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Abstract: High spatial resolution remote sensing (HSRRS) images contain complex geometrical
structures and spatial patterns, and thus HSRRS scene classification has become a significant
challenge in the remote sensing community. In recent years, convolutional neural network
(CNN)-based methods have attracted tremendous attention and obtained excellent performance
in scene classification. However, traditional CNN-based methods focus on processing original
red-green-blue (RGB) image-based features or CNN-based single-layer features to achieve the
scene representation, and ignore that texture images or each layer of CNNs contain discriminating
information. To address the above-mentioned drawbacks, a CaffeNet-based method termed CTFCNN
is proposed to effectively explore the discriminating ability of a pre-trained CNN in this paper.
At first, the pretrained CNN model is employed as a feature extractor to obtain convolutional
features from multiple layers, fully connected (FC) features, and local binary pattern (LBP)-based FC
features. Then, a new improved bag-of-view-word (iBoVW) coding method is developed to represent the
discriminating information from each convolutional layer. Finally, weighted concatenation is employed
to combine different features for classification. Experiments on the UC-Merced dataset and Aerial
Image Dataset (AID) demonstrate that the proposed CTFCNN method performs significantly better
than some state-of-the-art methods, and the overall accuracy can reach 98.44% and 94.91%, respectively.
This indicates that the proposed framework can provide a discriminating description for HSRRS images.

Keywords: high spatial resolution; remote sensing; scene classification; convolutional neural
networks; feature encoding; feature fusion

1. Introduction

With the improvement of Earth observation technology, great progress has been made
in the collection of high spatial resolution remote sensing (HSRRS) images [1–3]. Compared with low
spatial resolution remote sensing images, an HSRRS image contains more details of ground objects
and more complex spatial patterns [4–8]. Therefore, sub-meter level HSRRS images have been
applied in many areas such as land resources planning [9,10], geospatial object detection [11–13],
and environmental monitoring [14]. HSRRS-image-based scene classification has attracted increasing
attention in the remote sensing community [15–20].

In scene classification, the extraction of scene-level discriminative features is the key step
to bridging the huge gap between an original image and its semantic category. In recent years,
researchers have proposed various feature extraction methods, which can be divided into three main
types: low-level methods, mid-level methods, and high-level methods [21,22]. Traditional scene
classification methods were developed directly based on low-level features, such as texture features,
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color features, spectral features, and multi-feature fusion [23,24]. However, these hand-crafted features
are limited in describing complex scenes of HSRRS, which will affect the classification performance.

Compared with the low-level methods, the mid-level methods aim to obtain a global
representation of a scene by encoding local descriptors, e.g., scale-invariant feature transform,
histogram of oriented gradient and color histogram. The bag-of-view-word (BoVW) model is one of
the most popular feature encoding approaches [25]. Due to its simplicity and efficiency, the BoVW
model is widely applied for mid-level scene description [26–29]. However, the quantization error of
the BoVW method is large, and some important information may be lost. Therefore, many feature
coding methods were developed to reduce the reconstruction error, including improved Fisher kernel
(IFK) [30], vectors of locally aggregated descriptors (VLAD) [31], spatial pyramid matching kernel
(SPM) [32], locality-constrained linear coding (LLC) [33], latent semantic analysis (LSA), probabilistic
latent semantic analysis (pLSA) [34,35], and latent dirichlet allocation (LDA) [35]. However, both
low-level and mid-level methods are mainly based on hand-crafted features, which are difficult to
effectively describe in HSRRS scene images with complex land-cover/land-use (LULC) situations.

In recent years, deep-learning-based methods have made a breakthrough in the field
of machine learning [36,37], and convolutional neural networks (CNNs) have achieved excellent
performance in computer vision tasks such as image segmentation [8,38], change detection [39],
and image classification [40]. Based on CNNs, some significant progresses have also been proposed
for HSRRS image scene classification [41–48]. Penatti et al. [49] explored the generalization ability
of the pre-trained OverFeat model and CaffeNet model by using features from the last fully
connected layer. Hu et al. [50] developed two schemes for extracting features from different layers
of CNNs. In [51,52], collaborative representation is employed to reprocess features extracted from
a pre-trained CNN. Flores et al. [53] combined the pre-trained deep CNN with a sparse representation
to improve the performance of land-use classification. Li et al. [54] proposed a fusion strategy
to integrate multilayer features of a pre-trained CNN model by principal component analysis (PCA)
and a spectral regression kernel discriminant analysis (SRKDA) method. Chaib et al. [55] introduced
a framework for scene classification by regarding pre-trained VGG-Net models as deep feature
extractors, and it explored discriminant correlation analysis (DCA) to fuse features from two fully
connected layers. In [21,56], a two-stream architecture was developed, and texture-coded mapped
images were adopted as the second stream to provide complementary information by fusing with a raw
red-green-blue (RGB) image stream. The aforementioned methods just focus on original RGB
image-based features or CNN-based single-layer features to achieve the global representation of HSRRS
scenes, and these methods ignore that each layer or texture image contains abundant information.

Motivated by the above-mentioned limitations, a novel feature extraction and classification
framework based on a pre-trained CNN is proposed for HSRRS scene classification in this paper.
The framework employs a pre-trained CNN as a feature extractor and combines triple-part features
of convolutional neural networks (CTFCNN), including convolutional features from multilayers,
fully connected (FC) features and local binary pattern (LBP)-based FC features to adequately explore
the discriminating ability of the pre-trained CNN. In summary, the main contributions of the proposed
CTFCNN method can be listed as the following:

(1) To effectively utilize the convolutional features of a pre-trained CNN, an improved
bag-of-view-word (iBoVW) method is developed for representing the discriminating information
from each convolutional layer.

(2) An approach is presented to integrate hand-crafted local binary pattern (LBP) texture
descriptors into a pre-trained CNN, and the obtained LBP-based FC features can provide information
supplements to achieve a good classification performance.

(3) A feature fusion framework CTFCNN is proposed to combine multilayer features of the CNN
and LBP-based FC features by weighted concatenation.
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2. Related Works

2.1. Convolutional Neural Network (CNN)

CNN is one of the most popular deep learning methods, and the main advantage is that
original images can be directly input into the networks without complex pre-processing [57,58].
The typical CNNs are generally composed of convolutional layers, pooling layers, activation
layers, fully-connected layers, and a softmax layer. Figure 1 shows the architecture of CaffeNet,
which is a ypical CNN model [59].

Figure 1. Architecture of CaffeNet.

As we can see from Figure 1, for an input HSRRS image, convolution computations are first
performed by using convolution kernels with weight sharing, and feature maps can be obtained.
Then the nonlinear activation function including rectified linear unit (ReLU) and sigmoid is introduced
to enhance the expression ability. After that, mean pooling or max pooling are employed to reduce
the parameters of the network and improve the translation invariance. As the depth of the layer
increases, the feature maps tend to be highly abstract, and the feature maps from the last convolutional
layer are flattened into a feature vector. The feature vector is further processed by the fully connected
layers to form the global feature of a scene image, and it is fed into a softmax layer to gain the possibility
for·each class.

2.2. Bag-of-View-Word (BoVW)

The BoVW model was originally proposed for natural language processing (NLP) and information
retrieval (IR). Under this model, an image can be represented as a combination of many visual
words. BoVW-based methods are widely applied in the computer vision field for simplicity
and efficiency [60,61]. The main processes are summarized as follows:

(1) Local image patch sampling and feature extraction. For an input image, local image patches
are obtained by dense sampling or sparse sampling. Then, local descriptors are extracted for each
sampled image patch.

(2) Constructing a dictionary (codebook) that consists of many visual words. K-means clustering
is usually employed to learn a set of clustering centers from local features. Each clustering center can
be regarded as a visual word, and then all visual words constitute a visual dictionary.
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(3) Feature encoding. Local features are mapped into dictionary space by a feature encoding
method, and encoding vectors can be generated. The dimension of encoding vectors is the number
of visual words. Feature coding methods include vector quantization (VQ), sparse coding (SC),
and so on.

(4) Feature pooling. The global representation of an image can be formed by gathering statistics
of encoding vectors. The most frequently used methods are mean pooling and max pooling.

2.3. Local Binary Pattern (LBP) Descriptor

As a typical texture descriptor, LBP [62] is widely employed in many tasks, such as face
recognition [63], image classification [64], and object detection [65]. In HSRRS scene classification,
texture-coded mapped images can be explored as the inputs of deep networks to provide useful
supplementary information.

Figure 2 shows the principle of the LBP descriptor, which aims to obtain the local gray-scale
distribution of an image by comparing the pixel values between the center pixel and its neighboring pixels.

Figure 2. The principle of local binary pattern (LBP) descriptors. HSRRS—high spatial resolution
remote sensing.

As shown in Figure 2, in the 3 × 3 spatial window, the LBP descriptor takes the gray value
of the central pixel g0 as the threshold and encodes by comparing g0 with the gray values of eight
surrounding pixels gi(i = 1, 2, . . . , 8). If gi is larger than g0, the code of pixel gi is assigned as “1”
(binary number), otherwise it is assigned as “0”. This process can be defined as

s (gi − g0) =

{
1 i f gi ≥ g0 (i = 1, 2, . . . , 8),
0 else.

(1)

After LBP operation, pixel gc ∈ [0, 255] can be obtained by clockwise connection, and it can
be calculated as follows:

LBP (gc) =
8

∑
p=1

s (gi − g0) 2p−1 . (2)

3. Proposed Framework

To extract the discriminating information in HSRRS images, a CaffeNet-based framework termed
CTFCNN is proposed to improve the classification performance. The CTFCNN method extracts three
types of features by using an off-the-shelf pre-trained CaffeNet model, and these features include
multilayer convolutional features, features from fully connected layers, and LBP-based FC features.
Furthermore, the operations of dimensionality reduction and feature fusion are employed to achieve
an effective prediction of scene semantic category. The flowchart of the proposed CTFCNN framework
is shown in Figure 3.
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Figure 3. Framework of the proposed CTFCNN method. HSRRS—high spatial resolution remote
sensing; CNN—convolutional neural network; FC—fully connected; PCA—principal component
analysis; SVM—support vector machine.

3.1. Convolutional Features

In CNNs, the feature map of each convolutional layer contains different discriminating
information. To fully utilize the convolutional features of the pre-trained CNN model, a new coding
method termed iBoVW is proposed to generate the features from each convolutional layer.
Compared with the traditional BoVW method, iBoVW tries to achieve a more reasonable representation
of a scene by fusing manifold learning and nonlinear coding. The detailed process is shown in Figure 4.

As in Figure 4, HSRRS images can be transformed into coding vectors through the iBoVW
encoding operation. In detail, the iBoVW method includes offline parameter learning and feature
extraction stages.

In the stage of offline parameter learning, unlabeled images are randomly chosen
for the pre-trained CNN model, in which the FC layer has been removed. For each input
image, the feature maps from the l-th convolutional layer can be obtained and regarded
as ω×ω N-dimensional local features X = {x1, x2, . . . , xω2} ∈ <N . Then, projection matrix V
and low-dimensional embedding Y = {y1, y2, . . . , yω2} ∈ <n are obtained by using locality preserving
projection (LPP), which aims to minimize the following objective function :{

min VTXLXTV
s.t. VTXDXTV = I,

(3)

where D is the diagonal weight matrix, dii = ∑j wij, L = D −W is the Laplacian matrix, and W
is the weight matrix. Then K-means clustering is performed on low-dimensional embedding Y to learn
the dictionary Dic.

In the features extraction stage, the given image is input into the CNN to obtain the feature maps
of the l-th convolutional layer, and projection matrix V is employed to reduce the dimension of local
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descriptors. Then, non-linear coding is applied for processing low-dimensional embedding Y to get
coding features φ, as

φi =

{
1

NV
∑NV

c=1 di − di if 1
NV

∑NV
i=1 di − di ≥ 0&Dici ∈ N(y)

0 otherwise ,
(4)

φ =
φ−max(φ)

max(φ)−min(φ)
, (5)

in which y is the input vector, NV denotes the size of the visual vocabulary in the dictionary,
di = ‖y− Dici‖2 denotes the Euclidean distance between y and Dici, Nk(•) represents the k-nearest
neighbors space, and k represents the number of associations between local descriptors and the
visual vocabulary. Max(•) and min(•) represent calculating the maximum and minimum values,
respectively.

Figure 4. The procedures of deep local feature extraction and improved bag-of-view-word
(iBoVW) encoding.

Mean pooling is used to process all coding features of a scene, and deep global features from
each convolutional layer can be obtained. Then, partial features are selected and fused by weighted
concatenation as

conv− f u = [conv i, p1 × conv i + 1, . . . , p2 × conv, l] (6)

where p denotes the coefficient weight of different features, and conv (l) is the feature of the l-th
convolutional layer.

3.2. Features from the Fully Connected Layer

In the phase of FC feature extraction, the pre-trained CNN model is employed as a feature
extractor. Before feeding the HSRRS images to the model, each image should be adjusted to the fixed
size. In the CTFCNN framework, the response from the first FC layer is extracted and regarded
as the feature representation of a scene.



Remote Sens. 2019, 11, 1687 7 of 23

Data augmentation is a common technique in deep learning. Each input image is transformed
to expand the number of samples, including rotating (90◦, 180◦, and 270◦) and flipping (horizontal
and vertical). Then, the mean pooling method is employed to process the obtained six FC features
to get FC-aug features; the correspondence is shown in Figure 3.

3.3. CNN-Based LBP Features

In HSRRS scene classification, LBP descriptors are usually integrated with feature coding models
to achieve the representation of each image. However, these traditional LBP-based methods have
limited discriminating ability in highly complex HSRRS images. Due to the powerful discrimination
ability of deep neural networks, the LBP descriptor is integrated with the CNN model to make full
use of the texture features of images and provide complementary information to the standard RGB
deep model. Because the LBP descriptor is not suitable for direct input to the pre-trained CNN model,
a new pre-processed solution is proposed to extract LBP-based FC (LBPFC) features.

Each channel of original images can be regarded as a gray image and generates a texture image
through the LBP descriptor described in Section 2.3. Then, these texture images are superimposed
to synthesize one image that contains three channels. Furthermore, the new obtained texture image
needs to be adjusted to the fixed size. As for data augmentation, only rotation transformation (90◦, 180◦,
and 270◦) is performed. After obtaining four LBPFC features, the mean pooling method is used
to achieve the global representations of images as well.

3.4. Feature Fusion and Classification

After extracting different types of features from the CNN, it is crucial to effectively fuse these
features for classification. Due to the high dimensionality of the features, PCA is first employed
to avoid the curse of dimensionality. After normalization, a weighted concatenation method is applied
for the features as follows:

CTFCNN = [conv− f u, q1 × FC− aug, q2 × LBPFC− aug] , (7)

in which q1, q2 denote the coefficient weight of different features, respectively.
Finally, the linear support vector machine (SVM) classifier is employed to predict the label

of samples.

4. Experiments and Discussion

In this section, two public datasets are employed to evaluate our proposed methods,
and the performance of scene classification is compared with some state-of-the-art algorithms.

4.1. Dataset Description

(1) UC Merced Land Use Dataset (UC-Merced dataset) [25]: The original images of this dataset
were collected on the national map provided by the US Geological Survey. The dataset contains a total
of 2100 images with a size of 256× 256 pixels, and the spatial resolution is about 0.3 m. It is divided
into 21 land-use scenes classes, such as agricultural, airplane, baseball diamond, and buildings.
The UC-Merced dataset is difficult to classify because it contains a large number of similar land-use
types, such as dense residential, medium residential, and sparse residential. As a public dataset,
it is widely adopted to evaluate scene classification methods in remote sensing fields. Figure 5a
shows example images for all categories. Details about the UC-Merced dataset can be obtained
at http://vision.ucmerced.edu/datasets/.

http://vision.ucmerced.edu/datasets/
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(a) UC-Merced dataset

(b) AID dataset

Figure 5. Example images for two remote sensing image datasets.

(2) Aerial Image Dataset (AID dataset) [22]: The dataset was collected by Wuhan University
in Google Earth imagery. Each scene has 600× 600 pixels, and the spatial resolution of its images are
from 0.5 m to 8 m. The dataset contains a total of 10,000 images, which are divided into 30 semantic
categories as in Figure 5b. The number of scene images per class ranges from 220 to 420, including
airport, bare land, baseball field, and beach; the details are shown in Table 1. Since the AID is taken
from different sensors, different countries, at different times, and in different seasons, the intraclass
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diversity of the AID is rapidly increasing. In addition, this dataset has smaller interclass dissimilarity
as well. Details about the AID are available at http://captain.whu.edu.cn/project/AID/.

Table 1. The number of scene images per class in the Aerial Image Dataset (AID).

Name ] of Images Name ] of Images Name ] of Images

airport 360 farmland 370 port 380
bare land 310 forest 250 railway station 260

baseball field 220 industrial 390 resort 290
beach 400 meadow 280 river 410
bridge 360 medium residential 290 school 300
center 260 mountain 340 sparse residential 300
church 240 park 350 square 330

commercial 350 parking 390 stadium 290
dense

residential 410 playground 370 storage tanks 360

desert 300 pond 420 viaduct 420

4.2. Experimental Setup

In each experiment, the dataset was randomly divided into training and test sets.
In the UC-Merced dataset, 80% of samples were used for training, and the rest of the samples were
employed for testing. In the AID, the ratio of training samples was set to 50%. After feature extraction,
the public LIBLINEAR library [66] was employed to training the linear SVM classifier, and the penalty
term C was tuned by a grid search with a given set

{
2−10, 2−9, . . . , 29, 210}. Overall accuracy (OA)

with standard deviation (STD) and confusion matrix were adopted to evaluate the performance of scene
classification, and experiments were repeated 20 times in each condition.

In the phase of convolutional feature extraction, each image of the two datasets ws resized
to 300× 300 pixels to get the appropriate size of feature maps. Then, features from each convolutional
layer could be obtained by CaffeNet with sizes of 73 × 73 × 96, 36 × 36 × 256, 18 × 18 × 384,
18× 18× 384, and 18× 18× 256. As for FC features and LBP-based FC features, the images were
adjusted to 227× 227 pixels before putting them into the CaffeNet, and a 4096-dimensional feature
was extracted from the first FC layer.

All experiments were performed on a personal computer equipped with 16-GB memory,
i5-8500 CPU, and 64-bit Windows 10 using MATLAB 2016a. The MATLAB toolbox called
MatConvNet [67] was employed to exact different CNN features. The off-the-shelf CaffeNet [59]
trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset can be download
at http://www.vlfeat.org/matconvnet/pretrained/.

4.3. Parameter Evaluation

The CTFCNN method contains several hyper-parameters, including a visual vocabulary
of a certain size NV and embedding dimension d of deep local features. In this section, we describe
experiments conducted to evaluate the influence of hyper-parameters on classification performance.

To explore the classification performance with different sizes of visual vocabulary in iBoVW
coding, each convolutional layer was discussed separately. Parameters NV in the UC-Merced
and AID datasets were both tuned with a set of {10, 100, . . . , 3800}. Figure 6 shows the average
OAs with respect to NV .

http://captain.whu.edu.cn/project/AID/
http://www.vlfeat.org/matconvnet/pretrained/
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(a) UC-Merced dataset
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(b) AID dataset

Figure 6. OAs with respect to different sizes of visual vocabulary on two public datasets.

As can be seen from Figure 6, the performance of each convolutional feature becomes much
better with large values of NV . The OAs first improve with the increase of NV and then maintain
a stable value. The reason is that a larger dictionary contains more abundant information, which brings
benefits to extract discriminant features for classification. However, if the visual vocabulary is too
large, the dimension of features will be high and lead to a great increase in the computation complexity.
Based on the above analysis, the value of NV was set to 2400 for the UC-Merced dataset and 3000
for AID in the following experiments.

To analyze the influence of the embedding dimension d of deep local features, parameters
d were tuned in each convolutional layer with sets of {5, 10, . . . , 95, 96}, {15, 25, . . . , 255, 256},
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{20, 35, . . . , 383, 384}, {20, 35, . . . , 383, 384}, and {15, 25, . . . , 255, 256}, respectively. Figure 7 shows
the average OAs under different dimensions; each experiment was repeated 20 times.
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(d) conv 2 and conv 5 in the AID dataset

20 35 50 65 80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

21
5

23
0

24
5

26
0

27
5

29
0

30
5

32
0

33
5

35
0

36
5

38
0

38
3

38
4

48

52

56

60

64

68

72

76

80

84

88

92

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

Dimension

 conv 4( iBoVW + UL Coding) - AID
 conv 3( iBoVW + UL Coding) - AID

Original dimension

(e) conv 3 and conv 4 in the AID dataset

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 96
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

Dimension

 conv 1( iBoVW + UL Coding) - AID

Original dimension

(f) conv 1 in the AID dataset

Figure 7. Overall accuracy (OA) with respect to different sizes of visual vocabulary on two
public datasets.

According to Figure 7, with the increase in d, the OAs first increase and then remain stable,
for the reason that low-dimensional features may lose a lot of useful information. The vertical lines
in the figure represent the original dimension of the local deep features on each convolutional layer.
It is obvious that the classification accuracy can be improved after employing LPP for dimensionality
reduction because LPP can maintain the local geometric structure. To achieve better classification
results, parameter d is set to 95, 225, 350, 350, and 235 for each convolutional layer.
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4.4. Comparison and Analysis of Proposed Methods

To illustrate the effectiveness of the iBoVW encoding method, OAs obtained from each
convolutional layer were compared between the UC-Merced dataset and AID dataset. The value
for parameter k for the two dataset was set to 5 and 10, respectively. Figure 8 shows the OAs of different
feature encoding methods.
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(a) UC-Merced dataset
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Figure 8. OAs with respect to different sizes of visual vocabulary on two public datasets.

As shown in Figure 8, the proposed iBoVW method achieves a higher OA than the BoVW method
in each convolutional layer. The reason is that the traditional BoVW model implements feature coding
by using the VQ method, which is a hard assignment method, and VQ assumes that the feature vectors
are only related to one visual vocabulary in the dictionary. However, in real applications, the feature
vectors are often correlated with multiple clustering centers. Compared with the BoVW method,
the proposed iBoVW method adopts non-linear coding to fully consider the correlation between input
vectors and multiple clustering centers.
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Figure 9 reports the overall accuracy of different CaffeNet-based features. The classification
performance of deeper convolutional layers is much better than the lower convolutional layers.
Compared with features from single convolutional layer, multilayer feature fusion achieves
better results because different convolutional layers contain diverse information, and the ability
of discrimination can be improved by fusion. For FC features, data augmentation is helpful to improve
classification accuracy. In the UC-Merced dataset, OA was improved from 95.95% to 97.14%. In the AID
dataset, it reached 92.02%. Furthermore, it is obvious that our LBP-based CNN method is superior
to the mid-level methods, such as LLC, BoVW, VLAD, and IFK. Compared with the method proposed
by Levi et al. [68], the proposed pre-processing method is more suitable for LBPFC feature extraction.
In summary, the CTFCNN method achieves the highest classification accuracy, which indicates that
the strategy of triple-part feature fusion is more effective for scene classification.
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Figure 9. OAs of different feature extraction methods on two public datasets.
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The confusion matrices for the two public datasets are shown in Figures 10 and 11, respectively.

(a) Conv3∼5-fu

(b) FC1-aug
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(c) LBP-based FC (LBPFC)-aug

(d) CTFCNN

Figure 10. Confusion matrices of CTFCNN for the UC-Merced dataset. In confusion matrices,
each row denotes the instances in actual category, and each column of the matrix denotes the instances
in a predicted category. Blank positions indicate that the value is 0, and the diagonal data indicates
the accuracy of each class.

Figure 10 shows the confusion matrices of four methods on the UC-Merced dataset, including
single-feature-based methods and the CTFCNN method. It is clear that the CTFCNN method
obtains the highest classification performance, and the accuracy of most categories is close to 100%.
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This shows that the CTFCNN method fully explores the discriminating ability of the pre-trained CNN.
Furthermore, our proposed method achieves a relatively good classification accuracy in some high
similarity scene categories, such as dense residential (100%), medium residential (95%), and sparse
residential (100%).

(a) Conv2∼5-fu

(b) FC1-aug
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(c) LBPFC-aug

(d) CTFCNN

Figure 11. Confusion matrices of CTFCNN for the AID dataset.

The confusion matrices for the AID dataset are shown in Figure 11. According to the results,
the CTFCNN method is superior to the other methods. In the classes of park (a:0.87, b:0.83,
c:0.71, d:0.91), square (a:0.74, b:0.79, c:0.58, d:0.82), school (a:0.77, b:0.72, c:0.55, d:0.85), and resort
(a:0.79, b:0.79, c:0.66, d:0.83), the classification performance of the CTFCNN is significantly improved.
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These semantic classes contain the same types of ground objects (e.g., building, road, and vegetation)
and are visually similar, so they are prone to be misclassified. The CTFCNN method still
obtains a competitive classification performance, which proves the effectiveness of the feature
fusion framework.

4.5. Comparisons with the Most Recent Methods

To comprehensively evaluate the performance of the CTFCNN method, the experimental results
of some state-of-the-art methods for two widely-used public datasets are compared in Tables 2 and 3,
respectively. In these tables, the results of all methods (including the proposed CTFCNN method)
were obtained under the same training ratio. In the UC-Merced dataset, the ratio of training–testing
was 80% vs. 20%. As for the AID dataset, the ratio was 50% vs. 50%.

Table 2. Overall accuracy (mean ± SD) comparison of recent methods under the training ratio of 80%
on the UC-Merced dataset.

Method Published Time Classification Accuracy (%)

VLAD [69] 2014 92.50
VLAT [69] 2014 94.30

MS-CLBP + FV [70] 2016 93.00 ± 1.20
OverFeat [71] 2017 90.91 ± 1.19

GoogLeNet [22] 2017 94.31 ± 0.89
CaffeNet [22] 2017 95.02 ± 0.81

VGG-VD-16 [22] 2017 95.21 ± 1.20
Bidirectional adaptive feature fusion [72] 2017 95.48

CNN-ELM [73] 2017 95.62 ± 0.32
salM3LBP - CLM [74] 2017 95.75 ± 0.80

TEX-Net-LF [56] 2017 96.62 ± 0.49
MDDC [75] 2017 96.92 ± 0.57

CaffeNet (conv1 ∼ 5 + fc1) [54] 2017 97.76 ± 0.46
DCA by concatenation [55] 2017 96.90 ± 0.56

DCA by addition [55] 2017 96.90 ± 0.09
DAN (with adaptation) [46] 2017 96.51 ± 0.36

SSF-AlexNet [44] 2018 92.43
Aggregate strategy 1 [17] 2018 97.28
Aggregate strategy 2 [17] 2018 97.40

LASC-CNN (multiscale) [76] 2018 97.14
SPP-net+MKL [77] 2018 96.38 ± 0.92

VGG19 + Hybrid-KCRC (RBF) [52] 2018 96.26
pre-trained ResNet-50 + SRC [53] 2019 96.67

VGG19 + SPM-CRC [51] 2019 96.02
VGG19 + WSPM-CRC [51] 2019 96.14

CTFCNN Ours 98.44 ± 0.58

Note: The results of the proposed method are marked in bold.

From Table 2, we see that the CNN-based methods have achieved more satisfactory results than
mid-level methods (i.e., VLAD, VLAT, and MS-CLBP+FV). In [22], three kinds of pre-trained CNN
models were employed as feature extractors, and the features from the first fully connected layer were
used for classification. In [44,46,51–53,71], deep features from pre-trained CNNs were reprocessed
to achieved excellent performance. In [73], a deep-learning-based classification method was presented
to improve classification performance by combining pre-trained CNNs and extreme learning machine
(ELM). In [56,72,74], deep features and hand-crafted features were combined to get a discriminative
scene presentation. In [54,55], multilayer features based on a convolutional neural network were
fused to get better results. In addition, the work reported in [75,76] attempted to adopt a multiscale
feature fusion strategy. In contrast, our proposed method provides an improvement over recent



Remote Sens. 2019, 11, 1687 19 of 23

CNN-based methods and focuses on combing triple-part features of a CNN model for classification.
On the UC-Merced dataset, the highest classification accuracy of the CTFCNN was 98.44%.

Compared with the UC-Merced dataset, the AID dataset is available later (in 2017), and it is larger
scale dataset. However, the CTFCNN method achieved excellent classification results (94.91%) on the
AID dataset. As can be seen from Table 3, the performance of our proposed method is better than some
state-of-the-art methods, which are based on pre-trained CNNs. In [78,79], a two-stage deep feature
fusion method and multilevel fusion methods achieve satisfactory results. The reason is that they
adopt multiple types of CNN models, including CaffeNet and VGG-VD-16, while our method only
employs one type of CNN model. The classification result in [43] is good, because CNN and CapsNet
are integrated, and feature maps from a pre-tained VGG-16 are fed into CapsNet and participated
in fine-tuning. The above analysis indicates that the proposed CTFCNN method can effectively extract
the discriminating features of scenes to achieve better classification.

Table 3. Overall accuracy (mean ± SD) comparison of recent methods under the training ratio of 50%
on the AID dataset.

Method Published Time Classification Accuracy (%)

MS-CLBP+FV [70] 2017 86.48 ± 0.27
GoogLeNet [22] 2017 86.39 ± 0.55
VGG-VD-16 [22] 2017 89.64 ± 0.36

CaffeNet [22] 2017 89.53 ± 0.31
DCA with concatenation [55] 2017 89.71 ± 0.33
Fusion by concatenation [55] 2017 91.86 ± 0.28

Fusion by addition [55] 2017 91.87 ± 0.36
Bidirectional adaptive feature fusion [72] 2017 93.56

salM3LBP-CLM [74] 2017 89.76 ± 0.45
TEX-Net-LF [56] 2017 92.96 ± 0.18

Converted CaffeNet [78] 2018 92.17 ± 0.31
Two-stage deep feature fusion [78] 2018 94.65 ± 0.33

Multilevel fusion [79] 2018 94.17 ± 0.32
ARCNet-VGG16 [4] 2019 93.10 ± 0.55

VGG19 + Hybrid-KCRC (RBF) [52] 2018 91.82
VGG-16-CapsNet [43] 2019 94.74 ± 0.17

VGG19 + SPM-CRC [51] 2019 92.55
VGG19 + WSPM-CRC [51] 2019 92.57

CTFCNN Ours 94.91 ± 0.24

Note: The results of the proposed method are marked in bold.

5. Conclusions

In this paper, we proposed a CTFCNN framework to fully exploit the discriminant ability
of a pre-trained CaffeNet. In this framework, CaffeNet is employed as a feature extractor to get
multilayer convolutional features, features from the fully connected layer, and LBP-based FC features.
Then, the iBoVW method is developed to process the convolutional features, which employs LPP
and a nonlinear coding method. For the LBP-based FC features, a new solution is proposed to integrate
texture images and pre-trained CNN models. Finally, three features are combined by weighted
concatenation. As a result, the proposed framework can effectively achieve the representations
of HSRRS images and improve the performance of scene classification. Experimental results on two
public datasets (UC-Merced and AID) show that the CTFCNN method obtains much better results
than some state-of-the-art methods in terms of overall accuracy, and the highest OAs achieved were
98.44% and 94.91%, respectively. In the future, we will incorporate fine-tuning techniques and focus
on combing features from regions of interest (ROIs) to further improve the classification performance.
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