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Abstract: Recent advances in Convolutional Neural Networks (CNNs) have attracted great attention
in remote sensing due to their high capability to model high-level semantic content of Remote
Sensing (RS) images. However, CNNs do not explicitly retain the relative position of objects in
an image and, thus, the effectiveness of the obtained features is limited in the framework of the
complex object detection problems. To address this problem, in this paper we introduce Capsule
Networks (CapsNets) for object detection in Unmanned Aerial Vehicle-acquired images. Unlike
CNNs, CapsNets extract and exploit the information content about objects’ relative position across
several layers, which enables parsing crowded scenes with overlapping objects. Experimental results
obtained on two datasets for car and solar panel detection problems show that CapsNets provide
similar object detection accuracies when compared to state-of-the-art deep models with significantly
reduced computational time. This is due to the fact that CapsNets emphasize dynamic routine instead
of the depth.

Keywords: unmanned aerial vehicles; object detection; convolutional neural networks; capsule
networks; dynamic routing

1. Introduction

Unmanned Aerial Vehicles (UAVs) are miniaturized pilotless aircrafts that have proven very useful
for a broad range of military applications (e.g., bomb detection, surveillance) and civilian/scientific
applications (e.g., item shipping, disaster management, precision agriculture, filming and journalism,
archeological surveying, geographic mapping). Their size enables them to reach targets of interest that
are rather inaccessible or hazardous for a human operative. Moreover, they are environment-friendly,
cost-effective, and operable (remotely) in real-time or pre-programmed, notwithstanding their
customizability. For instance, they can carry multiple sensors, which is very advantageous to
acquire data in various modalities and fine details (e.g., high resolution images). These peculiarities
explain why UAVs have been bearing an ongoing use in both research and industry. In this respect,
remote sensing is one of the disciplines that benefits largely from the adoption of UAV platforms [1-6].
For a more in-depth review regarding UAVs and their uses, the reader is referred to [7-10].

Recognition at object and scene levels is arguably one of the most popular topics in remote sensing.
A typical pipeline proceeds by drawing raw or handcrafted attributes, which are opportunely fed
into a classifier for further decision [11-16]. Although such solutions can yield reasonable results,
they remain limited when addressing multispectral or hyperspectral images [17,18] since they hold
relatively (to UAVs) low spatial resolution, so they usually fail to accurately recognize or identify
the objects or materials of interest. This constitutes a bottleneck in the classification process since

Remote Sens. 2019, 11, 1694; d0i:10.3390/rs11141694 www.mdpi.com/journal/remotesensing


http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2175-7072
http://www.mdpi.com/2072-4292/11/14/1694?type=check_update&version=1
http://dx.doi.org/10.3390/rs11141694
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 1694 20f 13

a semantic object may be represented by a few pixels. Nevertheless, thanks to the Extremely High
Resolution (EHR) of UAV-acquired images, mitigating the semantic gap is far more accessible. However,
beyond the gain in spatial context, adopting EHR data may need handling subtle details such as object
orientation, illumination, and scale changes, among others, due to the fact that such details become
more challenging at higher resolutions [19,20]. Thus, handcrafted features are not robust enough in
order to accommodate such changes.

Deep learning has demonstrated cutting-edge performance in the general computer vision lately.
For instance, it has been tailored to scene classification [21,22], scene/object segmentation [23,24], object
detection [25,26], and image retrieval [27,28], and recently in remote sensing [29-32]. In particular,
Convolutional Neural Networks (CNNs) are the most widely used models among deep architectures.
Typical CNNs operate over three steps. The first two consist of convolving the input image at hand with
an ensemble of kernels (filters) of a predefined size to produce a bunch of feature maps. The convolution
filters can be in various sizes and numbers. These two parameters define the number of the obtained
feature maps. Further, these latter are down-sampled by the way of pooling in order to reduce the
processing load but also to expand the field of view of the subsequent layers. Therefore, these two steps
(convolution and pooling) are consecutively replicated several times up to a certain predefined depth
(layer), where the size and number of kernels may vary among the layers. Finally, the obtained feature
maps are aggregated at a fully connected layer, which projects the learned features into a likely class to
which they belong (when a classification problem is considered). As proven in the literature, deeper
architectures convey more information with the rich representations of the input images. Nonetheless,
this is achieved at the cost of large processing overheads and large labeled training datasets in order to
accomplish convergence of a deep CNN architecture. The basic technique that has been implemented
to address this issue is the data augmentation, which consists in introducing some changes such
as rotation and mirroring on the original images in order to enrich the training dataset with more
samples [33,34]. Another efficient way is to exploit models pre-trained on largescale computer vision
archives, such as ResNet [35], GoogLeNet [36], VGGNet [37], and AlexNet [33]. Another challenging
aspect in object detection in remote sensing images is the fact that objects manifest various rotation
changes, notwithstanding the orientation of the acquisition platform itself (e.g., a sensor that is mounted
on a UAV may capture images, thus objects, of various orientations owing to the way in which the
UAV is manoeuvred). On this point, several works attempt to solve this problem by incorporating
a rotation-invariant property into deep models [38-40].

Although the CNN pooling operations widen up (to some extent) the field of view (i.e., the image
portion under analysis) by narrowing the size of the feature maps gradually, spatial context of objects
in an image is largely suppressed at later fully connected layers of the network. In other words, CNNs
do not take into account the relative location of an object with respect to other objects present in the
same image. G. Hinton's efforts capitalized on this observation, which led to the definition of Capsule
Networks (CapsNets) [41], thanks to the so-called dynamic routing by agreement mechanism that
propagates the co-occurrence of objects and smaller parts across a chain of capsules. Thus, with proper
learning, the CapsNet architecture inspired by the (reversed) rendering process has proven to maintain
the inner equivariance of objects under high overlap scenarios. Unlike CNN, which assumes that
the vision system uses the same knowledge at all locations in an image (i.e., features learned in one
location are available at other locations), the CapsNet network, during training, progressively learns
a transformation matrix for each pair (i.e., current and above) of capsules, which enables modelling the
part-whole hierarchical relationships among the entities (e.g., the orientation of an object part with
respect to other parts of the object, or else with regards to the whole structure of the object). This is
a paramount property to effectively parse crowded scenes with overlapping objects, especially in the
case of high resolution of UAV images, where the complexity multiplies as mentioned earlier.

This paper adopts CapsNets to address the problem of object detection in UAV-acquired images.
The CapsNet architecture is validated on two datasets in the framework of the car and solar panel
detection. Exhaustive experiments have been conducted to assess the performance of CapsNets on
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both datasets with regards to accuracy and processing requirements. We also compare the CapsNet
architecture with the state-of-the-art object detection algorithms in the remote sensing literature.

2. Capsule Networks

2.1. Knowledge Propagation via Routing by Agreement

As mentioned previously, CNNSs offer a high generalization capability in object recognition and
detection tasks. However, their capability of modeling the relative positions of objects in an image is
limited. Furthermore, the (standard) max-pooling operation omits fine details that could be informative
for delicate image interpretation scenarios. Despite these limitations, CNNs offer a very good property
of translating knowledge regarding the learned weights across the image and into a chain of layers.
Therefore, the underlying insight characterizing CapsNets is to retain this property, while tackling
the limitations of the CNNs mentioned above. CapsNets thus operate on convolutional feature maps
generated from the image at hand. CapsNets consists of a set of capsules that receive knowledge about
an entity (e.g., object part or object structure) from a preceding set of capsules (except for the first layer,
which acquires convolutional maps of the image) and delivers a ‘prediction vector’ by multiplying
its own output by a weight matrix. If the prediction vectors exhibit a large scalar product with the
output of the potential parent capsule in the layer above, a top-down feedback is leveraged to magnify
the coupling coefficient joining the current capsule with the possible parent capsule on the one hand,
and shrink the coupling coefficients stemming into other potential parent capsules in the upper layer.
This agreement-based routing perpetuates the likelihood of associating an object part with its main
object as we ascend through the hierarchy.

A straightforward approach to quantify the presence of objects is appending a logistic unit to
draw the probability of existence of a certain entity. However, in CapsNets, the length of the output
vector of a capsule is converted into a probability, while its orientation is forced to accommodate the
instantiation parameters (e.g., position, size, orientation, deformation, velocity, albedo, hue, texture) of
the object or object part that the capsule is tied to. In order to scale down the length of the output vector
while ensuring that its orientation remains unchanged, a non-linear squashing is applied as follows:
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where V; represents the vector output of capsule j and §; is its total output. Thus, short vectors and
long vectors are scaled down to almost zero and slightly below 1, respectively.

The total input to a capsule S; collects penalized contributions of prediction vectors u jvi émanating
from the layers below by multiplying the output the previous layer capsules by a weight matrix W;;
as follows:

S] = Z C,‘jaﬂi and Hj|i = W,']'u,‘ (2)
1

where C;; is the coupling coefficients between the capsule in the current layer and the capsule in the
layer above which is determined via a top-down feedback through iterative dynamic routing. We want
Cij to sum to 1. Therefore, a softmax unit is applied.
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where b;; is the initial logit, set as log prior probability, which represents the coupling between the
current capsule and its potential parent above. Thus, it is learned by assessing the agreement between
the output of the potential parent V; and the prediction vector Z:Ijvl- generated by the capsule below (in
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the previous layer). The agreement is measured via a scalar product, and then accumulated to the
initial logit as follows:
bij = bl’]' + U].IiV]' 4)

This refinement process permits the magnification of coupling coefficients between child and
parent capsules that represent the same entity, and the decay of coefficients of capsules that are tied to
irrelevant entities.

Figure 1 shows a graphical representation of the routing algorithm between two layers. We refer
the readers to [41] for the detailed explanation on the routing algorithm.
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Figure 1. Abstract illustration of the routing by agreement algorithm.
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2.2. Architecture

The basic architecture of the CapsNet, which is adopted in this work, is composed of two
convolutional layers and one fully connected layer. The first convolutional layer, which is produced by
256 9 x 9 kernels with a stride of 1 and ReLU activation, delivers feature maps that are further fed to
the primary set of capsules in the layer above.

The second layer represents the primary capsules, and accommodates 32 channels, thus 8D
convolutional capsules of 9 x 9 kernels and a stride of 2, where each capsule captures all the units in
the first convolutional layer whose receptive fields overlap with the center of the capsule. Thus, the set
of primary capsules outputs a total of 32 X 6 x 6 8D vectors, and the capsules of the same grid share
their weights with each other. The last layer of the CapsNet is a fully connected layer of 2 16D units
that are connected to all the capsules in the previous layer.

Since the output of first convolutional layer is one dimensional, it does not convey the same
quality of information as the capsules in the layer above (i.e., the output of the first layer does not
provide orientation attributes to agree upon), no routing is envisioned with the primary capsules. It is
noteworthy that all the logits b;; are initialized as zero, which implies that the initial capsule output is
sent to all potential parent capsules with equal probability C;;. In other words, prior to knowledge
optimization, the primary capsules assume an equal agreement with parent capsules (e.g., all the
entities tied with primary capsules are likely associated to the entities tied to the parent capsules
above).

With regards to the loss function for the network to learn, it consists in increasing the length of the
instantiation vector Vj for an entity class (car and solar panel in our case) only if that particular entity
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is indeed observed in the image. This can be extended for multiple entities by using a separate margin
loss Ly for each entity capsule k:

Ly = Tymax(0,m™ — IIVkII)2 + A(1 = Ty)max(0, || Vil - m_)2

®)
where Ty is set to one if the entity is present and m™ = 0.9, m~ = 0.1 are fixed thresholds, A = 0.5
is a down-weighting of the loss for absent object classes. It is worth-mentioning that the number of
routing iterations is set to three as in [41] with a batch size of 16. The learning rate is set to 0.001.

2.3. Image Reconstruction

In order to rebuild the input image of a certain entity, the activity vectors, except the one associated
to the entity of interest, are masked. Then, the output of the correct capsule is fed into a decoder of 3
fully connected layers, and the squared differences between the outputs of the logistic units and the
pixel intensities are minimized. This loss is scaled down by 5.107 to prevent it from dominating the
margin loss during the training phase. The architecture of the CapsNet, as well as the reconstruction
module, are given in [41].

3. Experimental Results

The following two subsections describe the datasets and experimental setup, and present
experimental results with a detailed analysis on different CapsNet configurations.

3.1. Dataset Description and Design of Experiments

We evaluated the CapsNet on two UAV datasets, which were acquired over different areas
on the city of Trento, Italy by a Canon EOS 550D camera (which includes CMOS APS-C sensor
with 18 megapixels) mounted on an UAV. Both datasets include images in the red-green-blue (RGB)
color space that have a spatial resolution of roughly 2 cm and a radiometric resolution of 8 bits.
For both datasets, the pixel size of the images is 224 x 224. The first dataset is the car dataset (see
Figure 2a). Vehicle detection and counting constitutes a vital part of urban planning, especially in
dense metropolitan cities. Having an accurate estimate of cars either on-road or in parking lots can
help avoid traffic congestion and better space allocation, especially during peak hours. The training
set consists of 200 images (100 images include cars, while 100 images do not include cars) that were
acquired over two parking lots in the city of Trento. The test set comprises 1000 images (500 images
include cars, while 500 images do not include cars) that were acquired over three parking lots on the
city of Trento. The second dataset is the solar panel dataset (see Figure 2b). Clean sustainable energy
is arguably one of the most discussed issues since the late ‘Paris Agreement’ [42]. Solar panels offer
a cheap source of green energy in the long run. Thus, solar panel detection can play a pivotal role
towards drawing an accurate solar panel distribution and planning, particularly in dense residential
cities. Similar to the car dataset, the training set consists of 200 images (100 images include solar panels,
while 100 images do not include solar panels). The test set comprises 1000 images (500 images include
solar panels, while 500 images do not include solar panels).

It is worth noting that all the images of both datasets were acquired over different time spans under
different acquisition conditions and thus they represent challenging object detection problems. In the
experiments, the pixel size of the images was down-sampled to 28 X 28 for both datasets. Since we are
addressing a binary classification problem, the number of output activation vectors is two, whereas
the dimension of the final layer is retained as 16. The first convolutional layer appliesa 9 x 9 x 3
filter in order to take into account the input with all the three channels of the images. Our code has
been implemented in Python via TensorFlow on a NVIDIA GPU GEFORCE GTX 960 M with 4GB
RAM. The CapsNet has been trained with Adam Optimizer initialized with the default parameters and
a batch size of 16. The same loss function suggested in the original paper was used, and thus m+ = 0.9,
m— = 0.1 and A = 0.5. The dynamic routing algorithm performs three iterations as suggested in [43].
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The accuracy of correctly classified test images over the total number of test images is considered as
evaluation metric.

(a) (b)

Figure 2. Examples of the images: (a) the car dataset, (b) the solar panel dataset. First four rows depict
images that include objects of interest (car or solar panel), while last two rows show the images that do

not contain them.

3.2. Experimental Results

A. Sensitivity Analysis with respect to different parameter settings and strategies

In this subsection, we carried out different kinds of experiments in order to assess the impact of
the convolutional kernel size, the parameters of the primary caps, the length of activation vectors and
adding an extra hidden layer.

A paramount parameter in the network is the size of the filters adopted in the convolutional as
well as the PrimaryCaps layers, since their size decides the spot in the input image to analyse, which is
related to the features learned by the network (thus to the classification accuracy). Therefore, we study
the impact of the following filter sizes: 3 X 3,5x 5,7 X 7,9 x 9 and 11 X 11 in both layers. The results
are reported in Table 1.

Table 1. Analysis of the filter size of the Conv layer versus the accuracy (in %): Left: Car dataset, Right:
Solar Panel dataset.

Filter size

3xX3 5%x5 7X7 9x%x9 11 x 11
Car dataset 94.95 95.36 95.26 95.06 94.25
Solar Panel dataset 93.64 91.73 89.91 98.21 88.2

The results of Table 1 indicate that, in general, increasing the filter size reduces the accuracy except
for the filter size of 3 X 3 on the Car dataset, which is due to initialization. This is likely traced back to
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the fact that small-sized kernels capture finer details in the Conv layer, which are further propagated
among the capsules for strengthening the agreement with potential upper capsules.

The behavior of the primary caps that can significantly affect the performance of the CapsNet
depends on three parameters: (i) filter size, (ii) depth (i.e., number of channels in primary caps) and
(iii) dimension of the output vectors. Table 2 compares the filter size versus accuracy obtained for the
two datasets. The results show that slight improvements are observed when the filter size increases.

Table 2. Analysis of filter size versus accuracy in primary caps layer (in %): Left: Car dataset, Right:
Solar Panel dataset.

Filter size

3x3 7X7 11 x11
Car dataset 95.36 95.66 95.96
Solar Panel dataset 92.23 92.54 93.54

We also evaluated the effect of the number of channels in primary caps. We recall that the original
architecture of CapsNet uses 32 channels of 8D capsules in order to cover up the 256 feature maps of the
Conv layer. Table 3 shows that, in general, increasing the number of channels introduces improvements.
However, it is worth noting that this might cause the network to overfit the data.

Table 3. Accuracy versus the number of channels in primary caps: Left: Car dataset, Right: Solar
Panel dataset.

Number of channels

8 16 32 48
Car dataset 94.65 95.86 95.96 95.86
Solar Panel dataset 93.04 93.04 93.64 93.95

We also assessed the length of output vectors in the primary caps. It is worth noting that the
output vectors encode various instantiation parameters, which implies that their length is determined
based on the problem at hand. Thus, objects that exhibit a wide range of changes might require
a long vector in order to properly encode their behavior, whereas objects that remain stable in different
observations across several images would require shorter instantiation arrays. This issue is shown in
Table 4, where the accuracy fluctuates as the length of the output vectors changes.

Table 4. Accuracy versus the length of output vectors in primary caps: Left: Car dataset, Right: Solar
Panel dataset.

Length of output vectors
4 8 12 16 20
Car dataset 95.86 95.96 96.06 96.47 95.76
Solar Panel dataset 93.34 93.65 93.34 93.24 93.75

Since we deal with a binary classification problem, two (one for each class) OutputCaps of 16D
each are envisioned. However, the length of the activation vectors is worth of investigation. We opt for
the following lengths 8, 12, 16, 20 and 24, and the respective results are given in Table 5.
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Table 5. Analysis of the length of activation vectors: Left: Car dataset, Right: Solar Panel dataset.

Length of activation vectors

8 12 16 20 24
Car dataset 96.16 96.27 96.47 96.27 95.46
Solar Panel dataset 93.24 93.54 93.95 93.44 93.24

It can be observed that for both datasets, the trend of the accuracy is comparable overall, since it
increases up to the vector length of 16 and slightly declines afterwards. At this point, increasing the
vector length offers too much space to encode the information received from the layer below. Similarly,
shrinking the vector length does not seem to be enough to encode such information either. A trade-off
between the two extremes, 16D activation vectors in both datasets, remains an optimal option.

Adding more layers to the network may inflate the processing load, notwithstanding the potential
to overfit the training data. If both scenarios are well-approached, classification gains might be
envisioned, since deeper features convey richer information. Thus, we study the behavior of the
network when an extra Caps layer is added. Therefore, two parameters are to be assessed (i) number
of capsules and (ii) the length of the output vectors in these capsules. Figure 3 provides a heatmap of
the accuracy in terms of both parameters (white cells represent cases that the capacity of the adopted
GPU could not handle).

95.76

Number of Capsules
Number of Capsules

v L @ o & A v = ® K 2 g
Vectors Length Vectors Length

Figure 3. Number of Caps in the hidden layer versus the length of their output vectors: Left: Car
dataset, Right: Solar Panel dataset.

It can be noted that the number of Caps exhibits a larger impact than the length of the output
vectors. This might be explained by the reason that capsules are tied to entities (partial/full objects),
which seems to be more significant in our datasets than the length of the vectors that encodes the
instantiation of the entities.

B. Comparison of the CapsNet with the State-of-the-Art Methods

In this subsection, we address a cross-dataset transfer learning scenario. Therefore, we consider
the case when the Car and Solar Panel datasets are utilized interchangeably for training and test.
Afterwards, we compare the CapsNet with the state-of-the-art methods applied to the same datasets.

Given that the Car and the Solar Panel datasets are acquired by the same sensor, it is possible for
a network that was trained on the one dataset to be applied to the other dataset. This is a paramount
process in real applications as it can save time and resources when dealing with large scale data.
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In details, we train a CapsNet on the Car datasets with the following parameters: image size of 36 X 36,
5 x 5 Conv layer filer, PrimaryCaps of 11 x 11 filers and 32 channels 16D output vectors, 16D activation
vectors, and then apply it on the Solar Panel dataset. Then, the same architecture is trained on the
Solar Panel dataset and applied on the Car dataset. The results are reported in Tables 6 and 7.

Table 6. Accuracies and processing time (in sec) obtained with and without applying transfer learning
on the Solar Panel dataset.

Trans. Learning Without Trans. Learn.
Accuracy (in %) 90.82 91.73
Processing Time (in sec) 7.6 7.6

Table 7. Accuracies and processing time (in sec) obtained with and without applying transfer learning
on the Car dataset.

Trans. Learning Without Trans. Learn.
Accuracy (in %) 95.86 95.76
Processing Time (in sec) 6.5 6.5

From the Tables, one can see that transfer learning is comparable to the traditional case in terms of
both accuracy and processing time. On the one hand, this might be due to the fact that the images
were acquired by the same sensor. On the other hand, the Car and the Solar Panel datasets share some
similarities in terms of shape (i.e., rectangular). Furthermore, the negative samples in both datasets
have a certain similarity.

One of the main properties of CapsNet is that the classification paradigm is embedded in the
architecture itself, by relying on the length of the activation vectors. However, it would be interesting
to consider CapsNet for feature extraction only. Therefore, we considered a support vector machines
(SVM) classifier (with RBF kernel) placed at different positions (i.e., fed with the features of the primary
caps, and then with the features of the output caps) within the network. The parameters of the SVM
(the penalization parameter and the kernel parameter) were optimized by means of a cross-validation
strategy on the training set with a split of 50/50 percent. On this point, we consider two scenarios,
namely (i) the original architecture and (ii) adding another hidden layer.

By analyzing the Table 8 one can see that accuracies obtained by SVM are slightly smaller than
those of the CapsNet when the features of the output caps are used, and significantly smaller when the
features of the primary caps are adopted. Moreover, using the embedded classifier of CapsNet lifts the
need to tune up extra parameters (which is the case of the SVM). We also draw the attention to the
poor performance of the Primary Caps features, which is expected since the network, at this layer, has
not matured discriminative features with respect to the output layer. However, the results reported in
Table 9 suggest that adding a hidden layer stimulates the primary caps (via routing by agreement) and
thus generates more meaningful representations.

Table 8. Classification accuracies (%) obtained by the CapsNet and the support vector machines (SVM)
classifier fed with features from different layers of the network.

SVM Fed with Primary SVM Fed with Output
Caps Features Caps Features

Car 96.47 59.4 96.1
Solar Panel 93.95 75.6 93.9

Dataset/Scenario CapsNet
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Table 9. Classification accuracies (%) obtained by the CapsNet and the SVM classifier fed with features
from different layers of the network with an extra hidden layer.

Dataset/Scenari CapsNet SVM Fed with Primary SVM Fed with SVM Fed with
ataset/>cenarto apsiNe Caps Features Hidden Caps Features = Output Caps Features
Car 96.47 93.3 96.4 96.2
Solar Panel 93.75 93.1 93.2 93.8

In order to compare the CapsNet with the state-of-the-art methods, we consider several well-known
CNN models, namely ResNet-50, ResNet-152, GoogLeNet, VGG16, VGGM, AlexNet. We also compare
our work with a recent paper, which presents a Convolutional SVM (CSVM) [44] on the same datasets.
Results regarding training time, testing time and accuracy are summarized in Tables 10 and 11.
The scores indicate that CapsNet yields comparable results to the aforementioned baselines in terms of
accuracy on both datasets, except for the Solar Panel dataset where CSVM remains better. Regarding the
processing time (test phase). However, CapsNet is the fastest among all, since it does not accumulate
the feature maps over a long chain of layers. Thus, CapsNet is much more suitable to be used on real
operational object detection scenarios.

Table 10. Comparison with the state-of-the-art on the Car dataset.

CSVM (11 x 11, CSVM (7 X 7,
ResNet-50 ResNet-152 GoogLeNet VGG16 VGGM AlexNet 5x5,3x3,1x1, 1x1,3x3,1x1, CapsNet

1x 1) [44] 1x 1) [44]
ACE;r)acy 91.10 90.05 94.74 95.66 88.34 91.93 95.78 97 96,47
Train/Test 75/274 270/1220 126/510 235976 45212 42/161 130/9 185/12 221/8,8
time (Sec)
Table 11. Comparison with the state-of-the-art on the Solar Panel dataset.
CSVM (11x11, CSVM(7x7,
ResNet-50 ResNet-152 GoogLeNet VGG16 VGGM AlexNet 5x5,3x3,1x1, 1x1,3x3,1x1, CapsNet
1x 1) [44] 1x 1) [44]
ACE;r)aCY 66.43 66.37 84.45 93.59 95.45 93.01 96.24 96.97 93,95
Efﬂg:; 81/396 289/1300 102/509  201/988 45213 40/154 120/10 156/12 111/4

4. Conclusions

This paper has presented a Capsule Networks (CapsNet) framework for object detection in
UAV-acquired images. Unlike usual deep models such as CNNS (which capitalize on the depth aspect
and omit the object’s relative position), CapsNet consists of a simple shallow architecture that can
detect complex objects under challenging scenarios thanks to the routing by agreement strategy, which
enables the spread of objects relative position within an image across several layers. This further
lessens the processing overheads with respect to CNNs.

Experiments conducted on two UAV-acquired datasets of cars and solar panels show that CapsNet
can detect objects effectively. Moreover, owing to its shallow architecture, CapsNet runs in a shorter
processing time as compared to recent deep models in the literature. This property is favoured in
real-time object detection scenarios.

Another property of the CapsNet is that it could be used as a feature reconstruction module.
Potentially, it could benefit other areas of remote sensing such as cloud removal and area reconstruction.
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