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Abstract: An integrated assessment of crop-energy-water (CEW) nexus is critical to understand the
tradeoffs and synergies for better management of sustainable agricultural systems. In this study,
we evaluate the historic evolution of CEW interactions in the Central Valley, California, a critical
agricultural region that produces approximately 50% of US fruits, nuts and vegetables. Specifically,
we consider three nexus elements, including water use for irrigation (blue water), energy use for
groundwater pumping, and crop yield (for all crops aggregated, almond and cotton). To quantify
the interactions between CEW elements, we estimate the water use for cropping (water footprint)
and energy use for cropping (energy footprint). We conduct the analyses for four historical periods,
i.e., 2007–2009 (Drought 1), 2010–2011 (Post-drought 1), 2012–2015 (Drought 2) and 2016–2018
(Post-drought 2). We find that the southern regions (San Joaquin and Tulare) are susceptible to greater
stress on energy and water, especially during droughts. The groundwater footprint (GWF) has
been continuously increasing due to greater crop water use and a shift from row crops to profitable
water-intensive tree crops. The GWF in Tulare during Drought 2 was around 60% higher than
Drought 1, where the GWF in Tulare was almost twice that of Sacramento. The energy and water
uses for almond production have increased during the recent periods, whereas their uses have mostly
decreased for cotton. On average, energy and water footprints under almond crop scenario are
around 3–3.5 times as much as the footprints under all crops scenario.

Keywords: crop-energy-water nexus; remote sensing; central valley; groundwater; water footprint;
energy footprint

1. Introduction

There is a growing interest towards better understanding the interactions (nexus) between crops,
energy and water (CEW) due to the limitation of available resources and growing demand (as population
increases and climate changes) [1]. In general, a CEW nexus inquiry aims towards maximizing the
synergies and minimizing tradeoffs for sustainable development. In the past decade, numerous studies
focused on conceptualizing the complex interactions among multiple nexus components at different
levels (regional and national) in terms of environmental, social, economic and political dimensions [2–6].
The interactions between CEW components usually vary by sectors (agriculture vs municipal), climate
(arid vs humid) and economy (developed vs underdeveloped). In this study, we assess critically
important but technically challenging relationships between crop, energy and water in the agricultural
sector. The study focuses on the Central Valley of California, which is one of the most agriculturally
intensive regions in US.
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Central Valley (CV) of California is a highly productive agricultural region, growing around 50%
of U.S. fruits, nuts and vegetables. The high productivity is made possible by complex surface water
supply network and conjunctive use of surface and groundwater. Naturally, there is a precipitation
gradient with a relatively wetter north and drier south (see Figure 3a). The imbalance in natural water
supply is mitigated to some extent through surface water transfers from the northern to the southern
part of CV. The surface water supply primarily originates from surrounding headwater watersheds,
mostly from Sierra Mountains (east) and northern Sacramento watershed. However, groundwater
plays a critical role in meeting the agricultural demand, especially during droughts (2007–2009 and
2012−2015). In general, more than 74% of surface water withdrawal in the CV is used for agricultural
purposes [7]. During droughts, the reduction in surface water supply contributes to agricultural and
economic loss in California. For example, the 2014 drought brought around $2.2 billion economic
loss, which also had a severe impact on the region’s ecology and environment [8]. Moreover, due to
continuous abstraction of the groundwater in the past decade (prominently in southern regions),
groundwater decline rate has increased to 7.2± 1.0 km3/yr during the period of April 2006 to March 2010
and peaked at 11.2 km3/yr during 2012–2016 in the CV [9]. This increase in groundwater abstraction
subsequently boosted the energy use for pumping, an increase from 5442 GWh in 2008 to 7179 GWh in
2011 [10]. The drought also reduced hydroelectricity production and increased energy use in different
sectors, further exacerbating the stress on energy supply. Furthermore, crop production in the CV plays
an important role in shaping the demand pattern, which has been gradually shifting over past decades.
For example, since tree crops (fruits and nuts) are more profitable, there has been a gradual increase
in tree crop farmland in contrast to a decrease in row crops. Unlike row crops that can be fallowed
during stressed periods, tree crops require continuous water supply for sustaining productivity, which
eventually poses greater stress to both water and energy.

In the past decade, the CV has experienced substantial climate variability with two severe
droughts (2007–2009 and 2012–2015) and a recent wet period (2016–2018). Moreover, the future climate
is expected to increase the frequency of droughts along with increased agricultural and urban demand
(as temperature rises) [11]. Therefore, it is important to have a better understanding of the interactions
between CEW in the CV during the past decade.

In this study, we evaluate the historical evolution of two important CEW metrics: (i) water
required per unit crop production [water footprint] and (ii) groundwater pumping energy required
per unit crop production [energy footprint]. We use remote sensing products, an existing cropland use
database, and outputs from a complex groundwater-surface water hydrologic model to calculate the
metrics over CV. Earlier studies have estimated water footprints of crops over the entire U.S. [12,13] and
California [14–16], while not separating surface water and groundwater footprints. Although separate
surface water and groundwater footprints were estimated at the county level over the CV during
2012–2014 drought periods [17], the study did not capture the full spectrum of historical changes in
water footprints but only considered simplified representation of surface water-groundwater dynamics.
Moreover, albeit aggregated energy consumption estimation of groundwater abstraction for the entire
California [18], the energy footprints at relatively higher spatial and temporal resolutions were not
available. As remote sensing provides a unique opportunity for characterizing CEW interactions
at different spatial and temporal scales, we use remote sensing products to fill the data gaps in the
characterization of the CEW nexus in higher spatial detail and over a longer time period.

The CV consists of three major hydrologic regions (according to California Department of Water
Resources [CDWR]), i.e., Sacramento, San Joaquin and Tulare (Figure 1), which is divided into
21 subregions by CDWR (Figure 1), where subregions 1 to 7 are in Sacramento, 11 to 13 in San Joaquin
and 14 to 21 in Tulare. In this study, we focus on three subregions (one from each hydrologic region)
for analyzing the nexus interaction, i.e., subregion 5, subregion 13 and subregion 18 (hereafter, referred
as Sub-5, Sub-13 and Sub-18 respectively). These subregions are selected from different parts of CV to
represent the diversity in climate (wetter north and drier south), water/energy supply and demand,
cropping patterns, and irrigation practices.
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The objective of this research is to use remote sensing and hydrologic models to assess the
relationships between crops, energy and water as a nexus in the CV. To address this objective, the study
aims to address the following questions: (i) how have the water and energy footprints changed over
the past decade? and (ii) how do the dry and wet years impact the crop-energy-water relationships?
We expect this study will (i) provide an insight into the evolution and interactions of selected nexus
components, and (ii) demonstrate how remote sensing can help fill the gap in CEW nexus studies.
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Figure 1. The map shows major cities and hydrologic regions (left), and Subregions (right) in the
Central Valley, California. The highlighted subregions in the right are the selected subregions for this
study (subregion 5, 13 and 18).

2. Materials and Methods

This section describes the detailed procedure used to identify the evolution and variability in
the CEW nexus. The focused variables that we consider for assessing the nexus interactions include
(i) crop yield (for all crops aggregated, almond and cotton), (ii) water use for irrigation (blue water),
and (iii) energy use for groundwater pumping. We compare the historical changes (year 2007 to 2018)
in the above three nexus components and analyze their relationships. Figure 2 shows a conceptual
framework consisting of nexus components for this study. In the following subsections, we first
describe the key data sources and then discuss the methods used to quantify the changes in CEW
components. Finally, we show the steps followed to calculate (i) water use per unit crop yield (water
footprint) and (ii) groundwater pumping energy use per unit crop yield (energy footprint) in the CV.
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Figure 2. The research framework that represents the connectivity of CEW nexus components and the
workflow for analyses.

2.1. Data Collection

The study uses data from multiple sources (Table 1), with a focus on remote sensing products
(i.e., precipitation, actual evapotranspiration, and cropping pattern) and numerical model outputs
on groundwater use. Precipitation data is obtained from the Tropical Rainfall Measuring Mission
(TRMM-3B43) [19]. TRMM-3B43 is a combined product of microwave satellite imagery from TRMM
Microwave Imager (TMI), geostationary satellite infrared sensors, and rain gauges. The precipitation
product has widely been applied in the field of hydrology, environment, water resources, meteorology,
and agriculture, and has been validated by different projects [20–22]. We use the TRMM-3B43 product
available at 0.25-degree (~27 km) resolution for the period of 2007–2018, which was then aggregated into
each subregion to obtain average precipitation time series (Figure 3a). The actual evapotranspiration
(ETa) is obtained from the Simplified Surface Energy Balance (SSEBop) model [23] for the same
period. The SSEBop uses the Simplified Surface Energy Balance approach [24] that combines ET
fractions derived from 1 km MODIS thermal imagery, which is based on similar principles adopted by
SEBAL [25] and METRIC models [26]. We extract SSEBop-based ETa to estimate total water use in
each subregion (Figure 3b).

The land use and crop type data used in this study are obtained from the U.S. Department of
Agriculture, National Agricultural Statistics Service (USDA-NASS) Cropland Data Layer (CDL) [27].
The CDL is available through a web service CropScape [28]. USDA-NASS annually generates cropland
layers over the entire U.S. at 30 m resolution (56 m for 2007 only). The CDL data is created using
multiple satellite products including Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced TM Plus
(ETM+), Advanced Wide Field Sensors (AWiFS), and Landsat 8 Operational Land Imager (OLI) [29–32].
The CDL provides spatially explicit crop type information with high spatial accuracy for major crops
such as corn, soybeans and wheat [33]. The data is available for a limited time period over California
(2007 to 2018). Figure 3c shows the spatial distribution of major cropping patterns in 2014, and Figure 3d
highlights the spatial distribution of almond and cotton over CV. In general, most of the almond and
cotton are produced in San Joaquin and Tulare regions. We extract crop areas for each crop type at
the subregion level from the CDL dataset. Furthermore, we obtain crop yield information from the
USDA-NASS existing database publicly available for California [34]. The crop yield information is
available for more than 200 commodities on an annual basis (up to 2016) at the county level.
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Table 1. Sources of data used in the study.

Data Type Data Name Minimum Mapping
Unit

Temporal
Resolution Source Type

Precipitation TRMM-3B43 0.25 degree Monthly Remote Sensing Products
Actual

evapotranspiration SSEBop 8 km Monthly Remote Sensing Products

Crop yield USDA-NASS County level Yearly Existing Database
Land Use USDA-NASS CDL 30 m (for most years) Yearly Remote Sensing Products

Groundwater abstraction CDWR records Subregion scale Monthly C2VSIM model
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2.2. Crop Yield Estimation

The CV cropping patterns have been evolving in the past few decades. Here, we use crop yield for
comparison among regions. There are more than 100 different types of crops cultivated in California
with considerable regional variability. County-wide crop-specific yield (tons per acre) data in California
are available at USDA-NASS [33]. The selected subregions primarily overlap Tulare County (Sub-18),
Merced County (Sub-13) and Butte County (Sub-5). We use crop yield (tons per acre) data for each
crop in the selected regions from the USDA-NASS database for the period of 2007 to 2016. We calculate
the area of each crop type (individual and aggregated) from the CDL data (as described in the previous
section) available for the period of 2007–2018. Total crop production (tons) for each crop is calculated
from the product of yield (tons per km2) and the total crop area (km2) in each subregion. However,
the land use data is available up to 2018, whereas the crop yield data is available up to 2016. For the
extended period with no yield data (2017–2018), we assume the yield (tons/km2) is the same as the
mean of last 2 years (2015–2016). In general, crop yield changes gradually in consecutive years except
when there is exceptional climatic anomaly. Therefore, the assumption should facilitate a reasonable
estimation of crop yield in the last 2 years of the study period (2017–2018).

2.3. Water Use Estimation

The water component of the nexus focuses on irrigation water use or blue water. Here, we use
ETa to represent total crop water use, because more than 90% of annual ETa in the CV is supplied
by irrigation (use groundwater and/or surface water sources) [35]. We also separate the total blue
water use into surface water and groundwater components. To estimate groundwater use, we rely
on the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM), which is a
calibrated hydrological model capable of simulating detailed surface water and groundwater dynamics
over the entire CV. The C2VSIM has been widely used for simulating surface water and groundwater
dynamics in the CV, and the fine-grid version of the model simulation is available from October 1973
to September 2015 (see Ref. [36] for details about the C2VSIM model). We extract the surface water and
groundwater use for irrigation in each subregion for the period (January 2007 to September 2015) and
calculate the fraction of irrigation water supply coming from the groundwater, i.e., groundwater fraction
(GF). The product of annual average GF and annual average ETa results in the actual evapotranspiration
from groundwater irrigation. The GF after 2015 (years after C2VSIM simulation ends) is estimated
using a linear regression model. The steps to develop the linear regression model and predict GF are
as follows. First, we establish a linear regression model with annual groundwater abstraction as the
dependent variable and GF as the independent variable. We use C2VSIM abstraction and derive GF
for the period 2000–2015 to develop the regression model. Second, we use the groundwater abstraction
(which is presented in detail in the following section) and the regression model to estimate GF for the
recent data gap period (October 2015 to December 2018).

2.3.1. Estimate Groundwater Abstraction

The C2VSIM output on groundwater abstraction is only available until September 2015. To amend
the data gap from then to the current time period (October 2015 to December 2018), we estimate
the groundwater abstraction using a random forest regression model. The random forest regression
technique has been widely applied for data classification and model fitting [37–40]. The method
considers building an ensemble of random decision trees to create a ‘forest’, which can be trained with
available datasets (a supervised algorithm). As the size of the tree grows, the data is randomly sampled
at every node and the samples having the lowest mean squared error are retained [39]. Two important
benefits of using the random forest technique are (i) flexible model structure that does not require
pre-knowledge about data distribution, and (ii) relatively low computational cost [41]. These merits
make the random forest an ideal model to estimate groundwater pumping with remote sensing
products as predictor(s). The random forest model is established for each subregion on a monthly
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basis. We use precipitation and ETa as predictors and groundwater pumping rate (the monthly total
withdrawal volume) as the response variable. The precipitation data is from TRMM-3B43 and actual
evapotranspiration data from SSEBop, both of which are remote sensing products (see Section 2.1 for
detail of the datasets). ETa is chosen because its variation directly corresponds to the agricultural
demand. Since most of the precipitation occurs in the winter and almost none during the high demand
period (summer), we experiment with different lag periods (0 to 7 month lag) and find precipitation
with a 6-month lag sensitive to groundwater abstraction. This lag may be due to the fact that the
winter streamflow is stored and released for irrigation in the summer, thus reducing the need for
pumping to compensate the irrigation deficit. In addition, adding other potential variables like NDVI,
potential evapotranspiration and crop area are found to not significantly contributable to the variability
of groundwater pumping. The groundwater pumping rate for the period 2007–2015 is obtained from
the C2VSIM output.

The random forest model is first calibrated and validated for the period January 2004 to December
2014, and is then used to estimate groundwater abstraction for the period with the data gap (October
2015 to December 2018). The performance of the random forest model is evaluated using Kling-Gupta
efficiency (KGE) as shown in Equations (1) and (2). Although the stepwise linear regression model
shows reasonable accuracy, we only choose the random forest for prediction.

KGE = 1−

√
(CC− 1)2 +

(
cd
rd
− 1

)2

+
(cm

rm
− 1

)2
(1)

CC =

1
mi

∑mi
i=1(ri × ci) − cm × rm

cd × rd
(2)

where KGE is Kling-Gupta efficiency and CC is the Pearson correlation coefficient. c and r are computed
and observed values; cd and rd are the standard deviations of computed and observed variables; cm

and rm are the mean of estimated and available groundwater pumping rates respectively, and mi is the
number of monthly time steps.

In addition to the estimation of groundwater abstraction for all crops (aggregated value for all
crop scenario), we calculate groundwater abstraction for another two crops, i.e., almond and cotton.
Since there is no spatially distributed abstraction data available for different crop types, we estimate
the groundwater abstraction for the selected crop based on the fraction of total ETa of the crop.
The calculation of ETa for a specific crop type is described below.

2.3.2. Estimate ETa for Specific Crops

We use ETa to estimate water use for irrigation. The ETa data is extracted from a remote sensing
product (SSEBop) at monthly time steps for the period of January 2007 to December 2018. Since the
study focuses on agricultural water use, we extract ETa only for those SSEBop grid cells that are
mostly covered by the crops of interest, the spatial extents of which come from the USDA-NASS CDL.
However, there is a substantial difference in the resolutions of the ETa product (8 km) and land use
data (30 m). We followed the following steps to resolve the discrepancy: (1) identify grids having more
than 80% of crops (80% threshold selected to be on the conservative side); (2) calculate average ETa in
the selected grids; and (3) estimate the total ETa volume using the product of the crop area and the
ETa calculated in the previous step. In this study, we present analyses for aggregated crops (hereafter,
all crops), almond (a highly profitable tree crop in California) and cotton (an important row crop in
California). Figure 4 illustrates the selected ETa grids with different fractions of almond. The process is
iterated for each year to estimate the crop-specific ETa in each year.
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2.4. Energy Use Estimation

In general, energy consumption for groundwater pumping depends on several factors such
as groundwater head, pump specification and efficiency, and the type of irrigation. However, it is
difficult, if not impossible, to obtain most of the information at all locations for long time periods. Here,
we use the average of energy used for per unit amount of groundwater pumping. Previous studies
showed that the average energy use for groundwater pumping (average pumping efficiency is ~50%)
is around 0.00051 kWh to lift 1 m3 of groundwater for 1 m [10]. Therefore, we use Equation (3) to
estimate energy use for groundwater pumping, which is a function of the groundwater volume being
pumped and the depth of groundwater (or lifting height). The process of estimating groundwater
abstraction is discussed in the previous section. To estimate groundwater depth monthly, we follow
these steps: (i) calculating the change in groundwater depth from the ratio of groundwater storage
change (simulated by C2VSIM) and the area of the subregion (5, 13 and 18), and (ii) then compute
cumulative groundwater depth using Equation (4).

Eu = 0.00051×Wugw × h (3)

ht+1 = ht +
(GWst −GWst+1)

A
(4)

where, Eu is energy use for groundwater pumping (kWh), Wugw is the volume of groundwater being
pumped (m3), and h is the groundwater lifting height (m). GWs is the groundwater storage, t is
the month (t = 1 in first month of the estimation period), and A denotes the area of the subregion.
The initial depth of the groundwater table (h1) is obtained from the previous study [42].

Since the C2VSIM output is available up to September 2015, we extrapolate the data into the rest
of the study period (up to 2018). We apply the ordinary linear regression with groundwater pumping
as the predictive variable and energy use as the dependent variable (at annual scale). The regression
model shows a high coefficient of determination (R2 > 0.99). Therefore, we use the developed regression
model to estimate energy use for an extended time period (October 2015 to December 2018).

2.5. Water and Energy Footprints Estimation

Water footprint assessment [43] provides an estimate of consumptive water use for different crops.
In the agricultural context, consumptive water use includes the water from managed irrigation source
(or “blue water”) and effective rainfall (or “green water”). In this study, we report blue water footprint
for all crops (aggregated), almond and cotton. In general, green water accounts for less than 10% of
the consumptive use [8], and the majority of the consumptive water comes from blue water. This
is primarily because the rain occurs during winters but water demand for cropping peaks in late
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springs and summers. Surface water stored in headwater reservoirs in the winters is released and
delivered for irrigation during high-demand periods, whereas additional irrigation deficit is satisfied by
groundwater. In general, blue water footprint (BWF) varies with cropping patterns, farming decisions,
climate, and crop response. The BWF is calculated using a similar method to that used in Reference [43]
as shown in Equation (5). By providing evapotranspiration coming from groundwater and surface
water, the BWF component coming from each water sources can be determined. The Equations (5)
and (6) are used for calculating total Blue Water Footprint (BWF) and Groundwater Footprint (GWF).

BWF =
ETa (annual)

crop yield (annual)
(5)

GWF =
ETagw (annual)

crop yield (annual)
(6)

where, annual ETa (actual evapotranspiration) is in m3 and crop yield is in tons, the unit of BWF (or GWF)
is m3 of water per ton of crop yield, and ETagw is the groundwater component of total water used by crops.

Similar to the water footprint, we calculate the energy footprint for all crops (aggregated), almond
and cotton. The energy footprint for this study is the amount of groundwater pumping energy (kWh)
required annually to produce crops per ton. The Equation (7) shows the formula of energy footprint (EF).

EF =
Energy f or groundwater pumping (annual)

crop yield (annual)
(7)

In addition, we calculate the amount of energy used per unit volume of groundwater abstraction
(EGA). The value of EGA provides a useful measure for understanding relative stress on the energy
sector for groundwater abstraction (Equation (8)).

EGA =
Energy f or groundwater pumping (annual)

ETagw (annual)
(8)

In sum, an illustration of the steps used to calculate the water and energy footprint using remotely
sensed data and existing database is shown in Figure 5. A detailed description of the methodology has
been presented in this and above in other sections.
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3. Results and Discussion

3.1. Historical Precipitation and Cropping Patterns

Climate plays important roles in shaping the agricultural production, energy production
(hydropower) and use, and surface water-groundwater distribution. In general, there exists a
north–south precipitation gradient with higher precipitation in the north (due to large amount of
moisture from westerly winds) and relatively lower in the south [44]. A series of droughts in the
past decade critically stressed the CV. The annual precipitation over Sacramento (Sub-5), San Joaquin
(Sub-13) and Tulare (Sub-18) for the period of 1999 to 2018 is shown in Figure 6a. The precipitation
was relatively lower during the two major droughts which occurred in the periods of 2007–2009 and
2012–2015. Other than drought periods, there were also a few wet periods like year 2005, 2010 and 2017.
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Figure 6. (a) Precipitation over selected subregions of Sacramento, San Joaquin and Tulare
(the precipitation data is extracted from TRMM-3B43), (b) tree crop area in selected regions, and
(c) row crop area in the selected regions.

The crop distribution in the CV has been evolving in the past decades. We calculate the area of
row crops and tree crops from the USDA-NASS (discussed in Section 2.1) for the period 2007–2018,
and the crop patterns prior to the period are obtained from C2VSIM model inputs. In general, there
has been a downward trend in row crops and an upward trend in high-value tree crops (Figure 6b,c).
Sub-13 has more farmland than the other two subregions. Tree crops generally have an increasing
trend in Sub-13. In all cases, row crops have a general decreasing trend. Despite multiple drought
events in the past decade, the crop area of high-value tree crops continues to increase. Tree crops
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exert extra pressure on groundwater resources especially during droughts [9], as tree crops cannot be
fallowed like row crops and must be irrigated without interruption to sustain production. Tree crops
like almond and pistachio nuts bring greater economic return, which lead farmers to prefer these over
other traditional crops like cotton.

3.2. Historical Changes in Groundwater Use

As described in Section 2.3.1, groundwater pumping information is required to estimate (1) the
fraction of water use that originates from groundwater, and (2) the energy used for groundwater
pumping. Figure 7 shows the estimated vs C2VSIM groundwater abstraction for three subregions
at monthly time scale. The model has been calibrated for multiple periods between January 2004 to
September 2015, which includes both dry and wet years (calibration for years 2004–2006, 2009–2010,
and 2013–2014, and validation for the rest years). The Kling-Gupta Efficiency (KGE) for subregions
5, 13 and 18 are 0.91, 0.81 and 0.88 respectively for the calibration periods, and 0.85, 0.80 and 0.79
respectively for the validation periods. The KGE values for the selected subregions are reasonable,
indicating the method can be used to predict the groundwater abstraction for the data gap period of
October 2015 to December 2018. The period of 2016 to 2018 is relatively wet when the model is expected
to provide a reasonable estimate, as we found that the model performs better during normal (years
having average precipitation) and wet years (Figure 7). For any calculation involving groundwater
abstraction, we use C2VSIM abstraction estimation up to September 2015 and predict values (using the
developed model) for the period of October 2015 to December 2018.
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(reference) for three subregions.

3.3. Spatial and Temporal Variation in Water Footprints

BWFs and GWFs for three crop scenarios (all crops averaged, almond and cotton) in Sacramento
(Sub-5), San Joaquin (Sub-13) and Tulare (Sub-18) are shown in Figure 8. We compare the footprints for
four historical periods, i.e., drought 1 (2007–2009), post-drought 1 (2010–2011), drought 2 (2012–2015)
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and post-drought 2 (2016–2018). Comparisons between the two drought periods and wet periods allow
us to understand the characteristics of BWFs and GWFs under extreme and moderate scenarios. Based
on the historical BWF estimates under all crop-averaged scenarios, (Figure 8a) we find (i) in Sub-5,
that the BWFs show a decreasing trend irrespective of drought years (the BWF during post-drought 2
is almost half of that during post-drought 1), which indicates increased water use efficiency; (ii) in
contrast, the BWF in Sub-13 are higher during post-droughts than the drought periods, where the
BWF in post-drought 1 (~1300 m3/ton) is around twice compared to drought 1 (~672 m3/ton) and
higher in post-drought 2 than drought 2; and (iii) the BWF in Sub-18 gradually increases (around
331 m3/ton higher BWF in post-drought 2 compared to drought 1), which may be due to decreased
crop yield, increased water use (due to warmer temperature), or lower water use efficiency. Moreover,
we compare the spatial distribution of BWFs (Figure 9), which shows that BWFs in subregion 8, 11, 12,
and 20 are relatively higher than that in other subregions.

Similar to the BWF, a comparison of GWFs among selected regions and for different scenarios
is shown in Figure 8b. Based on the GWF estimates under all crop scenarios, we find (i) on average,
BWFs are around 110%, 20% and 20% higher than GWFs in Sub-5, Sub-18 and Sub-13 respectively,
indicating higher groundwater dependency in Sub-13 and Sub-18 compared to higher surface water
dependency in Sub-5; and (ii) the trend and interannual variability patterns in GWF are similar to
those in BWF, i.e., Sub-5 shows a decreasing trend, Sub-18 shows an increasing trend and Sub-13 has
higher GWF during post-droughts. Although total harvested area has decreased during past droughts
(173,200 hectares cropland fallowed in 2014), the GWF increased in the southern CV [8]. Such an
increase can be attributed to a shift towards high water intensive crops (fruits, nuts and vineyards) and
continuously increasing temperature.
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We compare the BWF and GWF of almond crop for the study regions in Figure 8c,d. The BWF for
almond is on average around 30% higher than the BWF under all crops scenario. Average BWF for
almond is 3556 m3/ton and GWF is 2167 m3/ton (averaged over three study subregions and periods).
A previous study [45] found that the BWF for almond in 2011 is 3652 m3/ton, which is very close to our
estimate. Based on the water footprint estimation (BWF and GWF) for almond crops, we find (i) in
Sub-5, water footprints (both BWF and GWF) are relatively higher during post-drought 1, but about
similar during other periods, indicating relatively stable water use efficiency in Sub-5; (ii) Sub-18 shows
relatively higher sensitivity to droughts (especially GWF), where GWFs during drought 1 and drought
2 are around 33% and 44% higher than post-drought 1; (iii) in Sub-13, water footprints (both BWF and
GWF) gradually increase throughout the historical period, where the GWF during post-drought 2 is
around 60% higher than drought 1; and (iv) on average, the GWFs in Sub-18 and Sub-13 are around 84%
and 92% higher than that of Sub-5 respectively. The increasing GWF in Sub-13 is higher than Sub-18
during drought 2 and later, indicating higher water stress in the southern part of the CV. Additionally,
we compare the spatial distribution of BWF of almond (Figure 9) and find that the BWFs of almond
have increased in most of the subregions during the recent study period. During post-drought 2, BWF
is relatively higher in Sub-11 and Sub-13. Moreover, we also compare BWFs and GWFs of cotton crops
(Figure 8e,f) for Sub-18 and Sub-13 (Sub-5 is not considered due to a lack of explicit cotton grids, see
Figure 3d). We find that the BWFs during the later periods (drought 2 and post-drought 2) are relatively
lower. On average, the BWF in Sub-18 is around 1.18 times as much as that in Sub-13. The GWF in
Sub-18 is relatively higher during droughts (17% higher than average during drought 2), whereas
the GWF in Sub-13 is relatively stable but higher during post-drought 1 (26% higher than average).
On average, the BWF of cotton is around 3.7 times as much as the BWF of all crops scenario.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 

 

periods). A previous study [45] found that the BWF for almond in 2011 is 3652 m3/ton, which is very 
close to our estimate. Based on the water footprint estimation (BWF and GWF) for almond crops, we 
find (i) in Sub-5, water footprints (both BWF and GWF) are relatively higher during post-drought 1, 
but about similar during other periods, indicating relatively stable water use efficiency in Sub-5; (ii) 
Sub-18 shows relatively higher sensitivity to droughts (especially GWF), where GWFs during 
drought 1 and drought 2 are around 33% and 44% higher than post-drought 1; (iii) in Sub-13, water 
footprints (both BWF and GWF) gradually increase throughout the historical period, where the GWF 
during post-drought 2 is around 60% higher than drought 1; and (iv) on average, the GWFs in Sub-
18 and Sub-13 are around 84% and 92% higher than that of Sub-5 respectively. The increasing GWF 
in Sub-13 is higher than Sub-18 during drought 2 and later, indicating higher water stress in the 
southern part of the CV. Additionally, we compare the spatial distribution of BWF of almond (Figure 
9) and find that the BWFs of almond have increased in most of the subregions during the recent study 
period. During post-drought 2, BWF is relatively higher in Sub-11 and Sub-13. Moreover, we also 
compare BWFs and GWFs of cotton crops (Figure 8e and 8f) for Sub-18 and Sub-13 (Sub-5 is not 
considered due to a lack of explicit cotton grids, see Figure 3d of). We find that the BWFs during the 
later periods (drought 2 and post-drought 2) are relatively lower. On average, the BWF in Sub-18 is 
around 1.18 times as much as that in Sub-13. The GWF in Sub-18 is relatively higher during droughts 
(17% higher than average during drought 2), whereas the GWF in Sub-13 is relatively stable but 
higher during post-drought 1 (26% higher than average). On average, the BWF of cotton is around 
3.7 times as much as the BWF of all crops scenario. 

 

Figure 9. Blue Water Footprints for all crops (top row) and almond crops (bottom row) during four 
study periods. Grey color indicates no-value, which is due to a lack of explicit agricultural crop grids 
in a subregion. 

3.4. Spatial and Temporal Variation in Energy Footprints 

Figure 9. Blue Water Footprints for all crops (top row) and almond crops (bottom row) during four
study periods. Grey color indicates no-value, which is due to a lack of explicit agricultural crop grids
in a subregion.



Remote Sens. 2019, 11, 1701 14 of 18

3.4. Spatial and Temporal Variation in Energy Footprints

EFs under three cropping scenarios in three selected subregions are shown in Figure 10. Similar
to water footprints shown in the previous section, climate remains an important driver to affect the
spatiotemporal patterns of EFs. Based on the historical EFs, spatially we find that the EF under all
crops scenario in Sub-18 is around 4 and 40 times as much as Sub-13 and Sub-5 respectively. EF under
almond crop scenario in Sub-18 is around 2.6 and 35 times as much as Sub-13 and Sub-18 respectively.
Furthermore, the EF in Sub-18 under cotton crop scenario is around 2.5 times as much as Sub-13.
The high value of EF in Sub-18 may be explained by a high volume of groundwater abstraction and
greater lifting height. Temporally, in all cases, EF is highest during drought 2, indicating the greatest
stress brought by the most recent drought on energy supply for groundwater pumping. On average,
EFs under almond crop and cotton crop scenarios are around 3 and 3.9 times as much as the EF under
all crops scenario.
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3.5. Spatial and Temporal Variation in Energy Use for Water

In addition to the estimation of water and energy footprints, we compute the EGA in the selected
subregions (Figure 11). The average EGA in Sub-5, Sub-18 and Sub-13 are 0.03 kWh/m3, 0.66 kWh/m3

and 0.25 kWh/m3 respectively. The highest EGA in Sub-18 is due to its greatest lifting height as
described before. The interannual variability in EGA in Sub-18 is the highest with relatively greater
magnitude during post-droughts. On average, the EGA in Sub-13 is around 63% lower than that
in Sub-18. In addition, the amount of energy used per unit of groundwater abstraction in Sub-13 is
relatively lower in the later years than its beginning (drought 1), which indicates increased groundwater
use efficiency. Furthermore, the average EGA in Sub-5 is around 95% lower than that in Sub-18.
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The lower EGA in the northern region (Sub-5) is attributed to the lower lifting height for groundwater
pumping (due to the relatively shallower groundwater level).Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 18 
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4. Conclusions

An understanding of the CEW nexus in the agriculture sector is critical to improve natural resources
management in agricultural regions. In this study, we assess the CEW nexus in three subregions of
Central Valley, i.e., Sacramento (subregion 5), San Joaquin (subregion 13) and Tulare (subregion 18),
which have distinct water availability conditions. The specific nexus elements considered include
water use (blue water) and energy use for groundwater pumping, and crop production (all crops,
almond and cotton). To characterize the CEW nexus, we use remote sensing, hydrologic models and
machine learning techniques to quantify two nexus metrics, inlcuding (i) water use for crops (water
footprint) and (ii) energy use for crops (energy footprint). The results of this study are presented
over four historical periods having diverse climatic conditions, including Drought 1 (2007–2009),
Post-drought 1 (2010–2011), Drought 2 (2012–2015), and Post-drought 2 (2016–2018). Based on the
results, we conclude that:

• The Central Valley has experienced increased stress of water and energy supplies to meet
ever-increasing agricultural demand, which was worsened during the two major droughts in the
past decade. The highest impact (negative) of droughts occurred in water-scarce southern regions,
San Joaquine and Tulare. The GWFs of high water consumptive tree crop (almond) in Tulare and
San Joaquine are around 84% and 92% higher than those in Sacramento on average.

• The water footprint of almond in recent years is higher than almost all other crops. The total blue
water footprint for almond has been increasing, with the highest increasing rate in San Joaquine.
In contrast, the total blue water footprint for cotton has decreased in recent years. The groundwater
footprint in Tulare increased during both droughts (with the highest magnitude during the most
recent megadrought). Groundwater footprint in Sacramento is relatively less than that in the
other subregions, but has a modest increasing trend.

• The energy footprint (energy for groundwater pumping) for all crops scenario in Tulare is
substantially higher than other regions. For almond and cotton, both Tulare and San Joaquine
subregions have higher energy footprints than the scenario of all crops. On average, energy
footprints under almond and cotton crops are around 3 to 3.9 times as much as the energy footprint
under all crops scenario.

In this study, remote sensing is used to parameterize factors (e.g., precipitation, ETa, and cropping
area) that are critical to characterize the CEW nexus in spatially and temporally explicit manners over
a broad agricultural region, Central Valley. For example, both precipitation and evapotranspiration are
important components of the hydrologic cycle, and their magnitude and spatial patterns will affect
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the availability of surface water supplies and thereby differential groundwater footprints and energy
footprints related to pumping. Although the results are aggregated and analyzed at the subregion
level in this paper, remote sensing allows more spatially and temporally detailed inquiry into the CEW
nexus in variable scales. The methodology framework introduced in this paper may be transferrable to
other agriculturally important regions (e.g., the U.S. High Plains Aquifer) for the characterization of
the CEW nexus across different spatial and temporal scales.
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