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Abstract: The planned launch of a spaceborne P-band radar mission and the availability of C- and
L-band data from several spaceborne missions suggest investigating the complementarity of C-, L-,
and P-band backscatter with respect to the retrieval of forest above-ground biomass. Existing studies
on the retrieval of biomass with multi-frequency backscatter relied on single observations of the
backscatter and were thus not able to demonstrate the potential of multi-temporal C- and L-band
data that are now available from spaceborne missions. Based on spaceborne C- and L-band and
airborne P-band images acquired over a forest site in southern Sweden, we investigated whether C-
and L-band backscatter may complement retrievals of above-ground biomass from P-band. To this
end, a retrieval framework was adopted that utilizes a semi-empirical model for C- and L-bands and
an empirical parametric model for P-band. Estimates of above-ground biomass were validated with
the aid of 20 m-diameter plots and a LiDAR-derived biomass map with 100 m × 100 m pixel size. The
highest retrieval accuracy when not combining frequencies was obtained for P-band with a relative
root mean square error (RMSE) of 30% at the hectare scale. The retrieval with multi-temporal L- and
C-bands produced errors of the order of 40% and 50%, respectively. The P-band retrieval could be
improved for 4% when using P-, L-, and C-bands jointly. The combination of C- and L-bands allowed
for retrieval accuracies close to those achieved with P-band. A crucial requirement for achieving an
error of 30% with C- and L-bands was the use of multi-temporal observations, which was highlighted
by the fact that the retrieval with the best individual L-band image was associated with an error of
61%. The results of this study reconfirmed that P-band is the most suited frequency for the retrieval
of above-ground biomass of boreal forests based on backscatter, but also highlight the potential of
multi-temporal C- and L-band imagery for mapping above-ground biomass, for instance in areas
where the planned ESA BIOMASS P-band mission will not be allowed to acquire data.
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1. Introduction

Synthetic aperture radar (SAR) backscatter represents one of the Earth observation data types
that have shown potential for mapping forest above-ground biomass [1–3], i.e., the dry weight of trees
per unit area excluding belowground tree components. Although other data types and observables
are expected to allow for higher retrieval accuracies, in particular in high biomass forests, e.g., radar
polarimetry [4] or tomography [5], the use of backscatter observations is still of interest. SAR images
have been acquired globally for more than two decades by spaceborne C- and L-band missions and
will be acquired in the foreseeable future by several planned missions. In particular, the time series of
C- and L-band observations will complement data acquired by the BIOMASS P-band mission in few
years’ time.
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The correlation of radar backscatter measurements with above-ground biomass is a consequence
of the inherent correlations between the “sensed” aspects of forest structure and above-ground biomass.
Physical scattering models generally agree in that the penetration of the signal into the canopy and the
scattering from larger tree components increases with increasing wavelength. The relative contribution
of scattering arising from different tree components also depends on polarization, incidence angle,
environmental conditions (frozen/unfrozen conditions, plant water status), and tree architecture [6–9].
While at higher frequencies (X/C-band), backscatter is expected to originate primarily from smaller
tree components (i.e., needles, foliage, small branches), scattering from primary branches and stems
becomes relevant, if not dominant, at lower frequencies, e.g., P-band at HH polarization [6,7,10]. The
modeling therefore suggests that different radar frequencies and polarizations should best be suited for
estimating the biomass contained in different tree components and that the retrieval of above-ground
biomass should benefit from the availability of multi-frequency observations.

The inability of any single radar frequency to sense forest structure in its entirety has motivated
the exploration of multi-frequency approaches for estimating above-ground biomass [11–21]. While
the results of these studies tend to confirm that the use of multi-frequency radar data allows for
improved retrieval accuracies, only few studies investigated if the benefit of using multi-frequency
data actually lies in the fact that each frequency maximizes the sensitivity to the biomass contained in
specific tree components [12,14,15]. Based on airborne multi-frequency radar data (C,L,P), Kasischke
et al. [14] showed for pine forest in the southeastern United states that the biomass in branches could
be predicted with the highest accuracy and that total above-ground biomass was best estimated by
applying allometric relationships, converting radar-derived branch to total above-ground biomass.
Compared to a direct retrieval of above-ground biomass, for which the root mean square error (RMSE)
with respect to the mean biomass was 35.8%, the retrieval of above-ground biomass via radar-derived
estimates of branch biomass and allometric models resulted in an error of 22.5%. Dobson et al. [12]
proposed a retrieval approach in which above-ground biomass is estimated via independent estimates
of stem and crown biomass from polarimetric C- and L-band. For a forest site in northern Michigan,
Dobson et al. reported that stem biomass could be estimated with an RMSE of 11 t/ha, and branch
biomass with an RMSE of 5 t/ha. The sum of independent stem and branch biomass estimates allowed
for estimating above-ground biomass with an RMSE of 14 t/ha. A comparison of the performance of
the proposed retrieval approach with that achieved when estimating above-ground biomass directly
from the radar data was not presented. Such a comparison was presented in [19] for pine forests in the
southeastern United States. Harrell et al. [19] compared the performance of the approaches suggested
in [12,14] with the performance of a retrieval in which multi-frequency backscatter is directly related
to above-ground biomass. Based on SIR-C C- and L-band data, they showed that the three different
approaches produced above-ground biomass estimates with comparable accuracy (RMSE of 81 t/ha
for the direct retrieval; 85 and 87 t/ha for the methods proposed in [12,14], respectively). Airborne C-,
L-, and P-band observations were used for estimating the biomass in stems and canopy of conifers in
Yellowstone National Park in [15]. Saatchi et al. [15] reported that the retrieval of canopy biomass was
possible with similar accuracy when using L- or P-bands (R2 of 0.55); a combined use of L-HV and
P-HV backscatter yielded the highest accuracy (R2 of 0.73). In the case of stem biomass, the retrieval
performance was higher at P-band (R2 of 0.81) than at L-band (R2 of 0.57) and did not improve when
combining frequencies.

The results of existing studies on the retrieval of above-ground biomass and biomass components
were overall inconclusive with respect to the assumption that multi-frequency radar allows for
improved biomass estimates because each frequency/polarization maximizes the sensitivity to a
particular biomass component. Reasons for this may be associated with (i) the high inherent correlations
between total above-ground biomass and the biomass contained in different tree components hindering
the identification of causative relationships [22], or (ii) the effect of varying environmental imaging
conditions that potentially introduce backscatter variations of similar magnitude as the backscatter
changes associated with changing biomass. Most of the existing studies on the relationship of
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multi-frequency backscatter and component biomass relied on mono-temporal radar datasets and
were thus not able to account for differences in the imaging conditions. However, it was demonstrated
that C-band backscatter presents temporally and spatially variable relationships with biomass and
low temporal consistency depending on the soil and vegetation conditions (moisture, snow cover,
freeze/thaw) [23–25]. Although still relevant, environmental effects on the backscatter to biomass
relationship at lower frequencies (L/P-band) tend to be less pronounced [25–33].

Thanks to the availability of multiple images acquired during the year 2010 by spaceborne
ERS-2 and Radarsat-2 sensors (C-band), the ALOS PALSAR (L-band) sensor, and the airborne SETHI
instrument (P-band) over the forest site of Remningstorp in Sweden [34,35], the scope of our study was
to appraise the benefit of short- and long-wavelength observations of the SAR backscatter to estimate
forest above-ground biomass and biomass components so to advance the partial knowledge gathered
in previous work on such combination of frequencies. More specifically, the objectives of this study
were to assess:

• differences in the performance of the retrieval of above-ground, stem, and branch biomass between
C-, L-, and P-band,

• whether the joint use of multi-temporal C-, L-, and P-bands allows for improving the retrieval
of above-ground biomass compared to using data acquired at a single frequency, in particular
at P-band,

• and whether retrieval approaches in which above-ground biomass is estimated via independent
radar-derived estimates of stem and branch biomass allow for improving the retrieval.

2. Study Area and Reference Data

The study area coincided with the Remningstorp forest site located in southern Sweden (Figure 1,
left). The test site comprises about 1200 ha of managed forest dominated by Norway spruce, Scots
pine, and birch. Pines grow on sandy soils; spruce and birch on till. The topography is generally flat
with only minor ground elevation variations across the test site.

Figure 1. Location of the Remningstorp test site in Sweden (left). Circular plots established in
Remningstorp in 2010 with a LiDAR canopy surface model in the background (right) [35].

2.1. In Situ Data

The in situ data set consisted of 214 circular forest field inventory plots surveyed in the frame of
the BIOSAR campaigns [34,35] in September and October 2010 (Figure 1, right). The diameter of each
inventory plot was 20 m. In each plot, the inventory measured the diameter at breast height (dbh),
tree height (for a sub-sample of trees), species, and age. Estimates of biomass were obtained with
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allometric equations developed for spruce, pine, and birch, which considered dbh, age, site index, and
the last five years’ radial growth [36]. The equations are provided in the Supplementary Materials.
The set of equations was used to estimate the biomass contained in stems (incl. bark) and branches
(incl. leaves/needles), separately. The equations for birch were applied for all broadleaved species in
the test area. The error of the biomass estimates at tree level was reported as high as 30%, depending
on the species [30], but was expected to decrease to a level of a few percent when averaging over all
trees measured within a plot. The plots were labelled as spruce, pine, or deciduous forest, respectively,
when the stem volume of a species exceeded the volume of all other species in the plot. 130 plots
were labelled as spruce, 43 as pine, and 41 as deciduous. Except for two plots, the assigned species
contained more than 50% of the total stem volume. On average, the assigned species contained about
90% of the stem volume in a plot.

To identify major structural differences in the forests at the test site, Figure 2 illustrates the total
aboveground biomass and the biomass of stems and branches with respect to the age of spruce, pine,
and deciduous forests. Deciduous species, which in natural boreal forest succession are generally
replaced by conifers within few decades after disturbance, were characterized by an above-ground
biomass below 150 t/ha. Stem and branch biomass of deciduous forests hardly exceeded 50 t/ha. The
highest above-ground biomass of ~300 t/ha was reached by spruce after about 60 years of growth.
In terms of stem and branch biomass, the highest values of 250 and 50–60 t/ha, respectively, were
as well reached by spruce only. Pine, for which the majority of plots reported an age of more than
50 years, reached a maximum above-ground biomass of 150 t/ha. The age differences between spruce
and pine imply that at comparable levels of above-ground biomass, pine and spruce plots presented
clear structural differences. Since the proportion of above-ground biomass contained in branches
decreased with increasing age (Figure 2, bottom left), pine stands contained a higher proportion of
biomass in stems than spruce stands with similar above-ground biomass.

Figure 2. Above-ground (Bt, top left), stem (Bs, top center), and branch biomass (Bb, top right)
as functions of forest age. Proportion of above-ground biomass in branches as a function of age
(bottom left).

The structural differences between spruce, pine, and deciduous forests implied different allometric
relationships between branch and aboveground biomass (Figure 3, right). While the Pearson correlation
coefficients between branch biomass and above-ground biomass were comparable (0.9 for spruce, 0.89
for pine, 0.86 for deciduous forests), the allometric relationship in the case of spruce differed from the
relationships observed for pine and deciduous forests in that at comparable branch biomass levels the
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corresponding above-ground biomass was lower for spruce (~50%). The differences in the allometric
relationships between stem and above-ground biomass were less pronounced (Figure 3, left). The
Pearson correlation coefficients were close to one for all species. Due to differences in branch biomass,
the above-ground biomass of spruce was on average about 10 t/ha higher than for pine and deciduous
forests in stem biomass ranges above ~40 t/ha.

Figure 3. Relationship between stem and above-ground biomass (left) and branch and above-ground
biomass (right) for spruce, pine, and deciduous forests in Remningstorp.

2.2. LiDAR Data

An airborne LiDAR campaign was carried out in August 2010 using a helicopter-mounted laser
scanner [35]. The campaign covered an area of 22 km2. The average density of LiDAR returns was
69 m−2. The data were used to derive a canopy surface model (Figure 1, right) with a pixel size of
0.5 m × 0.5 m as well as area-based metrics characterizing forest density (i.e., the percentage of lidar
returns from above certain heights within the canopy) and height (i.e., percentiles of the canopy height
distribution) for each 10 m × 10 m cell of a regular grid imposed on the surface model. The LiDAR
metrics were used to produce an above-ground biomass map with a pixel size of 10 m × 10 m [35]. For
the retrieval, a multiple linear regression model, relating the canopy height and density metrics to
above-ground biomass, was calibrated with the aid of the forest field inventory plots surveyed in 2010.
Variables denoting the forest type (pine, spruce, mixed, young forest) were forwarded as candidate
explanatory variables in the regression. Validation with a separate set of seven 0.64-hectare large field
plots (80 m × 80 m), which had been established in Remningstorp for the BIOSAR-1 campaign in 2007
and revisited for the BIOSAR-3 campaign in 2010, resulted in an RMSE of 12.7% with respect to the
mean biomass [35].

2.3. Weather Data

Weather data from a weather station located ~10 km east of the test site were obtained from
the National Oceanic and Atmospheric Administration, National Climatic Data Center. The data
included daily information on minimum and maximum air temperatures, precipitation, and snow
depth. Figure 4 illustrates minimum and maximum temperatures as well as the daily precipitation
throughout the year 2010. Temperatures were mostly below 0 ◦C between January and end of February
as well as in December. In March and November, temperatures oscillated around 0 ◦C. Precipitation
was recorded in all months. According to the snow depth measurements, the ground was covered
with snow from January to end of March and from mid-November until the end of the year.
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Figure 4. Daily minimum and maximum air temperature and precipitation in 2010 measured at a
weather station located close to the test site in Remningstorp.

3. SAR Dataset

The SAR dataset consisted of spaceborne and airborne SAR images acquired at C-, L-, and P-bands
over the test site during 2010 (Table 1). It comprised 25 C-band images acquired by Radarsat-2 in
Wide Fine Quad-Pol mode in winter with look angles ranging from 21 to 41◦, 17 ERS-2 C-band images
acquired throughout all seasons, 4 ALOS PALSAR Fine-Beam dual-polarization (FBD) L-band images
acquired in summer and fall, 2 ALOS PALSAR Fine-Beam single polarization (FBS) L-band images
acquired in winter, and fully-polarimetric P-band images acquired in the frame of the BIOSAR-3
campaign by the airborne SAR system SETHI on September 23rd 2010 [35]. The airborne campaign
acquired P-band data repeatedly along different flight paths. Imagery from one flight path that covered
the majority of the in situ plots (169) was selected.

Pre-processing of the spaceborne imagery aimed at generating a set of co-registered, calibrated,
terrain corrected, speckle filtered, and geocoded images. In order to reduce speckle noise and to
obtain backscatter images with comparable pixel posting in range and azimuth, the Single Look
Complex images acquired by ERS-2, Radarsat-2, and ALOS PALSAR with different range and azimuth
resolutions (Table 1) were multi-looked with multi-looking factors in range and azimuth of: 1 × 6
(ERS-2), 2–4 × 5 (Radarsat-2), 3 × 8 (PALSAR FBS), and 2 × 8 (PALSAR FBD). Images from each
sensor were co-registered in slant-range geometry using cross-correlation techniques [37]. Backscatter
variations associated with varying pixel scattering areas over sloped terrain were compensated for
according to [38]. The multi-channel filter introduced in [39] was applied to reduce speckle. The
equivalent number of looks (ENL) of the filtered backscatter images was estimated for a number
of homogeneous forest patches with the ratio of the squared mean backscatter to the variance. On
average, the ENLs of the filtered ERS-2, Radarsat-2, and ALOS PALSAR images were 18, 34, and 18,
respectively. The backscatter images were resampled from radar to map geometry with geocoding
lookup tables that were created using orbit information and an elevation model with 50 m pixel size
from the Swedish National Land Survey (Lantmäteriet) [37]. The geocoding entailed an oversampling
of the images to 10 m × 10 m pixel size to match with the pixel size of the airborne data described below.

Table 1. Synthetic aperture radar (SAR) dataset for Remningstorp.

Band Sensor Polarization Look Angle Ground-Range and
Azimuth Resolution No. Acquisition

Months

C ERS-2 VV 23◦ 25 m × 4 m 17 1,3–12

C RADARSAT-2 HH, HV, VH,
VV 21–41◦ 7–13 m × 5 m 25 1,2,3,11,12

L ALOS
PALSAR

HH
HH, HV

34◦

34◦
8 m × 3 m

15 m × 3 m
2
4

1,2
8,9,10

P SETHI HH, HV, VH,
VV 24–62◦ 0.9–2 m × 0.8 m 1 9

The airborne data had already been pre-processed to calibrated, terrain corrected, and geocoded
backscatter images by the data providers [35]. The topographic corrections included a compensation
for pixel scattering area variations based on the sine of the local incidence angle. In this study, the
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images with a pixel size of 1 m × 1 m were spatially averaged to a 10 m × 10 m pixel size and resampled
to the map coordinate system that was used for the spaceborne data. The ENL of the backscatter
images with 10 m pixel size was ~25.

Local incidence angle maps, θ, were used to convert all backscatter images from σ0 to γ0:

γ0 = σ0/ cosθ (1)

4. Methods

Modelling of the SAR backscatter as a function of total above-ground, stem, and branch biomass
has been investigated in the past by means of semi-empirical models [27,40], a wide range of empirical
parametric models [12,14,15,30,31,41], as well as non-parametric modeling approaches [42,43]. Based
on an extensive survey reported in [1], for this study we selected those presenting the most robust
performance across a wide range of imaging conditions.

4.1. Retrieval Model for C- and L-Band Backscatter

For the case of C- and L-band, we opted for a water-cloud type of model [27,40]:

σ0
f or = σ

0
grT f or + σ

0
veg

(
1− T f or

)
(2)

in which the backscatter from forested terrain σ0
for is modeled as the sum of scattering from the

forest floor and canopy. The scattering contributions from the forest floor, σ0
gr, and canopy, σ0

veg, are
weighted by the forest transmissivity, Tfor. Tfor is expressed a function of the percent canopy cover η,
canopy height h, and the two-way signal attenuation within the canopy, α [40]:

T f or = (1− η) + ηe−αh. (3)

Similar to what was proposed in [44] for the modeling of backscatter as function of biomass, it is
assumed that the transmissivity decreases exponentially with increasing above-ground, stem, and
branch biomass (i.e., Bt, Bs, Bb):

T f or = e−βt,s,bBt,s,b (4)

where βt,s,b denotes the empirical transmissivity parameter.
The model used for C- and L-band backscatter in Equations (2) and (4) comprises three unknowns:

σ0
gr, σ0

veg, and β. These models are typically trained with a least-squares regression using a set of
measurements of biomass. When the reference data available consist of measurements taken at small
inventory plots, the physical meaning of the model parameters estimates becomes questionable because
the observations of the backscatter and the biomass are affected by a large spread [45]. For this reason,
it is advised to reduce the numbers of degrees of freedom and opt for a model calibration in which
only σ0

gr and σ0
veg are estimated by means of regression and β is defined independently from the

SAR observations. One possibility is to use LiDAR-driven simulations of the transmissivity, based
on Equation (3), where Tfor is expressed as a function of canopy cover η, tree height h, and two-way
attenuation, α. Similar approaches for characterizing the relationship between transmissivity at C- and
L-band and forest biophysical parameters (growing stock volume or above-ground biomass) were
explored in [44,46–48] for boreal forest sites in Sweden and Siberia as well as temperate forests in the
northeastern United States.

Once the model parameters have been estimated for each C- and L-band image in the
multi-temporal stack of observations, the model in Equations (2) and (4) is inverted to estimate
image-specific total above-ground, stem, and branch biomass:
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Bt,s,b = −β
−1
t,s,bln


[
σ0

veg − σ
0
f or

]
[
σ0

veg − σ
0
gr

]
. (5)

Due to the asymptotic shape of the relationship between biomass and SAR backscatter, the inversion
necessitated a strategy for dealing with backscatter observations outside the range of modelled
backscatter values. Assuming an increasing trend of the backscatter as a function of biomass, a biomass
of 0 t/ha was assigned for backscatter values below σ0

gr. At the other end of the biomass distribution,
models were inverted up to the backscatter value corresponding to the highest above-ground, stem, or
branch biomass reported in the inventory data, Bmax. In the retrieval of above-ground biomass, Bmax

was set to 316 t/ha. In the case of the retrieval of stem and branch biomass, Bmax was 257 t/ha and
59 t/ha, respectively. Bmax was associated to all backscatter measurements that were larger than the
maximum modeled backscatter.

4.2. Retrieval Model for P-Band Backscatter

To model the P-band backscatter as a function of biomass, we opted for an empirical model
because (i) the model in Equation (2) neglects double-bounce and multiple scattering contributions,
and (ii) a water-cloud model with a multi-path component as proposed in [26] cannot be easily trained
and inverted to estimate biomass. The empirical model in Equation (6) relates the backscatter in HV
polarization (in dB) and the HH/VV polarization ratio to the logarithm of biomass:

log
(
Bt,s,b

)
= a0 + a1γ

0
hv + a2(γ

0
hh − γ

0
vv) (6)

where a0, a1, and a2 are regression parameters to be estimated using a set of in situ measurements of
biomass. When assessing the retrieval of above-ground biomass with the P-band data acquired over
two forest sites in Sweden (Remningstorp and Krycklan), Soja et al. [31] suggested a similar model,
which in addition considered a term related to the slope of the terrain. In Equation (6), this term was
neglected since the topography at the test site was mostly flat. The biomass estimates obtained with
Equation (6) were bias-corrected when reconverting biomass from logarithmic to linear scale [49].

4.3. Multi-Image Estimation of Biomass

Having available multiple estimates of biomass derived from individual scenes, a further estimate
can be obtained by combining the individual values in a weighted manner:

Bmt =
N∑

i=1

wiBi

/ N∑
i=1

wi (7)

with

wi =
RMSE−2

train,i∑N
j=1 RMSE−2

train, j

. (8)

In Equations (7) and (8), subscripts for total above-ground, stem, and branch biomass were omitted
for the sake of readability. The weights for each individual scene were defined inversely proportional
to the mean square error of the predictions obtained for samples selected for model training. Across
the multi-temporal/-frequency/-polarization stack of observations those images were given the most
weight that presented the best sensitivity to the biomass variable of interest. To avoid that the artificial
estimates of 0 t/ha or the maximum retrievable biomass, Bmax, would affect the final estimate of biomass
for C- and L-band, an infinitesimal low weight was applied to such values. The artificial estimates
were only considered in case none of the images in the stack allowed for a valid estimate.
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4.4. Retrieval of Aboveground Biomass Via Estimates of Stem and Branch Biomass

To assess whether an indirect retrieval of above-ground biomass from its components (i.e., stem
and branch biomass) would outperform the direct retrieval, we evaluated (i) the sum of estimates of
stem and branch biomass [12], and (ii) the above-ground biomass estimated using the branch biomass
predicted from the SAR data [14]. For predicting above-ground biomass from radar-derived estimates
of branch biomass, a model of the form

Bt = (aBb)
b (9)

was fitted to the observed relationships between branch biomass and the total above-ground biomass
(Figure 3) to estimate the parameters a and b for each tree species.

5. Results

5.1. Model Calibration

The water-cloud-type of model in Equations (2) and (4) for C- and L-band, and the empirical
model in Equation (6) for P-band were calibrated repeatedly for each backscatter acquisition by means
of regression using 67% of the plots available. The remaining 33% of plots were used for assessing the
retrieval performance. The samples used for training and testing were selected randomly in intervals
of biomass to ensure a comparable distribution of biomass in the training and testing datasets. The
retrieval accuracies reported in Section 5.2 represent the average of 20 iterations.

In the case of the water-cloud model, only the parameters σ0
gr and σ0

veg were calibrated by
means of regression. The transmissivity parameter β in Equation (4) was estimated with the aid of
LiDAR-based simulations of the transmissivity, Tfor, at C- and L-bands. Based on Equation (3), Tfor was
simulated as a function of canopy cover η, tree height h, and two-way attenuation, α. Canopy cover η,
was estimated for each inventory plot with the percentage of LiDAR returns from heights of more than
2 m above the forest floor, and h was calculated with the 95th percentile of the vertical distribution of
returns. Values for α in the range of 0.5 to 2 dB/m were used in the simulation, where 0.5 dB/m was
considered appropriate for L-band [23,50]. An attenuation of 1 dB/m was assumed for C-band images
acquired under frozen conditions, 2 dB/m for images acquired under unfrozen conditions [47].

In Figure 5, the simulated forest transmissivity is shown as function of total above-ground, stem,
and branch biomass of spruce, pine, and deciduous forest, respectively. The figure suggests that a
negative exponential relationship exists between transmissivity and each biomass component with
different trends depending on tree species. The parameter β was estimated by fitting Equation (4)
to the observed relationship between transmissivity and above-ground, stem, and branch biomass.
Higher values for βwere obtained for deciduous forest than for coniferous forest. The lowest estimates
for β in the case of total above-ground and stem biomass were obtained for pine. In the case of branch
biomass, the differences between spruce and pine were minor.

Possible ranges for the parameter β had so far been investigated primarily with respect to growing
stock volume, i.e., the volume of stems per unit area. Values of the order of 0.006 and 0.004 ha/m3 at C-
and L-bands, respectively, with some alterations associated with changing imaging conditions had
been suggested for boreal forest in [23,27,44,46,47,51]. When considering that the wood density for the
species in question is in the range of 0.4 to 0.5, the values for β obtained for the case of stem biomass
(Figure 5) appear to be in line with those obtained for growing stock volume.
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Figure 5. Simulated forest transmissivity for pine (red), spruce (blue), and deciduous (green)
forests based on LiDAR-derived height and canopy cover as function of above-ground, stem, and
branch biomass.

5.2. Retrieval of Above-Ground, Stem, and Branch Biomass

The retrieval of total above-ground, stem, and branch biomass was assessed:

• for each scene in the multi-temporal stack of C-, L-, and P-band observations (Section 5.2.1),
• per frequency/polarization by combining all multi-temporal estimates from backscatter

observations at a particular frequency/polarization (Section 5.2.2),
• for different frequency combinations (Section 5.2.3).

We then assessed whether implementing a tree species-specific training of the models in Section 4
improves the retrieval accuracy with respect to a generic training based on all samples available in the
dataset of in situ measurements (Section 5.2.4). Based on the derived estimates of stem and branch
biomass, we then evaluated if retrieval approaches in which above-ground biomass is estimated via
estimates of stem and branch biomass allow for improving the retrieval compared to the direct retrieval
of above-ground biomass (Section 5.2.5). Finally, the retrieved biomass with data acquired at a single
frequency or at multiple frequencies are compared to the independent dataset of biomass estimates
derived from LiDAR (Section 5.2.6). To appreciate the performance of each retrieval, we quantified the
retrieval error in the form of the RMSE relative to the mean biomass in the in situ dataset used for
validation (RMSEr).

5.2.1. Single Image Retrieval

The retrieval performance when using individual scenes for estimating above-ground, stem,
and branch biomass at the plot level in Remningstorp depended on the frequency and polarization
(Figure 6). For HH, HV, and VH C-band backscatter, the relative RMSE when estimating above-ground
and stem biomass was on average of the order of 90 to 100% (Figure 6). The retrieval error for branch
biomass was on average about 10% lower. In the case of VV polarization, which included the ERS-2
images acquired in all seasons, the error was on average above 100% for all three biomass variables.
The retrieval performance at C-band depended strongly on the imaging conditions and varied in a large
range. The highest errors were generally associated with images acquired in periods when snow melts
in spring. The lowest errors instead characterized images acquired under stable frozen conditions in
winter. The error generally decreased with increasing incidence angle. For Radarsat-2 images acquired
at cross-polarization with steep incidence angles (21◦), the retrieval error for aboveground, stem, and
branch biomass was, on average, 10% higher than the error obtained with images acquired at shallow
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incidence angles (41◦). In the case of co-polarization, the differences were of the order of 2%. At L-band,
the relative RMSE was of the order of 80% and 90% when estimating total above-ground and stem
biomass, respectively. For branch biomass, the error approached 60% (Figure 6). Differently than
at C-band, the errors remained rather constant in time and varied by less than 10%, except for two
estimates of branch biomass using HH-polarized images acquired under frozen conditions in winter,
which were characterized by an approximately 20% larger retrieval error (Figure 6). The stem biomass
retrieval, instead, was not affected by the frozen conditions. In the case of P-band, the relative RMSEs
for total above-ground, stem, and branch biomass were 42%, 45%, and 41%, respectively (Figure 6).

Figure 6. Relative RMSE (RMSEr) of above-ground (left), stem (center), and branch (right) biomass
with respect to the inventory at plot level for single- and multi-image retrieval. Retrieval statistics are
grouped for each given combination of frequency and polarization. In the case of P-band, a retrieval
model based on HH, VV, and HV polarizations was used, which is why results are not reported per
polarization. For the single-image retrievals, the black circles denote the median RMSEr, the thick lines
represent the inter-quartile range of RMSEr, and the thin lines the span of RMSEr values. The diamonds
(♦) denote the multi-temporal retrieval RMSEr.

5.2.2. Multi-Temporal Retrieval

The retrieval performance improved both at C- and L-bands when combining all single image
estimates per polarization with Equations (7) and (8). The accuracy of the multi-temporal retrieval
results for each frequency and polarization are shown in Figure 6 (diamonds). The multi-temporal
combination of C-band derived estimates of above-ground, stem, and branch biomass, respectively,
resulted in relative RMSEs of 52–55% (above-ground), 56–60% (stem), and 47–50% (branch) for the
different polarizations. In the case of L-HH, the relative RMSEs improved to 58%, 63%, and 49%; in the
case of L-HV to 64%, 70%, and 51% for above-ground, stem, and branch biomass, respectively. Since
only a single acquisition was available, the benefit of combining multi-temporal observations could
not be evaluated in the case of P-band.

5.2.3. Multi-Frequency Retrieval

Total above-ground, stem, and branch biomass were estimated using all possible combinations of
frequencies in order to identify the set of frequencies that allow for the best possible retrieval accuracy.
Figure 7 illustrates the retrieval performance in terms of the relative RMSE when combining individual
estimates of above-ground, stem, or branch biomass from all available (i) C-band, (ii) C- and L-band,
(iii) C- and P-band, (iv) L-band, (v) L- and P-band, (vi) P-band, and (vii) C-, L-, and P-band backscatter
images based on Equations (7) and (8).
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Figure 7. Relative RMSE for estimates of total above-ground, stem, and branch biomass derived from
different combinations of multi-temporal C-, L-, and P-bands.

The highest accuracy for all three biomass variables were achieved using L- and P-band backscatter
jointly. The relative RMSE for total above-ground, stem, and branch biomass improved to 40%, 42%,
and 37%, respectively, and was therefore about 2 to 4% better than the retrieval solely based on P-band.
Adding C-band to the stack of L- and P-band observations did not improve the retrieval performance.
On the other hand, the combined use of C- and L-bands improved the retrieval performance (RMSEr:
47%, 51%, 40%) compared to the C- (RMSEr: 50%, 53%, 43%) and L-band (RMSEr: 55%, 61%, 46%)
only cases.

5.2.4. Retrieval per Species

The retrieval with multi-temporal L- and P-band backscatter could be further improved when
calibrating the models presented in Section 4 separately for spruce, pine, and deciduous forest (Figure 8).
Calibrating separate models implied that the relative RMSE decreased from 40%, 42%, and 37% to 37%,
40%, and 31% for above-ground, stem, and branch biomass, respectively. The largest improvements
were observed for pine. The relative RMSE for the estimates of total above-ground, stem, and branch
biomass of pine decreased from 35%, 34%, and 45% to 24%, 25%, and 25%, respectively. In deciduous
forest, the relative RMSE decreased from 71%, 74%, and 71% to 67%, 70%, and 57%, respectively. In the
case of spruce, the retrieval error remained unchanged (RMSEr of 37%, 40%, 29%).



Remote Sens. 2019, 11, 1695 13 of 20

Figure 8. Comparison of in situ plot-level values of above-ground, stem, and branch biomass with
radar-derived estimates obtained without (left column) or with (right column) consideration of species
in the model calibration.

5.2.5. Direct vs Indirect Retrieval of Above-Ground Biomass

To assess whether an indirect retrieval of aboveground biomass from its components would
outperform the direct retrieval, we evaluated (i) the sum of the estimated stem and branch biomass,
and (ii) the above-ground biomass estimated with Equation (9) using the branch biomass predicted
from the SAR data against the direct estimates of above-ground biomass.

When calibrating models separately for spruce, pine, and deciduous forests, the sum of
independent stem and branch biomass estimates derived from multi-temporal L- and P-band backscatter
yielded almost identical above-ground biomass estimates as the direct retrieval. The relative RMSE of
the retrieved above-ground biomass compared to the in situ observations was 37% (Figure 9, left), thus
being almost identical to the value obtained when estimating above-ground biomass directly from the
SAR data (Figure 8, upper right).
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Figure 9. Comparison of in situ above-ground biomass with estimates obtained by summing
independent radar-derived stem and branch biomass estimates (left), or by applying allometric
relationships between radar-derived branch and above-ground biomass (right).

For converting estimates of branch biomass derived from multi-temporal L- and P-band backscatter
to above-ground biomass, the parameters a and b in Equation (9) were estimated by fitting the allometric
function to the observed relationship between branch and above-ground biomass shown in Figure 3
(spruce: a = 0.79, b = 1.53; pine: a = 7.73, b = 0.96; deciduous: a = 9.41, b = 0.88). When applying
the allometric relationships to convert the radar-derived branch biomass estimates to above-ground
biomass, the error was 42% (Figure 9, right) and thus 5% larger than in the case of the direct retrieval.

5.2.6. Comparison with LiDAR-Derived Above-Ground Biomass

Radar-derived above-ground biomass estimates were finally compared against the LiDAR-derived
biomass map to verify that observations at the scale of the inventory plots are consistent with a spatially
explicit dataset of biomass even if compiled at coarser spatial resolution. Similar to what was done at
plot-level (Section 5.2.3), the retrieval of above-ground biomass with the radar data was carried out
repeatedly to test the retrieval performance for all possible combinations of multi-temporal C-, L-, and
P-band backscatter after aggregating all backscatter images as well as the LiDAR map to 100 m × 100
m pixel size. The one-hectare scale was selected to allow for reduction of pixel-wise noise in each of
the datasets being compared so to be able to identify major systematic differences.

Figure 10 illustrates the relationship of radar- and LiDAR-derived estimates of above-ground
biomass for four (out of the seven tested) retrieval scenarios (cf., Section 5.2.3), i.e., a retrieval based on
(i) P-band backscatter (top left), (ii) multi-temporal L-band backscatter (top right), (iii) multi-temporal
L- and C-band backscatter (bottom left), and (iv) all available P-, L-, and C-band backscatter images
(bottom right). Across all possible combinations, the lowest error of 28% was achieved when combining
estimates obtained from SAR backscatter acquired at the three frequencies considered in this study
(Figure 10, bottom right). The retrieval with P-band only resulted in a relative RMSE of 32% (Figure 10,
upper left). The combination of multi-temporal L- and C-bands resulted in an error of 32% (Figure 10,
bottom left) and clearly reduced the retrieval error compared to retrieval with multi-temporal L- or
C-bands separately, for which the relative RMSEs were 39% and 51%, respectively. In line with what
was observed at plot level (Figure 6), we found that the availability of multi-temporal observations for
the retrieval with C- and L-bands was crucial. Across all biomass estimates derived from individual C-
or L-band backscatter images, the lowest error of 61% was associated with a cross-polarization L-band
backscatter image acquired in August.
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Figure 10. Comparison of LiDAR-derived above-ground biomass (AGB) estimates with estimates
obtained with different combinations of multi-temporal C-, L-, and P-band backscatter at the
one-hectare scale.

The results generally confirmed the indications obtained from the analysis undertaken at the level
of inventory plots. The combination of P-band with multi-temporal C- and L-bands allows for only
minor improvements of 4% compared to the retrieval with P-band only; nonetheless, multi-temporal
C- and L-band observations of the SAR backscatter allow for estimating above-ground biomass with
accuracies close to those achieved with a single P-band observation.

6. Discussion

The retrieval performance when using different combinations of multi-temporal C-, L-, and P-band
images was assessed with the aid of forest inventory plots and a LiDAR-derived biomass map with
100 m × 100 m pixel size. The retrieval with a single P-band observation resulted in an error of 32%
at hectare-scale (Figure 10) and 42% at the scale of the plots in terms of the relative RMSE (Figure 6).
Multi-temporal C- and L-band data allowed for estimating above-ground biomass with errors of 51%
and 39% at the hectare scale and 50% and 55% at plot scale, respectively. When combining P-band with
multi-temporal backscatter observations acquired at higher frequencies, the error could be improved
by 2% at plot- (Figure 7) and 4% at hectare-scale (Figure 10). The results confirm that P-band is the most
suited frequency for estimating above-ground biomass and indicate that only limited improvements can
be achieved by combining P-band backscatter with observations acquired at higher frequencies. When
combined, however, C- and L-bands allowed for retrieving above-ground biomass with comparable
accuracy as a single P-band observation, provided that multi-temporal observations are available. The
combined use of multi-temporal C- and L-band resulted in retrieval errors of 32% at the hectare scale
and 47% at the plot scale. Multi-temporal coverage was crucial at both frequencies since the retrieval
with single C- or L-band observations, even when acquired under preferable imaging conditions,
resulted in poor accuracies (Figure 6). The effect of varying environmental imaging conditions and
the importance of using multi-temporal observations for the retrieval with C- or L-band have been
analyzed for different sites in the boreal and boreal–temperate transition zone in Sweden, Finland,
Siberia, or the northeastern United States [16,27–29,51–53]. All studies confirmed that the imaging
conditions strongly affected the backscatter to biomass relationships and the potential to estimate
biomass from individual backscatter images. The seasonal alterations in the backscatter to biomass
relationships due to changes in soil moisture, plant water status, or freeze/thaw transitions, as well as
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the conditions for which C- or L-band backscatter presented the highest sensitivity to biomass were
found to differ between the different boreal forest sites [27,45]. The integration of multi-temporal
observations in the retrieval has proven to be an effective approach for reducing/compensating for such
local differences and to produce biomass maps with consistent accuracy across larger areas [48,52].
In the case of L-band, the multi-temporal retrieval of above-ground biomass, or the closely related
parameter growing stock volume, at different forest sites in the boreal zone achieved accuracies mostly
in the range of 25% to 45% at the scale of forest stands with sizes above 1 hectare [4,16,27,29,53,54].
The differences in the reported accuracies between the sites may be associated with variable numbers
of available backscatter images, the lack of backscatter images acquired under what may be considered
“optimal” conditions at a particular forest site, or forest structural differences [27,48]. The results
of this study advocate a combined use of multi-temporal L- and C-band backscatter as a means to
further improve the robustness of L-band retrievals of biomass with respect to spatially and temporally
varying environmental imaging conditions. Due to the limited number of P-band imagery that has
been acquired by airborne campaigns, limited experience has so far been gathered on the temporal
stability of the P-band backscatter to biomass relationship and the advantage of having multi-temporal
P-band observations [30,32]. A comparison of several P-band backscatter images acquired over a
period of two months in late winter and spring over Remningstorp suggested very high temporal
consistency of the measurements [30], i.e., the availability of multi-temporal data may be less crucial.

The retrieval could be improved when accounting for structural differences between pine, spruce,
and deciduous forests in Remningstorp in the modeling of C-, L-, and P-band backscatter as a function
of above-ground biomass (Figure 8). The structural differences between species revealed in form of
(i) different proportions of biomass in stems and branches at comparable levels of total above-ground
biomass for pine and spruce (Figure 2), and (ii) different relationships between the transmissivity
(simulated with the aid of the LiDAR data) at C- and L-band and above-ground biomass (Figure 5). The
improvements when using L- and P-band were most pronounced for pine-dominated stands, for which
the retrieval error in terms of the relative RMSE reduced for 11% (RMSEr of 35% vs 24%). In the case of
deciduous forest, the improvements were of the order of 4% (RMSEr of 71% vs 67%). In the case of
spruce, i.e., the most abundant species in the test area, no improvements were achieved (RMSEr of 37%),
presumably because the retrieval when not considering species was mostly optimized for spruce. Since
structural differences between species are generally not known a priori when mapping above-ground
biomass with radar, new approaches for optimizing the retrieval with respect to differences in forest
structure need to be explored.

We investigated whether approaches in which above-ground biomass is estimated via independent
radar-derived estimates of branch and/or stem biomass [12,14] are better suited for exploiting the
complementarity of information on forest structure and biomass contained in multi-frequency radar
backscatter than approaches aiming directly for the estimation of above-ground biomass. When
comparing the retrieval performance for branch, stem, and above-ground biomass based on those
backscatter images in the multi-temporal and multi-frequency stack of observations with maximum
sensitivity to the biomass component in question, we found that the retrieval of branch biomass
outperformed the retrieval of stem and above-ground biomass. When using L- and P-bands, the
relative RMSE at plot-level was 31% in the case of branch biomass, 40% in the case of stem biomass,
and 37% in the case of above-ground biomass (Figure 8); note that branch biomass was estimated
with higher accuracy than stem or above-ground biomass regardless of the combination of frequencies
that were used (Figure 7). In line with what was reported in [14], the retrieval results suggested that
the radar signals primarily sense the canopy and that radar-derived estimates of total above-ground
biomass, in essence, reflect the allometric relationship between branch and total above-ground biomass.
However, the retrieval of above-ground biomass via radar-derived branch biomass estimates and
allometric models relating branch to above-ground biomass [14] was found to perform 5% worse
than the retrieval in which multi-frequency backscatter is used to estimate above-ground biomass
directly (Figure 9). This result may be seen as an indication that there is information on above-ground
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biomass in the backscatter measurements that do not only reflect the biomass contained in the canopy.
The test of a retrieval approach in which independent radar-derived estimates of stem and branch
biomass are summed [12] seemed to confirm this interpretation. With this approach, above-ground
biomass estimates were obtained with an error that was 5% lower than that obtained when estimating
above-ground biomass via radar-derived branch biomass and allometric models (Figure 9). Overall,
the results did not suggest that the retrieval of above-ground biomass can be improved by estimating
above-ground biomass via radar-derived estimates of stem and/or branch biomass since none of the
two “indirect” approaches outperformed the direct retrieval of above-ground biomass.

7. Conclusions

In this study, we investigated the benefit of combining multiple backscatter observations acquired
at C-, L-, and P-bands for the retrieval of above-ground biomass over a forest site in southern Sweden.
In particular, the scope was to benchmark P-band only retrievals with retrievals adding observations
at short wavelengths. When using the different frequencies separately, P-band backscatter allowed for
estimating above-ground biomass with the lowest error of the order of 30% at the hectare scale and 40%
at the level of forest inventory plots. The retrieval with multi-temporal L- and C-bands was instead
characterized by errors of the order of 40% and 50% at the hectare scale, respectively. The results
therefore reconfirmed that P-band is the most suited frequency for estimating above-ground biomass.
Complementing P-band retrievals of biomass with multi-temporal C- and L-band observations did not
allow for major improvements of the retrieval accuracy. However, we found that the combination of
multi-temporal C- and L-band backscatter allowed for retrieval accuracies close to those achieved with
single P-band observations. Further tests at other boreal forest sites (for instance at less managed forest
sites) are advised to evaluate if the mapping of biomass with multi-temporal C- and L-band backscatter
with error levels comparable to those obtained for Remningstorp (i.e., 30%) is possible across larger
boreal areas. Nonetheless, the results of this study clearly demonstrate that it is worthwhile to exploit
the abundance of C- and L-band data to be acquired globally in the years to come by existing and
planned missions such as the ESA Sentinel-1, Radarsat Constellation, JAXA ALOS-2 and ALOS-4, or
NASA-ISRO NiSAR missions for the mapping of above-ground biomass, even after the launch of
the ESA BIOMASS mission. The use of C- and L-band data may be a viable option for (i) mapping
above-ground biomass in areas where the BIOMASS mission will not be able to acquire data, e.g., in
boreal North America and Europe [55], and (ii) tracking changes in biomass over several decades of C-
and L-band observations.
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