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Abstract: Water color remote sensing requires accurate atmospheric correction but this remains
a significant challenge in highly turbid waters. In this respect, the shortwave infrared (SWIR)
band-based atmospheric correction approach has proven advantageous when applied to the moderate
resolution imaging spectroradiometer (MODIS) onboard the Aqua satellite. However, even so,
uncertainties affect its accuracy. We performed a regional vicarious calibration of the MODIS-Aqua
SWIR (1240, 2130)-based atmospheric correction using in situ water surface reflectance data measured
during different seasons in Lake Taihu, a highly turbid lake. We then verified the accuracy of the (1240,
2130)-based atmospheric correction approach using these results; good results were obtained for the
remote sensing reflectance retrievals at the 555, 645, and 859 nm, with average relative errors of 15%,
14%, and 22%, respectively, and no significant bias. Comparisons with the (1240, 2130)-based iterative
approach and (1640, 2130)-based approach showed that the vicarious calibrated (1240, 2130)-based
approach has the best accuracy and robustness. Thus, it is applicable to the highly turbid Lake Taihu.
It may also be applicable to other highly turbid inland waters with similar optical and aerosol optical
properties above water, but such applications will require further validation.
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1. Introduction

Water color satellite sensors receive top-of-atmosphere (TOA) radiance, which includes
water-leaving and atmospheric path radiance. Water-leaving radiance, which can be used to assess
water parameters, must be derived from satellite-received TOA radiance [1]. This process is known
as atmospheric correction, which is the basis for water color remote sensing. Gordon and Wang [1]
proposed an atmospheric correction approach (abbreviated as GW94) based on the “black near-infrared
(NIR) water-leaving radiance” assumption. This approach uses two NIR bands to assess aerosol
radiance and then interpolates the aerosol radiance to visible (VIS) bands. Previous studies have applied
this approach to the sea-viewing wide field-of-view sensor (SeaWiFS) and the moderate-resolution
imaging spectroradiometer (MODIS), which have all yielded good results in open ocean waters [2].
For turbid coastal and inland waters, however, the near-infrared water-leaving radiance is apparently
greater than zero and, therefore, the “black NIR” assumption is no longer valid. Therefore, the GW94
approach fails to perform accurate atmospheric correction in turbid water. Using the “black NIR”-based
approach, studies have developed a number of improved methods for turbid waters, which include
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two main categories. The first attempts to develop models to assess the water-leaving radiance in NIR
bands mainly using an iterative approach [3–7]. The second approach uses atmospheric information
derived from adjacent clear water and interpolates the corrections to the turbid water [8]. These
improved approaches usually work well in moderately turbid waters but are not necessarily valid for
highly turbid waters since certain waters saturate the NIR bands, rendering these “black NIR”-based
approaches completely unusable.

Wang and Shi [9–11] proposed a “black shortwave infrared (SWIR)”-based approach, which
assumes that the water-leaving radiance in the SWIR bands is zero and uses two SWIR bands to replace
the two NIR bands present in the original GW94 approach. Due to the strong absorption at the SWIR
wavelengths from pure water [12], the water-leaving radiance in the SWIR wavelength for even highly
turbid water tends to be zero. Therefore, the SWIR-based atmospheric correction approach can be used
for highly turbid waters. Previous studies have already verified this approach with its application to
MODIS-Aqua data in several areas with highly turbid water, including the East China Sea and eastern
coast of the U.S.A. [9,10,13,14]. These studies used two SWIR bands at 1240 and 2130 nm because
14 out of the 20 detectors for the original 500 m resolution 1640 nm band on the MODIS-Aqua are
inoperable. However, in certain highly turbid waters, such as areas in Lake Taihu, we cannot neglect
the water-leaving radiance at the 1240 nm band and the original (1240, 2130) SWIR-based atmospheric
correction approach will overestimate aerosol scattering and underestimate the water-leaving radiance
in the visible and NIR bands. To solve this problem, Wang et al. [15] proposed an iterative approach
and used the relatively clear water pixels at the center of Lake Taihu to retrieve an aerosol model from
the original (1240, 2130) SWIR band-based atmospheric correction and interpolated the aerosol model
to the entire lake. With the interpolated aerosol model and the 2130 nm band determined aerosol
scattering, they then performed atmospheric correction for the entire lake. Zhang et al. [16] suggested
that the center of Lake Taihu is not always relatively clear and, therefore, revised the iterative approach
by selecting the 200 pixels with the clearest water in the entire lake, as opposed to only the middle area
of the lake. However, there are still several uncertainties in the (1240, 2130)-based iterative method.
Lake Taihu is a large lake, with an area of over 2300 km2, surrounded by large metropolitan areas, such
as Suzhou, Wuxi, Changzhou, and Huzhou. Therefore, aerosol models applicable above the entire lake
may significantly change in certain circumstances. Otherwise, locating relatively clear water in Lake
Taihu is not always easy, which leads to the failure of the (1240, 2130)-based iterative method. To avoid
these uncertainties, Wang et al. [17] replaced the 1240 nm band with the 1640 nm band and applied the
(1640, 2130)-based atmospheric correction approach because the water-leaving radiance at 1640 nm is
more likely to be near zero due to higher water absorption at longer wavelengths. However, since 70%
of the detectors for the original 500 m resolution 1640 nm band on the MODIS-Aqua are inoperable,
the (1640, 2130)-based method cannot be applied operationally.

Except for the uncertainties mentioned above, there are a number of other uncertainties associated
with the atmospheric correction of water color remote sensing images. To improve the accuracy of
atmospheric correction, previous studies have widely adopted vicarious calibration as an operational
method [18–25]. Vicarious calibration uses the in situ-measured water-leaving radiance coincident
with the water color remote sensing images to compute the vicarious calibration coefficients, i.e.,
the gains, to obtain the original TOA radiance of the water color remote sensing images. Vicarious
calibration can cancel out the error sources and uncertainties in the atmospheric correction process, thus
improving atmospheric correction accuracy. For open ocean waters, studies have performed reliable
vicarious calibrations based on the in situ water-leaving radiance measured by the marine optical buoy
(MOBY) [20,26]. The vicarious calibration coefficients for MODIS-Aqua have been previously applied to
the operational processing of MODIS-Aqua data. However, these calibration coefficients are applicable
to clear open ocean waters when using the NIR-based atmospheric correction approach but may not
be suitable for highly turbid waters when using the SWIR-based atmospheric correction approach.
Therefore, to improve the accuracy of the SWIR-based atmospheric correction approach in highly turbid
waters, we recommend the vicarious calibration of the SWIR-based atmospheric correction approach
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for highly turbid waters. In this study, we performed regional vicarious calibration of MODIS-Aqua
data over highly turbid waters using the SWIR-based atmospheric correction approach. We used in
situ water surface reflectance data measured in the highly turbid Lake Taihu during different seasons to
perform the vicarious calibration of the (1240, 2130)-based atmospheric correction approach. We then
verified the accuracy of the (1240, 2130)-based atmospheric correction approach with the vicarious
calibrated results.

2. Study Area and Data Description

2.1. Study Area Description

Lake Taihu in eastern China was selected as the study area (Figure 1). It is the third largest
freshwater lake in China and has an area of over 2300 km2 [27]. Lake Taihu is a highly turbid lake, with
an average concentration of total suspended matter that is greater than 50 mg L−1 and a maximum
concentration of total suspended matter that is greater than 300 mg L−1 [28]. Taihu Lake is located in
the core area of the middle and lower reaches of the Yangtze River, and is the source of drinking for
surrounding cities such as Wuxi and Suzhou. In recent years, the water properties of Lake Taihu have
attracted significant attention for remote sensing data studies [16,17,28–37].

From 2005 to 2014, we performed 12 cruise surveys of Lake Taihu, during which we measured the
in situ water surface reflectance at 377 water sampling stations, whose locations are shown in Figure 1.
Table 1 lists relevant information, such as the dates and sampling stations, for each cruise survey.
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Figure 1. Maps of the location of Lake Taihu, China, and the 377 in situ water sampling stations used
during the 12 cruise surveys performed between 2005 and 2014.

Table 1. The dates and sampling stations for each cruise survey performed on Lake Taihu.

Cruise Dates Number of Stations Cruise Dates Number of Stations
Oct. 10, 2005 13 Mar. 14–15, 2009 29
Jan. 7–9, 2006 47 Apr. 17–27, 2009 51

Jul. 29 to Aug. 1, 2006 39 Oct. 17–18, 2012 9
Oct. 12–15, 2006 37 May 11–13, 2013 40

Jan. 7–9, 2007 50 Jul. 21–22, 2014 8
Apr. 25–27, 2007 40 Oct. 26, 2014 14
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2.2. Water Surface Reflectance Measurements

During the 12 cruise surveys, we measured the in situ water surface reflectance spectra at each
sampling station with an ASD portable field spectrometer FieldSpec®Pro VNIR (wavelength range
from 350–1,000 nm) and FieldSpec®Pro FR (wavelength range from 350–2,500 nm) using the above
water method [38]. At each station, we measured the standard panel (Lp(λ)), water (Lsw(λ)), and
skylight (Lsky(λ)) on the open deck. With these measurements, we calculated the remote sensing
reflectance (Rrs(λ)) with the following equation:

Rrs(λ) =
Lw(λ)

Ed(λ)
=

Lsw(λ) − rskyLsky(λ)

πLp(λ)/ρp(λ)
(1)

where λ is wavelength, Ed(λ) is the downward irradiance above the water surface, Lw(λ) is the
water-leaving radiance, ρp(λ) is the reflectance of the standard panel calibrated in the laboratory, and
rsky is the skylight reflectance at the air–water interface, which can be determined from the look-up
table [39]. Wind speeds at each sampling station were measured simultaneously with reflectance
measurements and were used to determine rsky values.

Figure 2 shows the calculated Rrs spectra for the 12 cruise surveys. Previous studies have already
applied several of these Rrs data to study the water properties of Lake Taihu [24,29,40–42].
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Figure 2. The Rrs spectra measured in Lake Taihu from the 12 cruise surveys performed in (a) October
2005, (b) January 2006, (c) July to August 2006, (d) October 2006, (e) January 2007, (f) April 2007,
(g) March 2009, (h) April 2009, (i) October 2012, (j) May 2013, (k) July 2014, and (l) October 2014.
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2.3. MODIS-Aqua Description

MODIS, an onboard Aqua satellite, was launched on 4 May, 2002. Of the 36 bands equipped on
MODIS, 16 can be used to study water properties, including nine 1 km spatial resolution ocean color
bands (i.e., 412, 443, 488, 531, 547, 667, 678, 748, and 869 nm), five 500 m land bands (i.e., 469, 555, 1240,
1640, and 2130 nm), and two 250 m bands (645 and 859 nm). For highly turbid waters, out of the nine
ocean color bands, six bands (547, 667, 678, 748, and 869 nm) often become saturated and should not be
used. The three SWIR bands (i.e., 1240, 1640, and 2130 nm) can be used for atmospheric corrections.
Finally, the eight other visible and NIR bands (i.e., 412, 443, 469, 488, 531, 555, 645, and 859 nm) can be
used to study the water properties of highly turbid waters. Out of these eight bands, the four land
bands (i.e., 469, 555, 645, and 859 nm) have both higher spatial resolution and radiometric dynamic
range and are, therefore, more beneficial when studying the water properties of highly turbid coastal
and inland waters, because highly turbid waters produce higher reflectance signals than clear waters.
In this study, we analyzed the atmospheric correction result accuracy of these eight bands (i.e., 412,
443, 469, 488, 531, 555, 645, and 859 nm), with a primary focus on the four land bands (i.e., 469, 555, 645,
and 859 nm).

We used coincident in situ remote sensing reflectance data to calibrate and verify the atmospheric
correction results of the MODIS-Aqua data, which include 18 scenes of images referred to as: A20060080540,
A20060090445, A20062100440, A20062110520, A20062120425, A20070070430, A20070080510, A20070090555,
A20071160535, A20090730540, A20091070530, A20091120545, A20091160520, A20122910440, A20122920525,
A20131320535, A20142020430, and A20142990510.

3. Methods

3.1. Regional Vicarious Calibration Method

The water–air radiometric transfer function [20] is given by the following equation:

Lt(λ) = (tdv(λ)Lw(λ) + La(λ) + Lr(λ) + tLf(λ) + TLg(λ))tgs(λ)tgv(λ)f p(λ) (2)

where Lt(λ), La(λ), Lr(λ), tLf(λ), and TLg(λ) are the TOA radiance, aerosol scattering radiance, which
includes Rayleigh–aerosol interactions, Rayleigh scattering radiance (air molecule scattering), surface
whitecap radiance, and sunglint, respectively; tdv(λ) is the water surface to satellite diffuse transmittance;
tgv(λ) and tgs(λ) are the gaseous absorption from the water surface to the sensor and Sun to water
surface, respectively; and f p(λ), is the correction coefficient for the band sensor response to the observed
radiance polarization.

Vicarious calibration is based on this water–air radiometric transfer function, which uses
the coincidently in situ-measured Rrs(λ) to model Lt(λ), followed by regression analysis with the
corresponding MODIS-received Lt(λ). Before input into Equation (2), the in situ-measured Rrs(λ)
should be transformed to Lw(λ) as follows [43]:

Lw(λ) = nLw(λ)(fscos(θs)tds(λ)fb(λ)) =(Rrs(λ)*F0(λ))(fscos(θs)tds(λ)fb(λ)) (3)

where nLw(λ) is the normalized water-leaving radiance, F0 is the TOA solar irradiance at the average
Earth–Sun distance, f s is the adjustment parameter for changes in the Earth–Sun distance, θs is the
solar zenith angle, tds(λ) is the Sun to water surface diffuse transmittance, and f b(λ) is the water surface
bidirectional reflectance correction parameter.

The parameters in Equations (2) and (3) can be computed using the SeaWiFS data analysis system
(SeaDAS 7.2) based on the SWIR (1240, 2130 nm) atmospheric correction approach. We computed
Lw(λ) by inputting the coincidently in situ-measured Rrs(λ) into Equation (3) and then calculated
Lt(λ) by inputting the computed Lw(λ) into Equation (2). We further use the computed Lt(λ) and its
corresponding MODIS-received Lt(λ) to perform regression analysis, as shown in Equation (4). We then
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obtained the vicarious calibration coefficients for each band. We note that this regression equation only
contains gain (λ) but no offset (λ) because this is a more stable technique [20].

Lt
Computed(λ) = gain(λ) * Lt

MODIS(λ) (4)

The in situ Rrs(λ) spectra data should be convolved into Rrs(λi) with the relative spectral response
function for each MODIS-Aqua VIS-NIR band before substitution into Equation (3):

Rrs(λi) =

∫ λmax

λmin
Rrs(λ) fi(λ)dλ∫ λmax

λmin
fi(λ)dλ

(5)

where f i(λ) is the relative spectral response function for each MODIS-Aqua band and λmin and λmax

are the wavelength range of the spectral response function for each band.
We note that the coincident in situ Rrs(λ) or nLw(λ) spectra are key parameters in the vicarious

calibration process. Vicarious calibration of the NIR-based atmospheric correction approach often uses
the in situ nLw(λ) spectra measured by the marine optical buoy (MOBY) in clear oceanic waters off

Hawaii [20]. Vicarious calibration of the SWIR-based atmospheric correction approach can also use
MOBY data, which is beneficial for the NIR-SWIR combined atmospheric correction algorithm [23].
However, MOBY data will also yield larger uncertainties due to the low signal-to-noise ratio that
characterizes the SWIR bands over clear oceanic waters. Although we are attempting to improve the
SWIR-based atmospheric correction accuracy over highly turbid inland waters, such as Lake Taihu,
we do not need to consider the combination with the NIR-based atmospheric correction algorithm.
Therefore, to reduce uncertainty caused by the low signal-to-noise ratio, we instead used in situ Rrs(λ)
data from the highly turbid Lake Taihu for the vicarious calibration of the SWIR-based atmospheric
correction approach. The vicarious calibration results can also counteract local aerosol effects and yield
improved accuracy at Lake Taihu, as well as similar adjacent lakes that are highly turbid.

3.2. Atmospheric Correction Based on Vicarious Calibration Results

After we obtained the vicarious calibration coefficients for the eight MODIS-AQUA VIS-NIR
bands, we substituted them into the SeaDAS7.2 to perform the SWIR-based atmospheric corrections.
In the SeaDAS7.2 l2gen module, we input the vicarious calibration coefficients for the eight VIS-NIR
bands into the “gain” parameters. We note that the “gain” parameters should include 16 numbers for
all 16 bands that can be used for water optical property studies, whereas we used the default numbers
provided in the SeaDAS7.2 as the “gain” parameters for the other 8 bands. Table 2 lists the “gain”
settings, as well as other parameters for the SeaDAS7.2.

Table 2. The SeaWiFS data analysis system (SeaDAS)7.2 parameter settings for atmospheric correction
based on the shortwave infrared (SWIR) (1240, 2130) combined with the vicarious calibration results.
The gain(412), gain(443), gain(469), gain(488), gain(531), gain(555), gain(645), and gain(859) should
be replaced with the vicarious calibration results. The other numbers in the “gain” parameter are the
default numbers provided in the SeaDAS 7.2. The brdf_opt = 0 means that the bidirectional reflectance
distribution function (BRDF) effect is not corrected; this is further discussed in Section 5.1.

Parameter Meaning Setting

gain Vicarious calibration coefficients
[gain(412), gain(443), gain(469), gain(488),

gain(531), 0.9989, gain(555), gain(645), 0.9996, 1,
0.9997, gain(859), 1, 1, 1, 1]

aer_opt aerosol calculation mode −1: Multi-scattering with 2-band model selection

aer_wave_short Lower wavelength used for aerosol
model selection 1240

aer_wave_long
Upper wavelength used for aerosol

model selection and aerosol
concentration

2130
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Table 2. Cont.

Parameter Meaning Setting

cloud_wave Wavelength used to identify clouds 2130
cloud_thresh Threshold used to identify clouds 0.0175

brdf_opt Option for running bi-directional
reflectance correction (BRDF) factor 0

resolution Spatial resolution of outputs 250

3.3. Accuracy Assessment of the Atmospheric Correction Results

We incorporated the vicarious calibration results into the (1240, 2130)-based atmospheric correction,
which we refer to as the (1240, 2130)-Cal method. To assess the accuracy of the (1240, 2130)-Cal method,
we compared it with the two other methods mentioned previously, i.e., the (1640, 2130)-based method,
which we refer to as the (1640, 2130) method, and the (1240, 2130)-based iterative method, which we
refer to as the (1240, 2130)-Ite method.

We used the matchups of the in situ Rrs(λ) measurements coincident with the MODIS-Aqua
image pixels to assess the atmospheric correction results with these three methods. There are several
requirements used to select the matchups of the in situ Rrs(λ) measurements coincident with the
MODIS-Aqua image pixels. First, the time difference between the in situ Rrs(λ) measuring time and
MODIS-Aqua image acquisition time should not exceed 3 hours. Second, the water should be stable
within the time difference, that is, there should be no rain, and the wind speed should not exceed 5 m/s.
Third, the MODIS-Aqua image pixels that surround the in-situ sampling sites should be cloudless and
absent of high sunglint. Last, in the 3×3 window pixels of the retrieved Rrs(λ) image that surrounds the
sampling station coordinate, the number of valid positive pixels should exceed 5 and the coefficient of
variation for the valid positive pixels should be smaller than 40%.

To assess the accuracy of the (1640, 2130) and (1240, 2130)-Ite methods, we used all matchups.
To assess the accuracy of the (1240, 2130)-Cal method, we divided the coincident matchups into both
calibration matchup data, which were used in the vicarious calibration, and validation matchup data.

The accuracy parameters used in the accuracy assessment include the correlation coefficient (r),
average relative error (ARE), root-mean-square deviation (RMSE), and relative root-mean-square
deviation (rRMSE). The definitions of the ARE, RMSE, and rRMSE are as follows:

ARE =

∑N
1

∣∣∣Rm
rs −Ri

rs
∣∣∣

N
(6)

RMSE =

√∑N
1 (Rmrs −Rirs)

2

N
(7)

rRMSE =

√√∑N
1 (Rmrs−Rirs

Rmrs
)

2

N
(8)

where Rm
rs and Ri

rs are the in situ-measured and image-derived Rrs, respectively, and λ is omitted.

4. Results

4.1. Vicarious Calibration Results

To perform the vicarious calibration of the MODIS-Aqua VIS-NIR bands, we used the coincident
in situ Rrs(λ) measurements with the eight scenes of the MODIS-Aqua images, including A20060090445,
A20062110520, A20070080510, A20071160535, A20090730540, A20091070530, A20122920525, and
A20142990510. Using the atmospheric parameters computed with the SeaDAS 7.2 and the in
situ-measured Rrs(λ), we calculated the Lt(λ) in the eight VIS-NIR bands. Figure 3 shows the
scatter plots of the computed Lt(λ) and MODIS-measured Lt(λ). By performing a regression between
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the computed Lt(λ) and MODIS-measured Lt(λ), we obtained the vicarious calibration results. Table 3
lists the “gain” of the eight VIS-NIR land bands.
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Figure 3. A comparison between the moderate resolution imaging spectroradiometer (MODIS)-Aqua
measured Lt(λ) in Lake Taihu with the computed Lt(λ) via the in situ-measured Rrs(λ) and atmospheric
correction parameters calculated with the SeaDAS 7.2. The units for the MODIS-measured and
computed Lt(λ) are W m−2 µm−1 sr−1.

Table 3. The regional vicarious calibration results for the MODIS-Aqua visible and near infrared (NIR)
bands using the in situ Rrs(λ) in the highly turbid Lake Taihu with the (1240, 1640)-based atmospheric
correction algorithm. The default gains in SeaDAS 7.2 are also shown in this table.

Band (nm) 412 443 469 488 531 555 645 859

gain
(This study) 1.0383 1.0651 1.0915 1.0795 1.0930 1.1005 1.1220 1.0800

gain
(SeaDAS 7.2 default) 0.9722 0.9872 1.0139 0.9923 0.9995 1.0014 1.0253 1.0184

4.2. Atmospheric Correction Accuracy Assessment

We compared the atmospheric correction accuracy of the three methods, i.e., the (1640, 2130),
(1240, 2130)-Ite, and (1240, 2130)-Cal. First, we computed their atmospheric correction accuracy with
matchups for the in situ Rrs(λ) measurements coincident with the MODIS-Aqua image pixels. Then,
we further compared the typical atmospheric correction result images using the three methods.

4.2.1. Comparison of Atmospheric Correction Accuracy

Figure 4 shows the scatter plots for the matchups of the in situ Rrs(λ) measurements coincident
with the atmospheric correction results for the MODIS-Aqua using the three methods, i.e., the (1640,
2130), (1240, 2130)-Ite, and (1240, 2130)-Cal. The points for the (1240, 2130)-Cal results were divided
into calibration points, referred to as (1240, 2130)-Cal (Cal), and validation points, referred to as
(1240, 2130)-Cal (Val). Table 4 lists the calculated ARE, RMSE, rRMSE, and r. The accuracy of the
atmospheric correction results for the (1240, 2130)-Cal method was computed using both validation
and total matchups.
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Figure 4. The scatter plots of the matchups for the in situ Rrs(λ) measurements coincident with the
atmospheric correction results of MODIS-Aqua based on the three methods, i.e., the (1640, 2130),
(1240, 2130)-Ite, and (1240, 2130)-Cal. The points for the (1240, 2130)-Cal results were divided into
calibration, referred to as (1240, 2130)-Cal (Cal), and validation points, referred to as (1240, 2130)-Cal
(Val). Table 4 lists the valid matchup numbers for each band based on each method.

Based on Figure 4, we observe that the Rrs(λ) results from the (1240, 2130)-Cal method are closer
to the 1:1 line compared with the results from the (1640, 2130) and (1240, 2130)-Ite methods. For the
Rrs(λ) results from the (1240, 2130)-Cal method, the distribution of the calibration points (referred to as
(1240, 2130)-Cal(Cal)) are similar to those of the validation points (referred to as (1240, 2130)-Cal(Val)).
For the Rrs(λ) results at different bands from the (1240, 2130)-Cal method, the Rrs(λ) values at the 555,
645, and 859 nm bands are closer to the 1:1 line while the Rrs(λ) results at the 469 nm band show a
slight scatter.

We can further analyze the accuracy reported in Table 4. First, the valid matchup numbers from
the (1640, 2130) method are the smallest, which is mainly due to the fact 70% of the detectors are
inoperable in the 1640 nm band. Valid matchup numbers for the (1240, 2130)-Ite method are also
smaller than those based on the (1240, 2130)-Cal method, which is mainly due to the fact that the
(1240, 2130)-Ite method does not work on several images absent of clear water. Therefore, the (1240,
2130)-Cal method yielded the most valid matchup numbers, which indicates that it is a more robust
method. Second, for the ARE, RMSE, and rRMSE, the valid matchup numbers from the (1240, 2130)-Cal
method are the smallest. Third, for r, the valid matchup numbers from the (1240, 2130)-Cal method are
the largest. Lastly, the difference between these accuracies for the (1240, 2130)-Cal (Total) and (1240,
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2130)-Cal (Val) methods are similar. Therefore, these results suggest that the (1240, 2130)-Cal method
has the highest accuracy and robustness.

Table 4. The accuracy, based on the matchups, of the in situ Rrs(λ) measurements coincident with
the atmospheric correction results for MODIS-Aqua using the three methods, i.e., the (1640, 2130),
(1240, 2130)-Ite, and (1240, 2130)-Cal. For the (1240, 2130)-Cal, accuracies were computed for both the
total and validation matchup data, which are reported as (1240, 2130)-Cal (Total) and (1240, 2130)-Cal
(Val), respectively. The valid matchup numbers vary for the different bands and with respect to the
atmospheric correction method because the valid atmospheric-corrected Rrs(λ) value must be positive
and the coefficients of variation must be smaller than 40% in the 3×3 window that surrounds the
coincident in situ Rrs(λ) measurements.

Approach Band (nm) Valid matchup
numbers

Rrs range
(sr−1)

ARE RMSE
(sr−1)

rRMSE r

(1640, 2130)

469 50 0.004–0.035 52% 0.015 62% 0.15
555 89 0.005–0.051 28% 0.013 35% 0.58
645 92 0.002–0.054 24% 0.010 31% 0.75
859 77 0.002–0.029 26% 0.004 41% 0.81

(1240, 2130)-Ite

469 95 0.003–0.025 29% 0.009 36% 0.25
555 112 0.010–0.039 28% 0.014 33% 0.25
645 112 0.007–0.035 26% 0.012 31% 0.67
859 109 0002–0.030 40% 0.006 96% 0.69

(1240, 2130)-Cal
(Total)

469 98 0.002–0.033 33% 0.009 40% 0.58
555 129 0.014–0.048 15% 0.007 20% 0.70
645 130 0.008–0.050 14% 0.006 19% 0.84
859 122 0.002–0.028 22% 0.003 29% 0.90

(1240, 2130)-Cal
(Val)

469 25 0.002–0.031 39% 0.010 47% 0.78
555 51 0.014–0.048 20% 0.008 24% 0.77
645 52 0.008–0.050 18% 0.007 24% 0.83
859 46 0.002–0.028 28% 0.003 35% 0.88

4.2.2. Comparison of Atmospheric-Corrected Images

We used a scene of a MODIS-Aqua image, acquired on April 26, 2009, named A20091160520,
to compare the atmospheric-corrected Rrs images based on the (1640, 2130), (1240, 2130)-Ite, and
(1240, 2130)-Cal methods. We set the spatial resolution of the atmospheric-corrected Rrs result image
at 250 m. The Rrs(645) and Rrs(859) images had finer spatial patterns since their original spatial
resolution was 250 m and did not require spatial interpolation. Figure 5 shows a comparison of the
atmospheric-corrected Rrs(645) and Rrs(859) images based on the three different methods. There are
five coincident in situ Rrs measurements and Figure 5a shows their locations as red dots. We further
compared the five matchups of the in situ Rrs spectra with the corresponding atmospheric-corrected
Rrs spectra in Figure 6. Table 5 lists the average ARE of these five matchups.
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Table 5. The average relative error (ARE) of the five matchups for the in situ Rrs spectra with the 332 
corresponding atmospheric-corrected Rrs spectra from the MODIS-Aqua image acquired on 26 April 333 
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Figure 5. The atmospheric-corrected Rrs images of a scene from a MODIS-Aqua image acquired on
26 April 2009, based on the (1640, 2130), (1240, 2130)-Ite, and (1240, 2130)-Cal methods. (a) is the
Lt(645) image, which shows the locations of the five coincident in situ Rrs measurements as red dots.
(b–d) are the atmospheric-corrected Rrs(645) images based on the (1640, 2130), (1240, 2130)-Ite, and
(1240, 2130)-Cal methods, respectively. (e) is the Lt(859) image. (f–h) are the atmospheric-corrected
Rrs(859) images based on the (1640, 2130), (1240, 2130)-Ite, and (1240, 2130)-Cal methods, respectively.
The (1240, 2130)-Cal method retrieved an AOT(555) = 0.33 (Mean) ± 0.10 (Std).
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Figure 6. A comparison of the five matchups for the in situ Rrs spectra with corresponding
atmospheric-corrected Rrs spectra from the MODIS-Aqua image acquired on 26 April 2009, which was
processed using the three different methods. The five subfigures show the comparison results on the
five in situ locations, the red dots in Figure 5a.
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Table 5. The average relative error (ARE) of the five matchups for the in situ Rrs spectra with the
corresponding atmospheric-corrected Rrs spectra from the MODIS-Aqua image acquired on 26 April
2009, processed using the three different methods.

Approach
Band(nm)

412 443 469 488 531 555 645 859 Mean

(1640, 2130) 25% 18% 15% 13% 10% 9% 7% 13% 14%
(1240, 2130)-Ite 24% 22% 23% 21% 13% 19% 16% 17% 19%
(1240, 2130)-Cal 17% 14% 11% 11% 9% 7% 6% 13% 11%

Based on Figure 5, we observe that there are similar spatial patterns in the retrieved Rrs(645) and
Rrs(859) images from the different atmospheric correction methods. There is significant noise and
areas of atmospheric correction failure in the retrieved Rrs(645) and Rrs(859) images from the (1640,
2130) method, which is mainly due to the inoperable detectors in the 1640 nm band. Most areas of
the retrieved Rrs(645) and Rrs(859) images based on the (1240, 2130)-Ite method were underestimated
compared with those retrieved by the (1640, 2130) and (1240, 2130)-Cal methods, which is possibly
due to the inappropriate interpolation of aerosol models from clear water. Based on Figure 6, we
observe that the Rrs(λ) spectra retrieved by the (1240, 2130)-Cal method are, overall, the closest to the
in situ-measured Rrs(λ) spectra, though the match-ups of (1) and (3) show a better correspondence
with the Rrs(λ) spectra retrieved by the (1640, 2130) method. This is also observable based on the
average ARE listed in Table 5, which is 11% for the (1240, 2130)-Cal method and 14% for the (1640,
2130) method. As for the retrieved Rrs(λ) spectral shapes, the (1640, 2130) method retrieves even better
spectral shapes than the (1240, 2130)-Cal method. Considering all these factors, the results in Figures 5
and 6 and Table 5 indicate that the (1240, 2130)-Cal method produces the best overall Rrs(λ) results.

5. Discussion

5.1. Effects of the BRDF Correction

The SeaDAS 7.2 default BRDF correction model is the Morel f/Q model, which is an iterative model
based on chlorophyll-a [44,45]. This model performs well in clear open ocean waters but has problems
when applied to highly turbid coastal and inland waters [27]. We used a scene from a MODIS-Aqua
image, acquired on 9 January 2006, named A20060090445, to discuss the BRDF problem.

We used the (1240, 2130)-Cal approach to perform atmospheric correction of this image twice.
We did not perform BRDF correction (brdf_opt = 0) the first time, and for the second, we set the
BRDF correction as the default value. Figure 7b,c show the atmospheric-corrected Rrs(645) results
with and without the default BRDF correction, respectively. We further show the BRDF correction
factor in Figure 7d, which was computed during the atmospheric correction process with the default
BRDF correction.

Based on Figure 7, we observe that the Rrs(645) image without BRDF correction is smooth along
the entire lake and the spatial pattern is similar to that of Lt(645). The Rrs(645) image with BRDF
correction, however, has several clear jumps mainly located at the center and southwestern areas of the
lake. By comparing these images with the BRDF correction factor image, these jumps occur at the edges
of the black areas. The value of these black areas is zero, which indicates that the BRDF correction
model failed in these areas and did not perform BRDF correction. Therefore, Figure 7 confirms that the
SeaDAS 7.2 default BRDF correction is not suitable for highly turbid waters. Unfortunately, there are
no other existing operational BRDF correction models for highly turbid waters.

Fortunately, due to the multi-scattering of light in highly turbid waters, the BRDF of highly turbid
water is weaker than that of clear ocean water [27]. We can, therefore, temporally ignore the BRDF
correction for highly turbid waters, especially when the viewing zenith angle is not large, which will
yield reasonable atmospheric-corrected results. For image pixels with large viewing zenith angles,
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which can be obtained from the Hisatzen field in l2flags, the atmospheric-corrected results should be
used cautiously.
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Figure 7. The atmospheric-corrected Rrs(645) images of a scene of a MODIS-Aqua image acquired
on 9 January 2006, using the (1240, 2130)-Cal method. (a) is the Lt(645) image. (b,c) are the
atmospheric-corrected results without BRDF correction and with the default BRDF correction,
respectively. (d) is the BRDF correction factor computed during the atmospheric correction process
with the default BRDF correction.

5.2. Uncertainty and Applicability Analysis

Except for the BRDF correction, there are several other sources of error in the SWIR-based
atmospheric correction method, including the noise in the SWIR bands, the inaccurate aerosol model,
and other parameter settings in the SeaDAS 7.2, as well as the non-negligible water-leaving radiance
in the 1240 nm band in certain extremely turbid waters. By incorporating the vicarious calibration
results into the atmospheric correction process, these errors cancel out to some extent, especially in the
macroscopic view. This suggests that the atmospheric-corrected results of a specific image may contain
certain errors but that the vicarious calibration significantly cancels out the overall error.

The atmospheric corrections had better accuracy at the 555 (green light), 645 (red light), and 859 nm
(NIR) wavelengths than those at the 469 nm (blue light) wavelength, which is possibly due to two
reasons. On one hand, blue light is farther from the SWIR bands than the green, red, and NIR bands,
such that the aerosol scattering errors are possibly due to derivation over a longer spectral distance
because the errors associated with the SWIR bands, aerosol models, and other sources of error may
increase during derivation over a long distance. On the other hand, in situ Rrs measurements are based
on the above-water method and the determination of the skylight reflectance at the air–water interface,
rsky, which also has associated uncertainty. Since skylight has increased at the blue light wavelength,
the error associated with determining rsky causes higher uncertainty in the computed Rrs results for
blue light. Therefore, the atmospheric-corrected Rrs results at 469 nm (blue light) should be used
cautiously. While blue light is highly absorbed by high concentrations of suspended particulate matter
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and color dissolved organic matter (CDOM) in highly turbid waters, the Rrs for blue light is seldom
used to retrieve chlorophyll-a and suspended particulate matter in highly turbid waters [28,29,46–48].

The vicarious calibration results are mainly applicable to Lake Taihu as these are based on the
coincident in situ-measured Rrs data from the lake; however, these may also be applicable to other
highly turbid waters with similar optical and aerosol optical properties above water. Even if the
calibration results may not be applicable to some waters, the procedure used in this study can be
applied to these waters in general, by using the coincident in situ-measured Rrs data from these waters
to obtain new vicarious calibration coefficients. We expect to validate and extend the present approach
to other highly turbid waters in the near future.

6. Conclusions

In this study, we performed regional vicarious calibration of the MODIS-Aqua SWIR (1240,
2130)-based atmospheric correction approach using the in situ water surface reflectance data measured
in the highly turbid Lake Taihu during different seasons. We then verified the accuracy of the (1240,
2130)-based atmospheric correction approach with the vicarious calibrated results and compared the
results with the other approaches. The main findings of this study are as follows.

First, the vicarious calibration was performed based on the in situ Rrs measurements from Lake
Taihu coincident with eight scenes of the MODIS-Aqua images. The obtained vicarious calibration
coefficient gains for the eight MODIS-Aqua visible and NIR bands at 412, 443, 469, 488, 531, 555, 645,
and 859 nm were 1.0383, 1.0651, 1.0915, 1.0795, 1.0930, 1.1005, 1.1220, and 1.0800, respectively.

Second, through the regional vicarious calibration of the VIS-NIR bands, the (1240, 2130)-based
atmospheric correction approach yielded good results for the Rrs retrievals at the 555, 645, and 859 nm
bands for Taihu Lake, with AREs of 15%, 14%, 22% for the 555, 645, and 859 nm bands, respectively,
with no significant bias.

Further comparison with the (1240, 2130)-based iterative approach (i.e., the (1240, 2130)-Ite) and
the (1640, 2130)-based approach showed that the vicarious calibrated (1240, 2130)-based approach had
the best accuracy and robustness.

Finally, our results suggest that the SeaDAS 7.2 default BRDF correction model is not suitable for
highly turbid waters since it is weaker than that of clear ocean waters. Therefore, we do not recommend
the use of the BRDF correction for the atmospheric correction of highly turbid waters.

These results show that the regional vicarious calibration of the (1240, 2130)-based atmospheric
correction approach is applicable to the highly turbid Lake Taihu. This approach may also be applicable
to other highly turbid inland waters with similar optical and aerosol optical properties above water
but requires further validation.
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