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Abstract: The accurate estimation of the upper layer thickness in a two-layer ocean is a crucial step 
in the retrieval of internal solitary wave (ISW) amplitude from synthetic aperture radar (SAR) data. 
In this paper, we present a method to derive the upper layer thickness and the consequent ISW 
amplitude by combining two consecutive SAR images with the extended Korteweg-de Vries (eKdV) 
equation. An ISW case observed twice by the Chinese C-band SAR GaoFen-3 (GF-3) and the German 
X-band SAR TerraSAR-X (TS-X) with a temporal interval of approximately 11 minutes in shallow 
water to the southeast of Hainan Island in the northwestern South China Sea was used to 
demonstrate the applicability of the method. Using the in situ measurements of temperature and 
salinity near the observed ISW, the proposed method yielded an ISW amplitude of −4.52 m, in close 
proximity to −5.66 ± 1.24 m derived by applying the classic Korteweg–de Vries (KdV) equation 
based on the continuously stratified theory. Moreover, the climatological dataset of the World 
Ocean Atlas 2013 (WOA13) was also used with the proposed method in the Hainan case, and the 
results showed that the method can still provide a reasonable estimate of ISW amplitude in shallow 
water even when in situ oceanic stratification measurements are absent. The application of our 
method to derive the ISW amplitude from consecutive SAR images seems highly promising with 
the increasing emergence of tandem satellites in orbits. 

Keywords: internal solitary waves (ISWs); amplitude retrieval; extended Korteweg-de Vries (eKdV) 
equation; synthetic aperture radar (SAR) 

 

1. Introduction 

Internal solitary waves (ISWs) are a class of high-frequency, non-linear, and non-hydrostatic 
gravity waves that are widely observed in the coastal oceans and marginal seas [1–4]. Internal solitary 
waves can enhance ocean mixing and are an important link in energy dissipation from the barotropic 
tide [5,6]. Additionally, ISWs can have a profound effect on offshore drilling operations [7], nutrients, 
pollutants, and sediments transport [8], acoustic propagation [9], and nearshore ecosystems [10]. For 
these reasons, the generation, propagation, steepening, and dissipation of ISWs have received much 
research attention for several decades. 

Spaceborne synthetic aperture radar (SAR) is a powerful remote sensing instrument for 
observing ISWs [11]. Internal solitary waves can induce variations in surface currents and locally 
modulate the distribution and intensity of Bragg waves, which renders the ISWs visible on SAR 
images as alternating bright and dark stripes [12]. Spaceborne SAR data have been widely applied to 
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determine the properties of ISWs, such as the characteristic half width, crest length, number of waves, 
propagation direction, wave speed, and wave amplitude [13–16]. 

The ISW amplitude refers to the maximum displacement of isopycnals departing from their 
equilibrium positions [17]. Knowing the variation in ISW amplitudes is important for understanding 
ISW evolution and dissipation processes. Field measurements, such as temperature chains, can 
accurately derive ISW amplitudes. However, the ISW amplitudes change significantly during 
progression due to the variations in stratification and bathymetry. Field measurements cannot well 
capture such variabilities. Therefore, we expect to derive ISW amplitudes from spaceborne remote 
sensing data, e.g., SAR data, because SAR has a large swath imaging capability that is independent 
of daylight, cloud coverage, and weather conditions. 

To date, several types of methods have been proposed to extract ISW amplitudes from SAR 
intensity images and most of these methods use an internal wave evolution equation with a 
continuously stratified fluid model [17–19] or a two-layer fluid model [20–22]. Although the 
amplitude estimation from SAR images by adopting a continuously stratified fluid model has the 
potential to be more accurate than the estimations with a two-layer ocean model, this method has the 
crucial need for simultaneous or nearly simultaneous SAR and field observations, and thus, the 
method is difficult to use in practical applications. Therefore, the simplified two-layer model, which 
assumes that the ocean has an upper layer thickness of ℎ  and a lower layer thickness of ℎ , is more 
often used as an approximation to estimate wave properties when studying long first mode internal 
waves. The amplitude estimation based on a two-layer model from SAR intensity data [20–22] 
generally follows a few steps: (1) an appropriate equation is selected to describe the wave evolution; 
(2) the ISW solution to the wave evolution equation is used to establish the relationship between the 
ISW amplitude and the observed ISW signal by SAR; (3) the ISW signal information is extracted from 
the SAR data; (4) the upper layer thickness, total water depth, and density difference ∆𝜌 between 
the two layers are determined; (5) the environmental parameters are calculated by ℎ , ℎ , and ∆𝜌; 
and (6) the ISW amplitude is determined based on the relationship established in the second step. 
Thus, given that the background stratification information and total water depth are known, the 
appropriate internal wave evolution equation, SAR-derived ISW information, and upper layer 
thickness are crucial for the amplitude estimation. 

In an internal wave study, there are three types of weakly non-linear models that simulate the 
propagation characteristics of internal waves under various circumstances: the Korteweg-de Vries 
(KdV) equation in shallow water [23,24], the Joseph–Kubota equation in finite-depth water [25,26], 
and the Benjamin–Ono equation in deep water [27,28]. One key factor that justifies an appropriate 
model is the ratio of the horizontal scale of internal waves to the water depth. As we will show later, 
the wavelength in our case is greater than the local water depth. Therefore, we consider the observed 
ISWs in this paper to be shallow water non-linear internal waves. For the amplitude estimation of 
ISWs in a two-layer shallow water system, Xue et al. [21] suggested that the extended Korteweg-de 
Vries (eKdV) equation, which includes a higher-order non-linear term, can obtain more reasonable 
amplitude results from SAR images than the classic KdV equation. 

The distance among the two adjacent peaks of internal wave patterns on SAR images (peak–
peak distance) or the characteristic half width of internal waves is usually used to establish 
relationships with the internal wave amplitude. While the peak–peak distance can be determined by 
measuring the locations of positive peaks and negative peaks on the curve of the internal wave 
backscattering intensity profile, the characteristic half width is usually derived from SAR images by 
a few methods, e.g., the curve fitting method [20], wavelet transform method [29], empirical mode 
decomposition (EMD) method [30], and Cramér–Rao Bound method [31]. Among these methods, the 
curve fitting and Cramér–Rao Bound methods are more applicable for the information extraction of 
a single ISW (internal soliton) and may show little difference for the ISW with small amplitude of the 
SAR backscattering intensity [31]. 

The accurate estimation of upper layer thickness is crucial in determining the ISW amplitude 
using a two-layer water fluid model because the retrieved amplitude is sensitive to the upper layer 
thickness [21,22]. Although a variety of methods have been proposed to estimate the upper layer 
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thickness, such as the maximum buoyancy frequency ( 𝑁 ) method, eigenfunction method, 
empirical orthogonal function (EOF) method, KdV method, Benjamin-Ono (BO) method, KdV-I 
method, and the KdV-II method; the estimations using these methods may have large discrepancies 
[32] and these methods based on in situ measurements are costly and can provide only point 
estimations. Therefore, some studies have attempted to infer upper layer thickness from SAR images 
as they can provide a wide view of ISW evolution with high spatial resolutions around tens of meters. 
For example, Zhao et al. [33] proposed that the upper layer thickness can be calculated by 
determining the polarity conversion point of the observed ISWs in SAR images, where the depression 
ISWs are converted into elevation ISWs and the upper layer thickness is exactly half that of the local 
water depth. However, this method is limited to the conversion point estimation. Li et al. [34] and 
Yang et al. [35] also derived the upper layer thickness from SAR images under the assumption that 
the ISW phase speed is close to the group velocity of ISW packets. Thus, the derived phase speed is 
an average speed within the whole tide period instead of the “true” phase speed of ISWs in a certain 
location, which may lead to large uncertainties in ISW amplitude estimations. In such cases, the 
consecutive remote sensing image pairs within a short time (tandem images) have potential 
applications in estimating the accurate upper layer thickness and subsequent amplitudes because 
ISWs can be observed multiple times in the tandem images, and therefore, we can derive a more 
accurate phase speed [36]. 

Therefore, one can find that although the two-layer model is more practical in retrieving ISW 
amplitude from SAR images than the continuously stratified model does, the facing challenge is the 
accurate estimation of upper layer thickness. In this study, we proposed a method of deriving the 
optimum upper layer thickness based on the accurate estimation of ISW phase speed using a tandem 
SAR image pair acquired within a short temporal interval. Consequently, the amplitude of the ISW 
is derived. An ISW case repeatedly observed by the Chinese C-and SAR GaoFen-3 (GF-3) and the 
German X-band SAR TerraSAR-X (TS-X) with a short temporal interval in shallow water on 
southeastern Hainan Island is used to demonstrate the method. 

2. Materials and Methods 

2.1. Brief Description of the Experiment 

 
Figure 1. Bathymetric map of southeastern Hainan Island and its adjacent area. The synthetic aperture 
radar (SAR) image coverages are indicated in the orange dashed line box (GF-3) and the purple box 
(TS-X). The two locations S1 and S2 where conductivity–temperature–pressure (CTD) measurements 
were taken are marked by red dots. 
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An ISW observational experiment was conducted on the southeast of Hainan Island in the 
northwestern South China Sea from 10 to 12 June 2017. During the experiment, a GF-3 and a TS-X 
image with a short temporal interval of approximately 11 minutes were acquired, whose spatial 
coverage are illuminated in Figure 1. The two SAR data across the shelf break cover most sea regions 
between the southeast of Hainan Island and the Xisha Island, and they both clearly present signals of 
ISWs which are observed to the west of the shelf break where the water depth is less than -200 m. 
More details about the SAR data are given in the next subsection. Two conductivity–temperature–
pressure (CTD) casts of S1 (109.8190°E, 18.1596° N) and S2 (109.9268° E, 18.1167°N) located near the 
observed ISWs were performed during the experiment and their locations are indicated by red dots 
in Figure 1. The two casts were used to collect the background stratification (density) profiles of the 
study area, which are shown later in the paper. 

2.2. Processing of the Spaceborne SAR Data and Extraction of ISW Characteristics 

Table 1 lists the technical specifications of the TS-X and GF-3 images acquired in the experiment. 
The TS-X SAR image was acquired in the scanSAR mode with a single-polarization of vertical–
vertical (VV). The GF-3 image was acquired in the standard stripmap mode with a dual-polarization 
of VV and vertical–horizontal (VH). Portions of the GF-3 (VV polarization) and TS-X image in the 
same geographical area are shown in Figure 2a and 2b, respectively. The manifestations of ISWs 
patterns are clearer in the GF-3 image than that in the TS-X image, as the former had better spatial 
resolution of 8 m. On the other hand, the incidence angle of the GF-3 sub-image was approximately 
15.23–21.70 degrees, while that of the TS-X sub-image was 42.50–48.72 degrees. 

Table 1. Technical specifications of the spaceborne SAR data used in the study. 

SAR 
Acquisition time 

(UTC) and date 

Imaging 

Mode 

Resolution  

(m) 

Incidence 

Angle (◦) 
Polarization 

TS-X 
22:32  

10 June 2017 
ScanSAR 36 34.59–48.75 VV1 

GF-3 
22:43 

 10 June2017 

Standard 

stripmap 
8 15.23–26.57 VV-VH1 

1 V and H are the vertical and horizontal polarization of the SAR signal, respectively. The first letter denotes 
polarization of the transmitting signal. The second letter represents polarization of the receiving signal. 

 

 
(a) 

 

 
(b) 
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Figure 2. A portion of (a) the GF-3 SAR image acquired at 22:43 UTC on 10 June 2017 and (b) a TS-X 
image acquired at 22:32 UTC on 10 June 2017. The yellow arrows superimposed on the GF-3 sub-
image show the ERA5 reanalysis sea surface wind vectors (hourly available at 0.25 degree grids) at 
23:00 UTC on 10 June 2017. 

Both images were processed by radiometric calibration, speckle filtering, and geolocation 
correction. In the two images, one can clearly observe three ISW packets distributed southeast of 
Hainan Island. The spatial-temporally collocated ERA5 reanalysis wind model suggests that the sea 
surface wind speed was no more than 5 m/s at the acquisition time of the SAR data, which favors a 
higher probability for observing these ISWs on SAR images during summer [17]. These observed 
ISWs in Figure 2 are interpreted as mode-1 depression ISWs because their SAR signatures appear as 
bright-dark stripes. The convex curvatures imply that these ISWs were propagating northwestwards 
onto the Hainan shelf. The most prominent packet in these observed ISWs is labeled 𝑃1 in Figure 
2(a). A transect (AA’, the red dashed line in Figure 2(a)) parallel to the wave propagation direction 
was selected to analyze the variation in the normalized radar cross-section (NRCS) of the ISWs. To 
suppress the noise, the NRCS along AA’ was averaged in the direction perpendicular to the wave 
propagation direction, and then, the averaged NRCS was smoothed by a moving average filter and 
plotted in Figure 3. The horizontal distribution curve of pixel backscattering intensity values 
(averaged and smoothed NRCS) clearly reveals the leading three distinct solitons of packet 𝑃1. In 
this paper, we chose the first leading soliton, which is named 𝐿1, to derive the amplitude. From 
Figure 3, we obtain the wavelength of soliton 𝐿1 as approximately 440 m, which is defined as the 
distance between the crest of 𝐿1 and its following soliton. The local nautical chart shows that the 
water depth near 𝐿1 was approximately -74 m. Therefore, the wavelength of 𝐿1 in this case was 
greater than the water depth, which suggests that the ISW satisfies the shallow water internal wave 
criteria. 

 

 

Figure 3. Variations in the pixel backscattering intensity values (averaged and smoothed NRCS) along 
the transect AA’ corresponding to the red line in Figure 2a. 

2.3. CTD Data and WOA13 V2 Data 

The mean water density profiles shown in Figure 4a were sampled by the CTD casts of S1 and 
S2 on 12 June 2017. The soliton 𝐿1 was located approximately 6 km from the both CTD casts and was 
observed on SAR images about two days before the CTD casts. Thus, the in situ water density profile 
in Figure 4a is treated as a mean stratification profile of the ocean background for the time in which 
the ISW case took place in the study. Figure 4b presents the corresponding background buoyancy 
frequency profile. A pycnocline is the cline or layer where the vertical water density changes 
dramatically. Thus, as shown in Figure 4, the study area features a strong and thick seasonal 
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pycnocline located approximately between −9 m and −33 m. The thickness of the seasonal pycnocline 
accounts for approximately 32% of the total water depth, making the determination of the upper layer 
thickness in a two-layer model rather ambiguous and difficult. 

 

 
(a) 

 

 
(b) 

Figure 4. Mean background oceanic profiles of (a) density and (b) buoyancy frequency from CTD 
casts of S1 (109.8190°E, 18.1596° N) and S2 (109.9268° E, 18.1167°N). 

The stratification profile is needed to be determined as an input to the proposed ISW amplitude 
estimation method. The conventional approach to underline the density stratification is to use in situ 
or climatological data. So apart from the in situ CTD data, we also used the background stratification 
profile from the monthly objectively analyzed mean climatological dataset of WOA13 V2 as an input 
to the proposed method, in order to examine the practicability of the proposed method in cases where 
in situ CTD measurements were not available. The WOA13 V2 dataset has a horizontal grid 
resolution of 0.25° and a 5 m depth vertical interval for water depths of less than 100 m. In this dataset, 
the point of (109.875° E, 18.125° N) is the nearest grid point to the location of soliton 𝐿1. Therefore, 
the temperature and salinity information from WOA13 V2 at this point in June was chosen to analyze 
the background stratification. The temperature and salinity profiles were interpolated to 1 m depth 
intervals and then substituted into the Thermodynamic Equation of Sea Water 2010 (TEOS-10) to 
calculate the density profile and its corresponding background buoyancy frequency profile, which 
are shown in Figure 5a,b, respectively. The profiles in Figure 5b are similar to the in situ 
measurements shown in Figure 4b, and it also shows a strong and thick seasonal pycnocline, which 
is located approximately between −12 m and −47 m. The buoyancy frequency value from the WOA13 
V2 dataset shown in Figure 5b is about 0.15 s−1 smaller than that of our in situ measurements. The 
difference between WOA13 V2 climatological data and in situ measurements may be due to the 
impacts of weekly synoptic weather events and seasonally/yearly climate signals on the water 
column condition in shallow water regions. Given the free availability of WOA13 V2 data and the 
similarity between the WOA13 V2 and the in situ measured buoyancy frequency profile, we also 
applied the proposed method to derive amplitude by using the WOA13 V2 data in the study area, 
which is then compared with the derived amplitude by using the in situ stratification data. 
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(a) 

 
(b) 

Figure 5. Background profiles of (a) density and (b) buoyancy frequency in June obtained from the 
monthly WOA13 V2 dataset. 

2.4. The Conventional Method of ISW Amplitude Estimation Based on the Classic KdV Equation in a 
Continuously Stratified Ocean Model  

The conventional ISW amplitude estimation method applying the classic KdV equation in a 
continuously stratified ocean was developed by Small et al. [18]. Here, we briefly describe the 
method. The following Equations (1)–(7) are from Reference [18] and are presented here for 
understanding the method. 

The propagation of an ISW along the 𝑥-direction is described by the KdV equation: 𝜕𝜂𝜕𝑡 + 𝑐 𝜕𝜂𝜕𝑥 + 𝛼𝜂 𝜕𝜂𝜕𝑥 + 𝛽 𝜕 𝜂𝜕𝑥 = 0 (1) 

where 𝜂(𝑥, 𝑡) is the maximum vertical displacement of isopycnal surfaces, 𝑥 is the spatial variable 
in the direction of wave propagation, 𝑡 is the time, 𝑐  is the linear wave speed of ISWs, and 𝛼 and 𝛽 are the quadratic non-linear and dispersion parameters, respectively. For a continuously stratified 
system, these parameters are obtained as follows: 

    𝛼 = 32 𝑐 (𝑑𝜙𝑑𝑧 ) 𝑑𝑧(𝑑𝜙𝑑𝑧 ) 𝑑𝑧 (2) 

𝛽 = 𝑐2 𝜙 𝑑𝑧(𝑑𝜙𝑑𝑧 ) 𝑑𝑧 (3) 

where 𝐻  is the water depth, 𝜙(𝑧) is the vertical structure function for the first mode, which is 
normalized by its maximum absolute value. 𝜙(𝑧) and 𝑐  can be obtained by solving the following 
Sturm–Liouville equation for a Boussinesq fluid in two dimensions and with no current shear or 
rotation: 𝑑 𝜙(𝑧)𝑑𝑧 + 𝑁 (𝑧)𝑐 𝜙(𝑧) = 0            𝜙(−𝐻) = 𝜙(0) = 0 (4) 

where 𝑁(𝑧) is the buoyancy frequency, which can be obtained by in situ CTD measurements or 
climatological data. 

An analytical solution of Equation (1) is as follows: 𝜂(𝜉) = 𝜂 𝑠𝑒𝑐ℎ 𝜉𝑙  and  𝜉 = 𝑥 − 𝑐𝑡 (5) 

where 𝑙 is the characteristic half width, 𝜂  is the ISW amplitude, and 𝑐 is the non-linear phase 

speed. These parameters are obtained as follows: 
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𝜂 = 12𝛽𝛼𝑙  (6) 

𝑐 = 𝑐 + 13 𝜂 𝛼 (7) 

Therefore, if we have the ISW characteristic half width 𝑙  and the background stratification 
profile, the ISW amplitude can be calculated using Equation (6). The background stratification profile 
can be obtained from in situ measurements or climatological data. The characteristic half width of 
ISWs can be derived by the curve fitting method proposed in Reference [20]. However, since the 
expression for ISW signature on SAR images used in the curve fitting method of Reference [20] is 
based on a two-layer theory, we need to deduce the expression for ISW signature on SAR images in 
a continuously stratified ocean. 

For a given radar wave number 𝑘  and incidence angle 𝜃, the NRCS (denoted 𝜎 ) depends on 
the surface capillary-gravity wave spectrum density [37]. Under the equilibrium and steady 
condition, the variations of surface capillary-gravity wave spectra density are mainly modulated by 
three terms: wind input, viscosity dissipation, and ISW-induced current [19,20]. On the horizontal 
scale of an internal wave packet, the first two terms of wind input and viscosity dissipation are 
uniform, and thereafter only contribute to the background of an internal wave SAR image. Thus, the 
modulation effects caused by the internal waves on 𝜎  are what we focus on in this study. Following 
the ideas presented in Reference [19], the theoretical expression for the soliton-induced radar 
backscatter cross-section per unit area (𝜎 ) is given in Equation (8). 𝜎 = 8𝜋𝑘 𝑚 𝑔 (𝜃) 𝑐𝑜𝑠 𝜒 𝑘 𝜔 − 𝜕(𝑢|𝑧 = 0)𝜕𝑥  (8) 

where 𝜃  and 𝑘  represent the incidence angle and wave number of radar waves, respectively, 𝑘 = 2𝑘 𝑠𝑖𝑛 𝜃 indicates the wave numbers of the resonant surface Bragg waves, 𝜒 represents the 
SAR beam looking angle relative to the wave direction, 𝜔 is the angular frequency of the resonant 
surface Bragg waves, and 𝑚  is the non-dimensional constant. The indices 𝑖  and 𝑗  denote the 
polarizations of the incident and backscattered microwaves, respectively, and 𝑔 (𝜃) represents the 
first-order scattering coefficients. 𝑢 is the ISW-induced horizontal velocity, which can be obtained 
as follows: 𝑢 = 𝑐 𝜂(𝜉) 𝑑𝜙𝑑𝑧  (9) 

Substituting Equation (5) into Equation (9) and then substituting the result into Equation (8), we 
have the following equation: 𝜎 = 𝑀 𝑠𝑒𝑐ℎ 𝜉𝑙 𝑡𝑎𝑛ℎ 𝜉𝑙  (10) 

where 𝑀 = 16 𝑔 (𝜃) 𝑐𝑜𝑠 𝜒 𝑘 𝑐 𝜂 |𝑧 = 0 . 
By taking a normal transect through an ISW pattern on the SAR image as the transect AA’ shown 

in Figure 2a, we can obtain a horizontal distribution curve of pixel backscattering intensity value 𝐼. 
Fitting the curve to Equation (10), we know that 𝐼 can be expressed in the following form: 𝐼(𝜉) = 𝐴 𝑠𝑒𝑐ℎ 𝜉 − 𝐵𝑙 𝑡𝑎𝑛ℎ 𝜉 − 𝐵𝑙 + 𝐶 (11) 

where 𝐴, 𝐵, and 𝐶 are the fitting parameters. 
From Equation (11), we can see that the pixel values of ISWs on the SAR image are relevant to 

the four parameters (𝐴, 𝐵, 𝑙, and 𝐶). These parameters are determined by the best fitting curve to 
the pixel values along a transect across an ISW on the SAR image by Equation (11). Having the ISW 
characteristic half width 𝑙  and the background stratification profile, one can calculate the ISW 
amplitude using Equation (6). 
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2.5. The Proposed Method of ISW Amplitude Estimation Based on the eKdV Equation in a Two-Layer Ocean 
Model 

As mentioned in the Introduction, a simplified two-layer oceanic model is more practical than a 
continuously stratified model for estimating the ISW amplitude. Thus, the proposed method was 
applied to a two-layer ocean and employs the eKdV equation because the eKdV equation is a good 
indicator of the ISW amplitude estimation in the two-layer shallow water [21]. 

The eKdV equation is written as follows [38,39]: 𝜕𝜂𝜕𝑡 + 𝑐 𝜕𝜂𝜕𝑥 + 𝛼𝜂 𝜕𝜂𝜕𝑥 + 𝛼 𝜂 𝜕𝜂𝜕𝑥 + 𝛽 𝜕 𝜂𝜕𝑥 = 0 (12) 

where 𝛼  is the cubic non-linearity parameter. 
For a two-layer system with a rigid lid and no background flow, in the Boussinesq 

approximation, the following Equations (13)–(16) can be obtained: 𝑐 = 𝑔𝛥𝜌ℎ ℎ𝜌 (ℎ + ℎ )  (13) 

𝛼 = 32 𝑐 ℎ − ℎℎ ℎ  (14) 

𝛽 = 𝑐6 ℎ ℎ  (15) 

𝛼 = 3𝑐(ℎ ℎ ) 78 (ℎ − ℎ ) − ℎ + ℎℎ + ℎ  (16) 

where ℎ  is the upper layer thickness and ℎ  is the lower layer thickness. For depression wave, ℎ <ℎ . 𝛥𝜌/𝜌 = 2(𝜌 − 𝜌 )/(𝜌 + 𝜌 )  is the relative layer density difference, where 𝜌 (𝜌 )  is the 
uniform density of the upper (lower) layer, which is defined as follows [14]: 𝜌 = 𝜌(𝑧)𝑑𝑧ℎ1  (17) 

      𝜌 = 𝜌(𝑧)𝑑𝑧ℎ  (18) 

here, 𝜌(𝑧) is the background density profile. 
From Equation (14), we know that 𝛼 has a negative sign if considering the case in which the 

wave amplitude 𝜂 < 0 (depression wave). According to Equation (15), the dispersion parameter 𝛽 
is positive. As the term inside the square bracket of Equation (16) can be equally transformed into (−ℎ − 7ℎ ℎ − 7ℎ ℎ − ℎ )/8(ℎ + ℎ ), 𝛼  is negative. 

One of the ISW solutions to the eKdV equation is as follows: 𝜂(𝜉) = 𝜂𝑏 + (1 − 𝑏) 𝑐𝑜𝑠ℎ (𝛾 𝜉)  𝑎𝑛𝑑  𝜉 = 𝑥 − 𝑐𝑡 (19) 

where 𝑐 = 𝑐 + 13 𝜂 𝛼 + 12 𝛼 𝜂  (20) 

𝛾 = 𝜂 𝛼 + 12 𝛼 𝜂12𝛽  (21) 

𝑏 = −𝜂 𝛼2𝛼 + 𝛼 𝜂  (22) 

here, 𝑏 is a parameter that satisfies 𝑏 < 1. When 𝑏 > 1, solution (19) would contain meaningless 
points of discontinuity, which make the denominator of solution (19) equal to 0. As the upper limit 
(𝑏 → 1) is approached, the waves begin to broaden until a limiting table-topped wave amplitude is 
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reached. 
To obtain the eKdV type 𝜎 , we substitute solution (19) into Equation (9) and then substitute 

the result into Equation (8). Therefore, 𝜎  is written as follows: 

𝜎 = 𝑄 𝑠𝑖𝑛ℎ(𝛾𝜉)𝑐𝑜𝑠ℎ(𝛾𝜉)(𝑏 + (1 − 𝑏) 𝑐𝑜𝑠ℎ (𝛾𝜉))  (23) 

here, 𝑄 = 𝑔 (𝜃) 𝑐𝑜𝑠 𝜒 𝑘 𝑐 𝜂  𝛾(1 − 𝑏) |𝑧 = 0 . 

Similar to Equation (11), Equation (23) is modified into the following form: 𝐼(𝜉) = 𝐴 𝑠𝑖𝑛ℎ(𝛾(𝜉 − 𝐵)) 𝑐𝑜𝑠ℎ(𝛾(𝜉 − 𝐵))(𝑏 + (1 − 𝑏) 𝑐𝑜𝑠ℎ [𝛾(𝜉 − 𝐵)]) + 𝐶 (24) 

where 𝐼 still represents the SAR image pixel backscattering intensity value, and 𝐴, 𝐵, and 𝐶 are, 
again, the fitting parameters of 𝐼 to Equation (24). 

From Equation (24), the pixel backscattering intensity value 𝐼 is found to be related to the five 
parameters 𝐴, 𝐵, 𝑏, 𝛾, and 𝐶. Figure 6 shows an illustrated plot of 𝐼 versus 𝜉 for setting 𝐴 = −1, 𝐵 = 0, 𝐶 = 0, 𝛾 = 1, and 𝑏 = 0.5. In the 𝐼 −  𝜉 plot, there is one maximum point (𝜉 , 𝐼 ) and one 
minimum point (𝜉 ,𝐼 ), marked by red dots. According to Equation (24), we obtain that 𝜉  and 𝜉  are as follows: 

𝜉 = 1𝛾 𝑎𝑟𝑐𝑜𝑠ℎ (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) + 𝐵 (25) 

𝜉 = −1𝛾 𝑎𝑟𝑐𝑜𝑠ℎ (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) + 𝐵 (26) 

Therefore, 𝜉  and 𝜉  satisfy the following equation: 𝜉 + 𝜉2  = 𝐵 (27) 𝐼  and 𝐼  are obtained as follows: 

                 𝐼 = |𝐴| (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) • (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) − 1
[𝑏 + (1 − 𝑏) • (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) ] + 𝐶 (28) 

             𝐼 = −|𝐴| (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) • (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) − 1
[𝑏 + (1 − 𝑏) • (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) ] + 𝐶 (29) 

From Equations (28) and (29), we obtain the following equation: 𝐼 + 𝐼2  = 𝐶 (30) 

Based on Equations (27) and (30), parameters 𝐵 and 𝐶 can be directly obtained after locating 
the maximum and minimum points in the pixel backscattering intensity profile of an ISW on the SAR 
image. From Equations (20), (21), (22), (28), and (29), the other three parameters 𝛾, 𝑏, and 𝐴 are 
obtained: 𝛾 = (𝑐 − 𝑐 )4𝛽  (31) 
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𝑏 = ( ) with  𝜂 = ( ) (32) 

|𝐴| = 12 (𝐼 − 𝐼 ) • [𝑏 + (1 − 𝑏) • (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) ](𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) • (𝑏 − 3) − √9𝑏 − 14𝑏 + 94(𝑏 − 1) − 1 (33) 

According to Equation (32), the amplitude 𝜂  is dependent on the upper layer thickness ℎ , 
total water depth 𝐻, background density profile 𝜌(𝑧), and phase speed 𝑐. In this study, the water 
depth was determined from a local nautical chart, the background density profile was taken from in 
situ measurements or WOA13 dataset, the phase speed was determined by using two consecutive 
remote sensing images, and the upper layer thickness was found by a best fitting curve of the pixel 
values of an ISW using Equation (24). Finally, the amplitude was obtained in terms of Equation (32). 
Actually, the idea behind using consecutive remote sensing image pairs to find accurate upper layer 
thickness and estimating consequent ISW amplitude is similar to that of Reference [16] in which 
Doppler velocities from along-track InSAR data were considered to find a plausible upper layer 
thickness and internal soliton amplitude within their expected ranges. Moreover, a point that must 
be addressed is that another wave amplitude solution 𝜂 = (−𝛼 + 𝛼 + 6𝛼 (𝑐 − 𝑐 ))/𝛼  can also be 
acquired by solving Equation (20), which is not considered here because in this case, the parameter 𝑏 = (𝛼 − 𝛼 + 6𝛼 (𝑐 − 𝑐 ))/(𝛼 + 𝛼 + 6𝛼 (𝑐 − 𝑐 )) was greater than 1 for 𝛼 < 0 and 𝛼 < 0. 

 

 

Figure 6. An example plot of the eKdV solitary wave in SAR images for 𝐴 = −1, 𝐵 = 0, 𝐶 = 0, 𝛾 = 1, and 𝑏 = 0.5. 

3. Results and Analysis  

This section presents the results of the ISW amplitude estimation in the Hainan case obtained 
using the two methods described above. 

3.1. The Derived ISW Amplitude Using the Conventional Method 

Figure 7 shows the best fitting curve between the pixel backscattering intensity value of the 
soliton 𝐿1 observed on the GF-3 SAR image and the theoretical model result given in Equation (11). 
The pixel backscattering intensity values of the soliton 𝐿1 observed on the SAR images (the red 
points in Figure 7) are written as 𝐼 , 𝐼 , 𝐼 , 𝐼 , . . . . . . 𝐼 , respectively. The optimal fitting coefficients (𝐴 , 𝐵 , 𝑙 , 𝐶 ) obtained by the curve fitting among the observation values (𝐼 , 𝑖 = 1,2,3, … … 𝑛) 
and the theoretical model (11) are −10.75, 1.35, 144.93 m, and −11.66, respectively. Here, the curve 
fitting method rather than the Cramér–Rao Bound method [31] was applied for estimating the 
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characteristic half width. It is because the amplitude of the ISW backscattering intensity defined in 
Reference [31] was small (about 0.85) in our case, from which we could deduce that the curve fitting 
and Cramér–Rao Bound methods may have little difference in the characteristic half width estimation 
(refer to Figure 4b in Reference [31]). Thus, the curve fitting method was adopted here for its relative 
simplicity. Determined by the background density profile shown in Figure 4, the quadratic parameter 𝛼 and dispersion parameter 𝛽 were −0.0158 and 157.06, respectively. Therefore, the amplitude of 
the soliton 𝐿1 using this conventional method was estimated to be −5.66 m. 

 

 
 

Figure 7. Curve fittings of the theoretical model (Equation (11)) (the black line) to the pixel 
observation intensity value (red point) of the soliton 𝐿1 along transect AA’ in Figure 2a. 

Small et al. [18] concluded that the conventional method of using the ISW characteristic half 
width estimated from SAR images to derive soliton amplitudes can provide basic estimates of 
amplitude, but the results contain some uncertainties and may be affected by some factors, such as 
the characteristic half width, water depth, and background stratification. Therefore, this estimation 
of −5.66 m cannot be directly treated as a real value for comparison with the amplitude derived using 
the proposed method. To clarify the reliability of this amplitude estimation, we conducted the 
following uncertainty analysis. Here, the analysis method was similar to that adopted in Reference 
[19]. 

The theoretical model (11) in the case of the optimal curve fitting estimation can be rewritten as 
follows: 𝐼 (𝜉) = 𝐴 𝑠𝑒𝑐ℎ 𝜉 − 𝐵𝑙 𝑡𝑎𝑛ℎ 𝜉 − 𝐵𝑙 + 𝐶  (34) 

The total root mean square (RMS) deviation 𝐷𝑒𝑣 of the pixel backscattering intensity values 
between the observations on SAR images and theoretical model (34) is as follows: 

𝐷𝑒𝑣 = 1𝑛 [𝐼 − 𝐼 (𝐴 , 𝐵 , 𝑙 , 𝐶 , 𝜉 )]  (35) 

From model (34), we know that the 𝐷𝑒𝑣 of pixel backscattering intensity values is caused by the 
uncertainties in the four parameters 𝐴 , 𝐵 , 𝑙 , and 𝐶 . Thus, the 𝐷𝑒𝑣  can also be written as 
follows: 

𝐷𝑒𝑣 = 𝜕𝐼𝜕𝑙 |𝛥𝑙 | + 𝜕𝐼𝜕𝐴 |𝛥𝐴 | + 𝜕𝐼𝜕𝐵 |𝛥𝐵 | + 𝜕𝐼𝜕𝐶 |𝛥𝐶 | (36) 

where 𝛥𝑙  is the uncertainty in 𝑙  and 
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𝜕𝐼𝜕𝑙 = 1𝑛 𝜕𝐼𝜕𝑙 ( , , , , ) (37) 

As the amplitude 𝜂  is a function of 𝛼, 𝛽, and 𝑙 (refer to Equation (6)), and 𝛼 and 𝛽, which 
are derived from the field observation profile, are close to the real value, the uncertainty in the 
amplitude estimation (𝛥𝜂 ) is caused by only Δ𝑙  and can be written as follows: 

𝛥𝜂 = 𝜕𝜂𝜕𝑙 ( , , ) |𝛥𝑙 | (38) 

According to Equation (38), 𝛥𝜂  is directly proportional to 𝛥𝑙 . To give a maximum 
estimation of the uncertainty in the amplitude retrieval, we assume that 𝐷𝑒𝑣 = |𝛥𝑙 |  by 
neglecting the contributions of the three parameters 𝐴 ,  𝐵 , and 𝐶  to 𝐷𝑒𝑣  in Equation (36). 
Therefore, the uncertainty in parameter 𝑙  can be derived by the following equation: 𝛥𝑙 = 𝐷𝑒𝑣𝜕𝐼𝜕𝑙  (39) 

Substituting the optimal curve fitting parameters 𝐴 , 𝐵 , 𝑙 , and 𝐶  into Equations (35), (37), 
(38), and (39), respectively, we obtain 𝐷𝑒𝑣, 𝛥𝑙 , and 𝛥𝜂  as 0.32, 15.87 m, and 1.24 m, respectively. 
Thus, the amplitude of the soliton 𝐿1 should be −5.66 m with an uncertainty of ± 1.24 m. 

3.2.  The Derived ISW Amplitude Using the Proposed Method 

From the profile of the pixel backscattering intensity value of the soliton 𝐿1 (Figure 7), we can 
derive the maximum point (𝜉 , 𝐼 ) and minimum point (𝜉 ,𝐼 ) located at approximately (1.26, 
−7.50) and (1.44, −15.62), respectively. Thus, 𝐵  and 𝐶  are estimated to be 1.35 and −11.56, 
respectively. As the internal soliton usually features a wide stripe on SAR images, we define the point 
where the positive peak of the ISW signature is on the SAR image as its location. Therefore, the 
propagation distance of an ISW within a short time is defined as the distance between two positive 
peaks, whose geographic locations can be determined from SAR images with the help of Sentinel 
Toolbox software (http://step.esa.int/main/download/). In the present study, the propagation 
distance of the soliton 𝐿1 determined from the two consecutive GF-3 and TS-X SAR images within 
11 minutes was 435.6 m (thus, the phase speed was approximately 0.66 m/s). From the background 
density profiles shown in Figure 4, it is difficult to exactly determine the upper layer thickness, which 
seems to be in a large range of 9 m to 33 m. Using a simple iterative approximation scheme, the 
optimal upper layer thickness of 23 m was eventually determined by making the best fitting curve 
between Equation (24) and the SAR image pixel values along the transect AA’ of the soliton 𝐿1. 
Figure 8 shows the best fitting curve between the pixel backscattering intensity value of the soliton 𝐿1 observed on the GF-3 SAR image and the theoretical model given in Equation (24). Therefore, the 
amplitude of soliton 𝐿1 was subsequently calculated to be approximately −4.52 m, which agrees 
with the amplitude estimation of -5.66 ± 1.24 m derived by the conventional KdV equation in a 
continuously stratified ocean. 

A great challenge of using SAR images to retrieve the ISW amplitude is the need for synchronous 
in situ background stratification data. Here, we showed that our method could partially overcome 
this challenge using the climatological data WOA13 V2. The density profile (Figure 5) obtained from 
the WOA13 V2 climatological datasets was used to derive the amplitude of soliton 𝐿1 in the Hainan 
case. Our method yields an amplitude of −7.35 m, which is comparable to the reference value of -5.66 
±1.24 m. However, if the density profile of WOA13 V2 was used for the conventional method based 
on the KdV equation in a continuously stratified ocean, the estimated amplitude would be −16.30 m, 
which is almost three times the reference value. Clearly, the proposed method yields more credible 
results than the conventional method in the case where in situ measurements are unavailable. This 
result may be because the 5 m depth vertical interval of the background stratification profile from the 
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WOA13 V2 dataset is relatively coarse for the amplitude estimation in shallow water using the 
conventional method. In contrast, the coarse oceanic density profile obtained from the WOA13 V2 
dataset has fewer effects on the amplitude estimation using the proposed method, which suggests 
that the proposed method using consecutive SAR images and the eKdV equation in a two-layer ocean 
is a reliable way to estimate the ISW amplitude independent of in situ oceanic density profile 
measurements. 

 

 

Figure 8. Curve fittings of the theoretical model (Equation (24)) (the black line) to the pixel observation 
intensity value (red point) of the soliton 𝐿1 along transect AA’ in Figure 2a. 

4. Discussion 

Determining the upper layer thickness is a crucial step in estimating ISW amplitude from SAR 
images. In some reported cases, the sea water features a thin and strongly stratified pycnocline, 
sandwiched between two homogeneous layers, and therefore the upper layer thickness can be 
accurately estimated. Two common approaches have been proposed to determine the upper layer 
thickness from the background density profile. One approach is the eigenfunction method, which 
defines that the depth where the first mode eigenfunction has its maximum is the upper layer 
thickness. The other one is the 𝑁  method, which determines the depth of the maximum buoyancy 
frequency as the upper layer thickness. If the eigenfunction method is applied to the Hainan case, 
based on the two-layer eKdV theory, the upper layer thickness and amplitude of the soliton 𝐿1 are 
estimated to be approximately 29 m and −5.37 m, respectively. If the 𝑁  method is applied, the 
upper layer thickness is approximately 13 m, and the amplitude of the soliton 𝐿1 is approximately 
−12.01 m. Therefore, one can find that the uncertainties of upper layer thickness estimation can lead 
to large discrepancy of amplitude estimation. The stratification profile in the Hainan case suggests 
that the uncertainties of upper layer thickness estimation arises from the typical stratification of a 
thick pycnocline, which makes the determination of the upper layer thickness in a two-layer model 
rather ambiguous and difficult. Our proposed method solves this problem by using tandem SAR 
images to determine the accurate ISW phase speed, which then is used to estimate the optimum upper 
layer thickness and the consequent ISW amplitude. 

While a case study shows the effectiveness of the proposed method, there are some aspects 
needed to be discussed. 

The key to the proposed method is to seek two consecutive images to estimate the accurate phase 
speed. As the derived ISW phase speed in the proposed method is used to fit the theoretical model 
of radar backscatter intensity to the SAR observation for determining the optimum upper layer 
thickness, the image pair applied in the proposed method should include at least one SAR image. In 
this study, we use two consecutive SAR images (tandem SAR images) to drive the method. A 
development trend of modern spaceborne SAR is constellation configurations, such as Cosmo-
SkyMed, TerraSAR-X and its twin Tandem-X, and the recently launched Radarsat constellation 
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mission; therefore, acquisitions of tandem SAR images become increasingly feasible. In addition to 
the combination of tandem SAR images, a combination of SAR image and an optical image is also 
feasible to construct consecutive image pairs to apply the proposed method, which shall be tested in 
our further work. However, for constructing a consecutive image pair used for the proposed method, 
two aspects remain further studies. One is the geolocation accuracy of the two consecutive images. 
The geolocation accuracy directly determines the retrieval accuracy of the phase speed and the 
consequent amplitude. The other aspect is the temporal interval between the two consecutive images. 
The appropriate temporal interval for estimation of phase speed of ISWs should depend on the 
propagation and evolution characteristics of ISWs. In principle, the larger the variation of the ISW 
phase speed between two observations is, the shorter the temporal interval between two remote 
sensing images should be. 

There is not yet a method for calculating the exact equivalent two-layer ocean model of a 
continuously stratified ocean [33]. A reasonable approach to judge whether a two-layer fluid model 
is or not a good representation of the actual continuous density profile is to compare the coefficients 
of the KdV-type equation (including the linear wave speed 𝑐 , quadratic non-linear parameter 𝛼, 
cubic parameter 𝛼  and dispersion parameter 𝛽). In this study, the derived four coefficients of 𝑐 , 𝛼, 𝛼 , and 𝛽 in the two-layer eKdV equation using the derived optimum upper layer thickness of 23 
m are 0.63, −0.0226, −0.0018, and 123.54, respectively, which agree with the four coefficients estimated 
based on the continuous stratified eKdV equation [40] without considering current shear or rotation 
with values of 0.60, −0.0158, −0.0003, and 157.06, respectively. This should be the reason why the ISW 
amplitude derived by the conventional method and the proposed method is close to each other in the 
Hainan case. 

5. Summary and Conclusions 

Amplitude is one of the most important parameters of ISWs, while the retrieval of their 
amplitudes from satellite remote sensing images, which generally reflects sea surface variations, 
remains difficult, although observations of ISWs from space have been available for a few decades. 
Combining satellite remote sensing images, e.g., SAR images, and the KdV equation for application 
in a continuous stratification can generally yield reasonable ISW amplitude estimations. However, 
this method requires simultaneous in situ measurements of background stratification (density) 
profiles, which are often not available. To overcome this difficulty, the simplified two-layer ocean 
model was introduced, which improves the practicability of deriving ISW amplitudes from SAR 
images. However, uncertainties in estimating upper layer thickness in the two-layer ocean may lead 
to large discrepancies in amplitude estimations. The Hainan case shown in this study is a typical one 
with such an existing such problem, where the thick pycnocline relative to water depth makes it 
difficult to determine the upper layer thickness from the oceanic density profile. Therefore, we 
proposed a new method to solve this problem in the retrieval of ISW amplitudes from SAR images. 

In the proposed method, we firstly developed a theoretical model describing the radar 
backscatter cross-section of ISWs based on the eKdV theory in a two-layer ocean. By fitting the 
theoretical model estimation of radar backscatter to the SAR observations, we exploited consecutive 
SAR images to determine the optimum upper layer thickness for amplitude estimation. The retrieved 
ISW amplitude in the Hainan case agrees well with the result estimated by the classic KdV equation 
in the measured stratification. A key parameter needed in this method is the ISW phase speed. 
Different from the previous methods (assuming phase speed is equivalent to the group velocity), our 
estimation of phase speed was based on two consecutive SAR images acquired with a short temporal 
interval on a scale of dozens of minutes, which ensures derivation of an instantaneous phase speed 
and further leads to accurate estimations of ISW amplitudes. Besides, using the representative 
climatological dataset of WOA13 V2 instead of in situ measurements can also yield a more reasonable 
estimation of ISW amplitudes than the results using the conventional method based on the KdV 
theory in a continuously stratified ocean in this shallow water case. This result suggests that the 
proposed method can provide basic yet reliable information on ISW amplitudes even when in situ 
measurements are absent. 
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In conclusion, the present study demonstrates a method of retrieving ISW amplitude from SAR 
images, which are characterized by a consecutive image pair within a short time interval. Since the 
method has a potential capability to get reliable amplitude estimations when the in situ 
measurements are absent, it could have a wide and attractive application in retrieving ISW amplitude 
under the trend that modern spaceborne SAR tends to be in constellation configurations. 
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