island in the
northwestern South China Sea from 10 to 12 June 2017. During the experiment, a GF-3 and a TS-X
image with a short temporal interval of approximately 11 min were acquired, whose spatial coverage
are illuminated in Figure 1. The two SAR data across the shelf break cover most sea regions between
the southeast of Hainan Island and the Xisha Island, and they both clearly present signals of ISWs
which are observed to the west of the shelf break where the water depth is less than −200 m. More
details about the SAR data are given in the next subsection. Two conductivity–temperature–pressure
(CTD) casts of S1 (109.8190◦E, 18.1596◦N) and S2 (109.9268◦E, 18.1167◦N) located near the observed
ISWs were performed during the experiment and their locations are indicated by red dots in Figure 1.
The two casts were used to collect the background stratification (density) profiles of the study area,
which are shown later in the paper.
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Figure 1. Bathymetric map of southeastern Hainan Island and its adjacent area. The synthetic aperture
radar (SAR) image coverages are indicated in the orange dashed line box (GF-3) and the purple box
(TS-X). The two locations S1 and S2 where conductivity–temperature–pressure (CTD) measurements
were taken are marked by red dots.

2.2. Processing of the Spaceborne SAR Data and Extraction of ISW Characteristics

Table 1 lists the technical specifications of the TS-X and GF-3 images acquired in the experiment.
The TS-X SAR image was acquired in the scanSAR mode with a single-polarization of vertical–vertical
(VV). The GF-3 image was acquired in the standard stripmap mode with a dual-polarization of VV
and vertical–horizontal (VH). Portions of the GF-3 (VV polarization) and TS-X image in the same
geographical area are shown in Figure 2a,b, respectively. The manifestations of ISWs patterns are
clearer in the GF-3 image than that in the TS-X image, as the former had better spatial resolution of 8 m.
On the other hand, the incidence angle of the GF-3 sub-image was approximately 15.23–21.70 degrees,
while that of the TS-X sub-image was 42.50–48.72 degrees.

Table 1. Technical specifications of the spaceborne SAR data used in the study.

SAR Acquisition Time
(UTC) and Date Imaging Mode Resolution (m) Incidence Angle (◦) Polarization

TS-X 22:32
10 June 2017 ScanSAR 36 34.59–48.75 VV1

GF-3 22:43
10 June 2017

Standard
stripmap 8 15.23–26.57 VV-VH1

1 V and H are the vertical and horizontal polarization of the SAR signal, respectively. The first letter denotes
polarization of the transmitting signal. The second letter represents polarization of the receiving signal.

Both images were processed by radiometric calibration, speckle filtering, and geolocation correction.
In the two images, one can clearly observe three ISW packets distributed southeast of Hainan Island.
The spatial-temporally collocated ERA5 reanalysis wind model suggests that the sea surface wind
speed was no more than 5 m/s at the acquisition time of the SAR data, which favors a higher probability
for observing these ISWs on SAR images during summer [17]. These observed ISWs in Figure 2 are
interpreted as mode-1 depression ISWs because their SAR signatures appear as bright-dark stripes.
The convex curvatures imply that these ISWs were propagating northwestwards onto the Hainan shelf.
The most prominent packet in these observed ISWs is labeled P1 in Figure 2a. A transect (AA’, the
red dashed line in Figure 2a) parallel to the wave propagation direction was selected to analyze the
variation in the normalized radar cross-section (NRCS) of the ISWs. To suppress the noise, the NRCS
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along AA’ was averaged in the direction perpendicular to the wave propagation direction, and then,
the averaged NRCS was smoothed by a moving average filter and plotted in Figure 3. The horizontal
distribution curve of pixel backscattering intensity values (averaged and smoothed NRCS) clearly
reveals the leading three distinct solitons of packet P1. In this paper, we chose the first leading soliton,
which is named L1, to derive the amplitude. From Figure 3, we obtain the wavelength of soliton L1 as
approximately 440 m, which is defined as the distance between the crest of L1 and its following soliton.
The local nautical chart shows that the water depth near L1 was approximately −74 m. Therefore, the
wavelength of L1 in this case was greater than the water depth, which suggests that the ISW satisfies
the shallow water internal wave criteria.
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Figure 2. A portion of (a) the GF-3 SAR image acquired at 22:43 UTC on 10 June 2017 and (b) a TS-X
image acquired at 22:32 UTC on 10 June 2017. The yellow arrows superimposed on the GF-3 sub-image
show the ERA5 reanalysis sea surface wind vectors (hourly available at 0.25 degree grids) at 23:00 UTC
on 10 June 2017.
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2.3. CTD Data and WOA13 V2 Data

The mean water density profiles shown in Figure 4a were sampled by the CTD casts of S1 and
S2 on 12 June 2017. The soliton L1 was located approximately 6 km from the both CTD casts and
was observed on SAR images about two days before the CTD casts. Thus, the in situ water density
profile in Figure 4a is treated as a mean stratification profile of the ocean background for the time
in which the ISW case took place in the study. Figure 4b presents the corresponding background
buoyancy frequency profile. A pycnocline is the cline or layer where the vertical water density changes
dramatically. Thus, as shown in Figure 4, the study area features a strong and thick seasonal pycnocline
located approximately between −9 m and −33 m. The thickness of the seasonal pycnocline accounts
for approximately 32% of the total water depth, making the determination of the upper layer thickness
in a two-layer model rather ambiguous and difficult.
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The stratification profile is needed to be determined as an input to the proposed ISW amplitude
estimation method. The conventional approach to underline the density stratification is to use in situ
or climatological data. So apart from the in situ CTD data, we also used the background stratification
profile from the monthly objectively analyzed mean climatological dataset of WOA13 V2 as an input to
the proposed method, in order to examine the practicability of the proposed method in cases where in
situ CTD measurements were not available. The WOA13 V2 dataset has a horizontal grid resolution of
0.25◦ and a 5 m depth vertical interval for water depths of less than 100 m. In this dataset, the point of
(109.875◦E, 18.125◦N) is the nearest grid point to the location of soliton L1. Therefore, the temperature
and salinity information from WOA13 V2 at this point in June was chosen to analyze the background
stratification. The temperature and salinity profiles were interpolated to 1 m depth intervals and then
substituted into the Thermodynamic Equation of Sea Water 2010 (TEOS-10) to calculate the density
profile and its corresponding background buoyancy frequency profile, which are shown in Figure 5a,b,
respectively. The profiles in Figure 5b are similar to the in situ measurements shown in Figure 4b,
and it also shows a strong and thick seasonal pycnocline, which is located approximately between
−12 m and −47 m. The buoyancy frequency value from the WOA13 V2 dataset shown in Figure 5b
is about 0.15 s−1 smaller than that of our in situ measurements. The difference between WOA13 V2
climatological data and in situ measurements may be due to the impacts of weekly synoptic weather
events and seasonally/yearly climate signals on the water column condition in shallow water regions.
Given the free availability of WOA13 V2 data and the similarity between the WOA13 V2 and the in
situ measured buoyancy frequency profile, we also applied the proposed method to derive amplitude
by using the WOA13 V2 data in the study area, which is then compared with the derived amplitude by
using the in situ stratification data.
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2.4. The Conventional Method of ISW Amplitude Estimation Based on the Classic KdV Equation in a
Continuously Stratified Ocean Model

The conventional ISW amplitude estimation method applying the classic KdV equation in a
continuously stratified ocean was developed by Small et al. [18]. Here, we briefly describe the method.
The following Equations (1)–(7) are from Reference [18] and are presented here for understanding
the method.

The propagation of an ISW along the x-direction is described by the KdV equation:

∂η

∂t
+ c0

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3 = 0 (1)

where η(x, t) is the maximum vertical displacement of isopycnal surfaces, x is the spatial variable in
the direction of wave propagation, t is the time, c0 is the linear wave speed of ISWs, and α and β are
the quadratic non-linear and dispersion parameters, respectively. For a continuously stratified system,
these parameters are obtained as follows:

α =
3
2

c0

∫ 0
−H (

dφ
dz )

3
dz∫ 0

−H (
dφ
dz )

2
dz

(2)

β =
c0

2

∫ 0
−H φ

2dz∫ 0
−H (

dφ
dz )

2
dz

(3)

where H is the water depth, φ(z) is the vertical structure function for the first mode, which is normalized
by its maximum absolute value. φ(z) and c0 can be obtained by solving the following Sturm–Liouville
equation for a Boussinesq fluid in two dimensions and with no current shear or rotation:

d2φ(z)
dz2 +

N2(z)
c2

0

φ(z) = 0 φ(−H) = φ(0) = 0 (4)

where N(z) is the buoyancy frequency, which can be obtained by in situ CTD measurements or
climatological data.

An analytical solution of Equation (1) is as follows:

η(ξ) = η0sech2
(
ξ
l

)
and ξ = x− ct (5)
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where l is the characteristic half width, η0 is the ISW amplitude, and c is the non-linear phase speed.
These parameters are obtained as follows:

η0 =
12β
αl2

(6)

c = c0 +
1
3
η0α (7)

Therefore, if we have the ISW characteristic half width l and the background stratification profile,
the ISW amplitude can be calculated using Equation (6). The background stratification profile can be
obtained from in situ measurements or climatological data. The characteristic half width of ISWs can
be derived by the curve fitting method proposed in Reference [20]. However, since the expression
for ISW signature on SAR images used in the curve fitting method of Reference [20] is based on a
two-layer theory, we need to deduce the expression for ISW signature on SAR images in a continuously
stratified ocean.

For a given radar wave number k0 and incidence angle θ, the NRCS (denoted σ0) depends on the
surface capillary-gravity wave spectrum density [37]. Under the equilibrium and steady condition, the
variations of surface capillary-gravity wave spectra density are mainly modulated by three terms: wind
input, viscosity dissipation, and ISW-induced current [19,20]. On the horizontal scale of an internal
wave packet, the first two terms of wind input and viscosity dissipation are uniform, and thereafter
only contribute to the background of an internal wave SAR image. Thus, the modulation effects caused
by the internal waves on σ0 are what we focus on in this study. Following the ideas presented in
Reference [19], the theoretical expression for the soliton-induced radar backscatter cross-section per
unit area (σISW

0 ) is given in Equation (8).

σISW
0 = 8πk4

0m−1
3

∣∣∣gi j(θ)
∣∣∣2cosχk−4

swω
−1

(
−
∂(u|z = 0 )

∂x

)
(8)

where θ and k0 represent the incidence angle and wave number of radar waves, respectively,
ksw = 2k0sinθ indicates the wave numbers of the resonant surface Bragg waves, χ represents the
SAR beam looking angle relative to the wave direction, ω is the angular frequency of the resonant
surface Bragg waves, and m3 is the non-dimensional constant. The indices i and j denote the
polarizations of the incident and backscattered microwaves, respectively, and gi j(θ) represents the
first-order scattering coefficients. u is the ISW-induced horizontal velocity, which can be obtained
as follows:

u = c0η(ξ)
dφ
dz

(9)

Substituting Equation (5) into Equation (9) and then substituting the result into Equation (8), we
have the following equation:

σISW
0 = Msech2

(
ξ
l

)
tanh

(
ξ
l

)
(10)

where M = 16
πk4

0
ωlm3

∣∣∣gi j(θ)
∣∣∣2cosχk−4

swc0η0

(
dφ
dz |z = 0

)
.

By taking a normal transect through an ISW pattern on the SAR image as the transect AA’ shown
in Figure 2a, we can obtain a horizontal distribution curve of pixel backscattering intensity value I.
Fitting the curve to Equation (10), we know that I can be expressed in the following form:

I(ξ) = A sech2
(
ξ− B

l

)
tanh

(
ξ− B

l

)
+ C (11)

where A, B, and C are the fitting parameters.
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From Equation (11), we can see that the pixel values of ISWs on the SAR image are relevant
to the four parameters (A, B, l, and C). These parameters are determined by the best fitting curve
to the pixel values along a transect across an ISW on the SAR image by Equation (11). Having the
ISW characteristic half width l and the background stratification profile, one can calculate the ISW
amplitude using Equation (6).

2.5. The Proposed Method of ISW Amplitude Estimation Based on the eKdV Equation in a Two-Layer
Ocean Model

As mentioned in the Introduction, a simplified two-layer oceanic model is more practical than
a continuously stratified model for estimating the ISW amplitude. Thus, the proposed method was
applied to a two-layer ocean and employs the eKdV equation because the eKdV equation is a good
indicator of the ISW amplitude estimation in the two-layer shallow water [21].

The eKdV equation is written as follows [38,39]:

∂η

∂t
+ c0

∂η

∂x
+ αη

∂η

∂x
+ α1η

2 ∂η

∂x
+ β

∂3η

∂x3 = 0 (12)

where α1 is the cubic non-linearity parameter.
For a two-layer system with a rigid lid and no background flow, in the Boussinesq approximation,

the following Equations (13)–(16) can be obtained:

c0 =

(
g∆ρh1h2

ρ0(h1 + h2)

) 1
2

(13)

α =
3
2

c0
h1 − h2

h1h2
(14)

β =
c0

6
h1h2 (15)

α1 =
3c0

(h1h2)
2

(
7
8
(h1 − h2)

2
−

(
h1

3 + h2
3

h1 + h2

))
(16)

where h1 is the upper layer thickness and h2 is the lower layer thickness. For depression wave, h1 < h2.
∆ρ/ρ0 = 2(ρ2 − ρ1)/(ρ2 + ρ1) is the relative layer density difference, where ρ1(ρ2) is the uniform
density of the upper (lower) layer, which is defined as follows [14]:

ρ1 =

∫ h1
0 ρ(z)dz

h1
(17)

ρ2 =

∫ h2+h1
h1

ρ(z)dz

h2
(18)

here, ρ(z) is the background density profile.
From Equation (14), we know that α has a negative sign if considering the case in which the

wave amplitude η0 < 0 (depression wave). According to Equation (15), the dispersion parameter β
is positive. As the term inside the square bracket of Equation (16) can be equally transformed into(
−h1

3
− 7h1

2h2 − 7h1h2
2
− h2

3
)
/8(h1 + h2), α1 is negative.

One of the ISW solutions to the eKdV equation is as follows:

η(ξ) =
η0

b + (1− b)cosh2(γξ)
and ξ = x− ct (19)
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where
c = c0 +

1
3
η0

(
α+

1
2
α1η0

)
(20)

γ2 =
η0

(
α+ 1

2α1η0
)

12β
(21)

b =
−η0α1

2α+ α1η0
(22)

here, b is a parameter that satisfies b < 1. When b > 1, solution (19) would contain meaningless points
of discontinuity, which make the denominator of solution (19) equal to 0. As the upper limit (b→ 1) is
approached, the waves begin to broaden until a limiting table-topped wave amplitude is reached.

To obtain the eKdV type σISW
0 , we substitute solution (19) into Equation (9) and then substitute

the result into Equation (8). Therefore, σISW
0 is written as follows:

σISW
0 = Q

sinh(γξ)cosh(γξ)

(b + (1− b)cosh2(γξ))2 (23)

here, Q =
16πk4

0
ωm3

∣∣∣gi j(θ)
∣∣∣2cosχk−4

swc0η0 γ(1− b)
(

dφ
dz |z = 0

)
.

Similar to Equation (11), Equation (23) is modified into the following form:

I(ξ) =
Asinh(γ(ξ− B))cosh(γ(ξ− B))

(b + (1− b)cosh2[γ(ξ− B)])2 + C (24)

where I still represents the SAR image pixel backscattering intensity value, and A, B, and C are, again,
the fitting parameters of I to Equation (24).

From Equation (24), the pixel backscattering intensity value I is found to be related to the five
parameters A, B, b, γ, and C. Figure 6 shows an illustrated plot of I versus ξ for setting A = −1, B = 0,
C = 0, γ = 1, and b = 0.5. In the I − ξ plot, there is one maximum point (ξmax, Imax) and one minimum
point (ξmin,Imin), marked by red dots. According to Equation (24), we obtain that ξmax and ξmin are
as follows:

ξmax =
1
γ

arcosh

√
(b− 3) −

√
9b2 − 14b + 9

4(b− 1)
+ B (25)

ξmin =
−1
γ

arcosh

√
(b− 3) −

√
9b2 − 14b + 9

4(b− 1)
+ B (26)

Therefore, ξmax and ξmin satisfy the following equation:

ξmax + ξmin
2

= B (27)

Imax and Imin are obtained as follows:

Imax = |A|

√
(b−3)−

√

9b2−14b+9
4(b−1) ·

√
(b−3)−

√

9b2−14b+9
4(b−1) − 1

[b + (1− b)· (b−3)−
√

9b2−14b+9
4(b−1) ]

2 + C (28)

Imin = −|A|

√
(b−3)−

√

9b2−14b+9
4(b−1) ·

√
(b−3)−

√

9b2−14b+9
4(b−1) − 1

[b + (1− b)· (b−3)−
√

9b2−14b+9
4(b−1) ]

2 + C (29)
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From Equations (28) and (29), we obtain the following equation:

Imax + Imin
2

= C (30)

Based on Equations (27) and (30), parameters B and C can be directly obtained after locating the
maximum and minimum points in the pixel backscattering intensity profile of an ISW on the SAR
image. From Equations (20)–(22), (28), and (29), the other three parameters γ, b, and A are obtained:

γ2 =
(c− c0)

4β
(31)

b =
−η0

2α1

6(c− c0)
with η0 =

−α−
√
α2 + 6α1(c− c0)

α1
(32)

|A| =
1
2

(Imax − Imin)·[b + (1− b)· (b−3)−
√

9b2−14b+9
4(b−1) ]

2

√
(b−3)−

√

9b2−14b+9
4(b−1) ·

√
(b−3)−

√

9b2−14b+9
4(b−1) − 1

(33)

According to Equation (32), the amplitude η0 is dependent on the upper layer thickness h1, total
water depth H, background density profile ρ(z), and phase speed c. In this study, the water depth
was determined from a local nautical chart, the background density profile was taken from in situ
measurements or WOA13 dataset, the phase speed was determined by using two consecutive remote
sensing images, and the upper layer thickness was found by a best fitting curve of the pixel values
of an ISW using Equation (24). Finally, the amplitude was obtained in terms of Equation (32).
Actually, the idea behind using consecutive remote sensing image pairs to find accurate upper layer
thickness and estimating consequent ISW amplitude is similar to that of Reference [16] in which
Doppler velocities from along-track InSAR data were considered to find a plausible upper layer
thickness and internal soliton amplitude within their expected ranges. Moreover, a point that must
be addressed is that another wave amplitude solution η0 =

(
−α+

√
α2 + 6α1(c− c0)

)
/α1 can also be

acquired by solving Equation (20), which is not considered here because in this case, the parameter
b =

(
α−

√
α2 + 6α1(c− c0)

)
/
(
α+

√
α2 + 6α1(c− c0)

)
was greater than 1 for α1 < 0 and α < 0.
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Figure 6. An example plot of the eKdV solitary wave in SAR images for A = −1, B = 0, C = 0, γ = 1,
and b = 0.5.
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3. Results and Analysis

This section presents the results of the ISW amplitude estimation in the Hainan case obtained
using the two methods described above.

3.1. The Derived ISW Amplitude Using the Conventional Method

Figure 7 shows the best fitting curve between the pixel backscattering intensity value of the soliton
L1 observed on the GF-3 SAR image and the theoretical model result given in Equation (11). The pixel
backscattering intensity values of the soliton L1 observed on the SAR images (the red points in Figure 7)
are written as I01, I02, I03, I04, . . . . . . I0n, respectively. The optimal fitting coefficients (Am, Bm, lm, Cm)

obtained by the curve fitting among the observation values (I0i, i = 1, 2, 3, . . . . . . n) and the theoretical
model (11) are −10.75, 1.35, 144.93 m, and −11.66, respectively. Here, the curve fitting method rather
than the Cramér–Rao Bound method [31] was applied for estimating the characteristic half width.
It is because the amplitude of the ISW backscattering intensity defined in Reference [31] was small
(about 0.85) in our case, from which we could deduce that the curve fitting and Cramér–Rao Bound
methods may have little difference in the characteristic half width estimation (refer to Figure 4b in
Reference [31]). Thus, the curve fitting method was adopted here for its relative simplicity. Determined
by the background density profile shown in Figure 4, the quadratic parameter α and dispersion
parameter β were −0.0158 and 157.06, respectively. Therefore, the amplitude of the soliton L1 using
this conventional method was estimated to be −5.66 m.
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Figure 7. Curve fittings of the theoretical model (Equation (11)) (the black line) to the pixel observation
intensity value (red point) of the soliton L1 along transect AA’ in Figure 2a.

Small et al. [18] concluded that the conventional method of using the ISW characteristic half width
estimated from SAR images to derive soliton amplitudes can provide basic estimates of amplitude, but
the results contain some uncertainties and may be affected by some factors, such as the characteristic
half width, water depth, and background stratification. Therefore, this estimation of −5.66 m cannot be
directly treated as a real value for comparison with the amplitude derived using the proposed method.
To clarify the reliability of this amplitude estimation, we conducted the following uncertainty analysis.
Here, the analysis method was similar to that adopted in Reference [19].

The theoretical model (11) in the case of the optimal curve fitting estimation can be rewritten
as follows:

Im(ξ) = Amsech2
(
ξ− Bm

lm

)
tanh

(
ξ− Bm

lm

)
+ Cm (34)
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The total root mean square (RMS) deviation Dev of the pixel backscattering intensity values
between the observations on SAR images and theoretical model (34) is as follows:

Dev =

√√
1
n

n∑
i=1

[Ioi − Im(Am, Bm, lm, Cm, ξi)]
2 (35)

From model (34), we know that the Dev of pixel backscattering intensity values is caused by the
uncertainties in the four parameters Am, Bm, lm, and Cm. Thus, the Dev can also be written as follows:

Dev =

∣∣∣∣∣∂Im

∂l

∣∣∣∣∣|∆lm|+
∣∣∣∣∣∂Im

∂A

∣∣∣∣∣|∆Am|+

∣∣∣∣∣∂Im

∂B

∣∣∣∣∣|∆Bm|+

∣∣∣∣∣∂Im

∂C

∣∣∣∣∣|∆Cm| (36)

where ∆lm is the uncertainty in lm and

∣∣∣∣∣∂Im

∂l

∣∣∣∣∣ =
√√

1
n

n∑
i=1

(
∂I
∂l

)2

(Am,Bm,lm,Cm,ξi)
(37)

As the amplitude η0 is a function of α, β, and l (refer to Equation (6)), and α and β, which are derived
from the field observation profile, are close to the real value, the uncertainty in the amplitude estimation
(∆η0m) is caused by only ∆lm and can be written as follows:

∆η0m =

∣∣∣∣∣∂η0

∂l (α,β,lm)

∣∣∣∣∣|∆lm| (38)

According to Equation (38), ∆η0m is directly proportional to ∆lm. To give a maximum estimation

of the uncertainty in the amplitude retrieval, we assume that Dev =
∣∣∣∣∂Im
∂l

∣∣∣∣|∆lm| by neglecting the
contributions of the three parameters Am, Bm, and Cm to Dev in Equation (36). Therefore, the
uncertainty in parameter lm can be derived by the following equation:

∆lm =
Dev∣∣∣∣∂Im
∂l

∣∣∣∣ (39)

Substituting the optimal curve fitting parameters Am, Bm, lm, and Cm into Equations (35) and
(37)–(39), respectively, we obtain Dev, ∆lm, and ∆η0m as 0.32, 15.87 m, and 1.24 m, respectively. Thus,
the amplitude of the soliton L1 should be −5.66 m with an uncertainty of ± 1.24 m.

3.2. The Derived ISW Amplitude Using the Proposed Method

From the profile of the pixel backscattering intensity value of the soliton L1 (Figure 7), we
can derive the maximum point (ξmax, Imax) and minimum point (ξmin,Imin) located at approximately
(1.26, −7.50) and (1.44, −15.62), respectively. Thus, B and C are estimated to be 1.35 and −11.56,
respectively. As the internal soliton usually features a wide stripe on SAR images, we define the
point where the positive peak of the ISW signature is on the SAR image as its location. Therefore, the
propagation distance of an ISW within a short time is defined as the distance between two positive
peaks, whose geographic locations can be determined from SAR images with the help of Sentinel
Toolbox software (http://step.esa.int/main/download/). In the present study, the propagation distance
of the soliton L1 determined from the two consecutive GF-3 and TS-X SAR images within 11 min was
435.6 m (thus, the phase speed was approximately 0.66 m/s). From the background density profiles
shown in Figure 4, it is difficult to exactly determine the upper layer thickness, which seems to be in a
large range of 9 m to 33 m. Using a simple iterative approximation scheme, the optimal upper layer
thickness of 23 m was eventually determined by making the best fitting curve between Equation (24)
and the SAR image pixel values along the transect AA’ of the soliton L1. Figure 8 shows the best fitting
curve between the pixel backscattering intensity value of the soliton L1 observed on the GF-3 SAR

http://step.esa.int/main/download/
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image and the theoretical model given in Equation (24). Therefore, the amplitude of soliton L1 was
subsequently calculated to be approximately −4.52 m, which agrees with the amplitude estimation
of −5.66 ± 1.24 m derived by the conventional KdV equation in a continuously stratified ocean.

A great challenge of using SAR images to retrieve the ISW amplitude is the need for synchronous
in situ background stratification data. Here, we showed that our method could partially overcome
this challenge using the climatological data WOA13 V2. The density profile (Figure 5) obtained from
the WOA13 V2 climatological datasets was used to derive the amplitude of soliton L1 in the Hainan
case. Our method yields an amplitude of −7.35 m, which is comparable to the reference value of
−5.66 ± 1.24 m. However, if the density profile of WOA13 V2 was used for the conventional method
based on the KdV equation in a continuously stratified ocean, the estimated amplitude would be
−16.30 m, which is almost three times the reference value. Clearly, the proposed method yields more
credible results than the conventional method in the case where in situ measurements are unavailable.
This result may be because the 5 m depth vertical interval of the background stratification profile from
the WOA13 V2 dataset is relatively coarse for the amplitude estimation in shallow water using the
conventional method. In contrast, the coarse oceanic density profile obtained from the WOA13 V2
dataset has fewer effects on the amplitude estimation using the proposed method, which suggests that
the proposed method using consecutive SAR images and the eKdV equation in a two-layer ocean is a
reliable way to estimate the ISW amplitude independent of in situ oceanic density profile measurements.
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4. Discussion

Determining the upper layer thickness is a crucial step in estimating ISW amplitude from SAR
images. In some reported cases, the sea water features a thin and strongly stratified pycnocline,
sandwiched between two homogeneous layers, and therefore the upper layer thickness can be
accurately estimated. Two common approaches have been proposed to determine the upper layer
thickness from the background density profile. One approach is the eigenfunction method, which
defines that the depth where the first mode eigenfunction has its maximum is the upper layer thickness.
The other one is the Nmax method, which determines the depth of the maximum buoyancy frequency
as the upper layer thickness. If the eigenfunction method is applied to the Hainan case, based on the
two-layer eKdV theory, the upper layer thickness and amplitude of the soliton L1 are estimated to be
approximately 29 m and −5.37 m, respectively. If the Nmax method is applied, the upper layer thickness
is approximately 13 m, and the amplitude of the soliton L1 is approximately −12.01 m. Therefore,
one can find that the uncertainties of upper layer thickness estimation can lead to large discrepancy
of amplitude estimation. The stratification profile in the Hainan case suggests that the uncertainties
of upper layer thickness estimation arises from the typical stratification of a thick pycnocline, which
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makes the determination of the upper layer thickness in a two-layer model rather ambiguous and
difficult. Our proposed method solves this problem by using tandem SAR images to determine the
accurate ISW phase speed, which then is used to estimate the optimum upper layer thickness and the
consequent ISW amplitude.

While a case study shows the effectiveness of the proposed method, there are some aspects needed
to be discussed.

The key to the proposed method is to seek two consecutive images to estimate the accurate phase
speed. As the derived ISW phase speed in the proposed method is used to fit the theoretical model of
radar backscatter intensity to the SAR observation for determining the optimum upper layer thickness,
the image pair applied in the proposed method should include at least one SAR image. In this study,
we use two consecutive SAR images (tandem SAR images) to drive the method. A development trend
of modern spaceborne SAR is constellation configurations, such as Cosmo-SkyMed, TerraSAR-X and
its twin Tandem-X, and the recently launched Radarsat constellation mission; therefore, acquisitions
of tandem SAR images become increasingly feasible. In addition to the combination of tandem SAR
images, a combination of SAR image and an optical image is also feasible to construct consecutive
image pairs to apply the proposed method, which shall be tested in our further work. However, for
constructing a consecutive image pair used for the proposed method, two aspects remain further
studies. One is the geolocation accuracy of the two consecutive images. The geolocation accuracy
directly determines the retrieval accuracy of the phase speed and the consequent amplitude. The other
aspect is the temporal interval between the two consecutive images. The appropriate temporal interval
for estimation of phase speed of ISWs should depend on the propagation and evolution characteristics
of ISWs. In principle, the larger the variation of the ISW phase speed between two observations is, the
shorter the temporal interval between two remote sensing images should be.

There is not yet a method for calculating the exact equivalent two-layer ocean model of a
continuously stratified ocean [33]. A reasonable approach to judge whether a two-layer fluid model is
or not a good representation of the actual continuous density profile is to compare the coefficients of
the KdV-type equation (including the linear wave speed c0, quadratic non-linear parameter α, cubic
parameter α1 and dispersion parameter β). In this study, the derived four coefficients of c0, α, α1, and β
in the two-layer eKdV equation using the derived optimum upper layer thickness of 23 m are 0.63,
−0.0226, −0.0018, and 123.54, respectively, which agree with the four coefficients estimated based on
the continuous stratified eKdV equation [40] without considering current shear or rotation with values
of 0.60, −0.0158, −0.0003, and 157.06, respectively. This should be the reason why the ISW amplitude
derived by the conventional method and the proposed method is close to each other in the Hainan case.

5. Summary and Conclusions

Amplitude is one of the most important parameters of ISWs, while the retrieval of their amplitudes
from satellite remote sensing images, which generally reflects sea surface variations, remains difficult,
although observations of ISWs from space have been available for a few decades. Combining satellite
remote sensing images, e.g., SAR images, and the KdV equation for application in a continuous
stratification can generally yield reasonable ISW amplitude estimations. However, this method requires
simultaneous in situ measurements of background stratification (density) profiles, which are often not
available. To overcome this difficulty, the simplified two-layer ocean model was introduced, which
improves the practicability of deriving ISW amplitudes from SAR images. However, uncertainties in
estimating upper layer thickness in the two-layer ocean may lead to large discrepancies in amplitude
estimations. The Hainan case shown in this study is a typical one with such an existing such problem,
where the thick pycnocline relative to water depth makes it difficult to determine the upper layer
thickness from the oceanic density profile. Therefore, we proposed a new method to solve this problem
in the retrieval of ISW amplitudes from SAR images.

In the proposed method, we firstly developed a theoretical model describing the radar backscatter
cross-section of ISWs based on the eKdV theory in a two-layer ocean. By fitting the theoretical model
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estimation of radar backscatter to the SAR observations, we exploited consecutive SAR images to
determine the optimum upper layer thickness for amplitude estimation. The retrieved ISW amplitude
in the Hainan case agrees well with the result estimated by the classic KdV equation in the measured
stratification. A key parameter needed in this method is the ISW phase speed. Different from the
previous methods (assuming phase speed is equivalent to the group velocity), our estimation of phase
speed was based on two consecutive SAR images acquired with a short temporal interval on a scale
of dozens of minutes, which ensures derivation of an instantaneous phase speed and further leads
to accurate estimations of ISW amplitudes. Besides, using the representative climatological dataset
of WOA13 V2 instead of in situ measurements can also yield a more reasonable estimation of ISW
amplitudes than the results using the conventional method based on the KdV theory in a continuously
stratified ocean in this shallow water case. This result suggests that the proposed method can provide
basic yet reliable information on ISW amplitudes even when in situ measurements are absent.

In conclusion, the present study demonstrates a method of retrieving ISW amplitude from SAR
images, which are characterized by a consecutive image pair within a short time interval. Since the
method has a potential capability to get reliable amplitude estimations when the in situ measurements
are absent, it could have a wide and attractive application in retrieving ISW amplitude under the trend
that modern spaceborne SAR tends to be in constellation configurations.
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