
remote sensing  

Article

Analytical Approximation Model for Quadratic Phase
Error Introduced by Orbit Determination Errors in
Real-Time Spaceborne SAR Imaging

Xiaoyu Yan 1,* , Jie Chen 1, Holger Nies 2 and Otmar Loffeld 2

1 School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist.,
Beijing 100191, China

2 Center for Sensor Systems (ZESS), University of Siegen, Paul-Bonatz-Strasse 9-11, 57076 Siegen, Germany
* Correspondence: yanxy@buaa.edu.cn

Received: 9 June 2019; Accepted: 10 July 2019; Published: 12 July 2019
����������
�������

Abstract: Research on real-time spaceborne synthetic aperture radar (SAR) imaging has emerged
as satellite computation capability has increased and applications of SAR imaging products have
expanded. The orbit determination data of a spaceborne SAR platform are essential for the SAR
imaging procedure. In real-time SAR imaging, onboard orbit determination data cannot achieve
a level of accuracy that is equivalent to the orbit ephemeris in ground-based SAR processing,
which requires a long processing time using common ground-based SAR imaging procedures. It is
important to study the influence of errors in onboard real-time orbit determination data on SAR
image quality. Instead of the widely used numerical simulation method, an analytical approximation
model of the quadratic phase error (QPE) introduced by orbit determination errors is proposed.
The proposed model can provide approximation results at two granularities: approximations with
a satellite’s true anomaly as the independent variable and approximations for all positions in the
satellite’s entire orbit. The proposed analytical approximation model reduces simulation complexity,
extent of calculations, and the processing time. In addition, the model reveals the core of the process
by which errors are transferred to QPE calculations. A detailed comparison between the proposed
method and a numerical simulation method proves the correctness and reliability of the analytical
approximation model. With the help of this analytical approximation model, the technical parameter
iteration procedure during the early-stage development of an onboard real-time SAR imaging mission
will likely be accelerated.

Keywords: quadratic phase error; SAR; approximation; spaceborne real-time SAR imaging; orbit
determination error

1. Introduction

Real-time synthetic aperture radar (SAR) imaging has always been a research focus in certain
applications. Real-time imaging enhances the effectiveness and widens the application range of
the SAR technique. In airborne SAR, real-time sensing plays an important role, and there are
many well-established systems [1–5] and techniques [6–11]. Real-time processing techniques are
also available for unmanned aerial vehicle (UAV) SAR applications [12–14]. For spaceborne SAR,
because of its unique configuration and onboard computation capabilities, real-time SAR imaging
systems and techniques are still being developed for both digital [15–17] and optical [18] methods.

For the purpose of implementing onboard real-time spaceborne SAR imaging, a set of Doppler
parameters with high precision and accuracy must be calculated, and accurate position and velocity
vectors are needed for the Doppler parameter calculation. In typical methods used to process SAR
echo data, a high-accuracy orbit ephemeris is applied in the ground-based processing system, and state
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vectors, i.e., position and velocity vectors of the SAR satellite, are determined with high accuracy.
However, this kind of high-accuracy orbit ephemeris is only generated hours, days, or even weeks after
a single SAR observation [19]. Thus, this kind of high-accuracy orbit ephemeris cannot be obtained
during real-time SAR imaging. Nevertheless, we are still able to achieve onboard orbit determination
using GNSS-based receivers and appropriate algorithms [20,21]. It is acknowledged that this approach
to orbit determination has relatively low accuracy in the state vectors of SAR satellites compared with
the high-accuracy orbit ephemeris. However, it remains the best, and possibly the only, onboard orbit
determination method that is available for real-time SAR imaging.

SAR mission designers must account for the fact that errors in such onboard orbit determination
data will adversely affect the quality of the SAR imaging product through inaccurate Doppler
parameter calculation. Although estimation algorithms have been developed to generate the Doppler
centroid and Doppler rate with high accuracy for SAR imaging, they are time-consuming in practice.
Real-time spaceborne SAR imaging certainly does not belong on a mission that is not time-sensitive.
The product of real-time SAR imaging may be the source data for other mission types, such as onboard
deformation monitoring or target recognition. Given these requirements, the estimation algorithm
should not be built into the processing workflow because of its long processing time. Thus, the concept
of quadrature phase error (QPE) is introduced to evaluate the influence of onboard orbit determination
errors on spaceborne SAR imaging products. The azimuth impulse response width of a SAR image
has a certain relationship with QPE, and it provides a more intuitive evaluation standard of the errors.

Errors of an onboard orbit determination system are often given in the form of probabilities, along
with the type of probability distributions and the corresponding parameters. The most common case
for these errors is a normal distribution with an expected value of zero and a standard deviation σ.
Therefore, the probability distribution of QPE needs to be examined. In practice, there exist two major
methods that have been applied to QPE analysis, i.e., the extreme value method and the numerical
simulation method. The extreme value method is the simplest way to investigate QPE; it includes
the maximum possible error in the calculation and ignores the probability distribution of the errors.
This method faces challenges in revealing the QPE probability distribution, which means it only reflects
the extreme situation in practice. For the numerical simulation methods, Monte Carlo simulations are
often applied [22]. However, this approach requires a huge number of generated error samples and
repeated experiments.

In this paper, an analytical approximation model of the QPE introduced by orbit determination
errors is proposed. With the a priori probability of the onboard orbit determination system and
SAR satellite orbit elements, together with the observing geometry of the spaceborne SAR and
appropriate approximations, a series of equations describing the parameters of the QPE probability
distribution are presented. This analytical approximation model can provide approximation results at
two granularities, i.e., the approximations with the satellite’s true anomaly as the independent variable
and the approximations for all positions of the satellite during its entire orbit.

Following this section, Section 2 describes the QPE analytical approximation model in general.
Section 3 derives the key variables in the analytical approximation model and reveals the appropriate
approximations in the model. This is followed by the evaluation of the analytical approximation model
by comparing it with numerical simulation results in Section 4, and a related discussion is presented in
Section 5. Finally, Section 6 provides a brief conclusion regarding the analytical approximation model.

2. Proposed Model: QPE Analytical Approximation Model

The QPE analytical approximation model requires four groups of parameters as input, i.e.,
the Earth’s physical parameters, the satellite platform orbit parameters, the SAR payload key
parameters, and the a priori probability of the onboard orbit determination system. In this section,
the coordinate systems, vector in the line-of-sight method, and QPE approximation method in the
proposed model are described.
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2.1. Coordinate Systems for Modeling

Two main coordinate systems are used in the derivation of the analytical approximation model.
These two coordinate systems can be helpful in generating a clear description of the relative movement
of the spaceborne SAR and the point of interest on the surface of the Earth.

2.1.1. Earth-Centered Inertial Coordinate System

Generally, the QPE calculation requires the position, velocity, and acceleration coordinates of the
spaceborne SAR platform and the SAR antenna aiming point on the Earth’s surface, together with other
variables. A widely used coordinate system in modeling the relative motion between the spaceborne
SAR and the point of interest is the Earth-Centered Inertial (ECI) coordinate system. This system has an
x-axis and z-axis aligned with the mean equinox and the celestial North Pole, respectively. The y-axis
forms a right-handed coordinate system that joins the x-axis and z-axis.

In common practice, the onboard GNSS-based orbit determination system of a spaceborne satellite
calculates its positions in a given coordinate system using the GNSS broadcast message [21]. Each GNSS
in service now has its own unique coordinate system, e.g., WGS 84 in GPS, CGCS2000 in BDS, and GTRF
in Galileo. For modeling the orbit determination errors in the proposed analytical approximation
model, all real-time-measured position and velocity coordinates of the spaceborne SAR platform are
transformed into the ECI system in this paper.

2.1.2. Orbital Plane Coordinate System

The movement parameters of a spaceborne SAR satellite can be described in the orbital plane
coordinate system. In this system, the Earth is located at one of the foci of the elliptical orbit, and the
satellite can be regarded as a point. Polar coordinates are used to describe the movement parameters.

There exist six orbital elements that uniquely identify a specific orbit of the satellite: the semi-major
axis a, eccentricity e, and true anomaly ν are used in the orbital plane coordinate system to determine
the satellite’s movement at a certain time. The inclination i, the longitude of the ascending node Ω,
and the argument of periapsis ω are necessary to construct the transformation matrix between the
orbital plane coordinate system and the ECI system.

The orbital plane coordinate system and the ECI system are summarized in Figure 1.

XECI

YECI

ZECI

i

ω

ν

SAR 

Satellite

Target
θL

XOP

YOP

ZOP

Figure 1. The orbital plane (OP) coordinate system and the ECI system. Elements related to the OP
coordinate system are in red. ω is the argument of periapsis, i is the orbit eccentricity, ν is true anomaly,
and θL is the center off-nadir angle in SAR.
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2.2. Vector in the Line-of-Sight Method

In the analytical approximation model presented in this paper, the attitude errors of the spaceborne
SAR satellite are not taken into consideration. The true value of the attitude of the platform is used in
both the analytical approach and the following numerical verification.

With this assumption, the vector in the line-of-sight (VLS) method can be used to calculate the
state vectors of the point of interest. The relative range from the SAR antenna phase center to the
point of interest can be derived from the time delay of the echo signal. For spaceborne SAR geometry,
the echo signal enters the receiver after several pulse repetition intervals (PRIs) until the moment of
transmission, and then it is demodulated and sampled by the receiver. In each range profile of the
sampled data, each sampled time delay can be determined by the index number of its range gate.
The signal transmission delay from the antenna phase center to the sampling ADCs in the receiver can
be accurately measured in the state-of-the-art spaceborne SAR system. tdelay represents the delayed
time of the echo of the point-of-interest signal from its transmission time, and c represents the velocity
of light, whose relative range is described by

ρ =
ctdelay

2
(1)

A unit line-of-sight vector ûa,ECI in the ECI system can be created; it is perpendicular to the
aperture of the SAR antenna and points to the surface of the Earth. The position vector Ptar,ECI and
velocity vector Vtar,ECI of the point on the surface of the Earth at which the antenna points can be
shown in stripmap SAR geometry as

Ptar,ECI = Psat,ECI + ρ · ûa,ECI =

Ptar,ECI,x
Ptar,ECI,y
Ptar,ECI,z

 (2)

Vtar,ECI =

−ωe · Ptar,ECI,y
ωe · Ptar,ECI,x

0

 (3)

in which ωe is the angular speed of the Earth’s rotation.
Because there are errors in the satellite’s position and velocity measurements from the onboard

GNSS-based orbit determination system, the calculated Ptar,ECI and Vtar,ECI will also contain errors
at the same time. The relative range ρ remains unaffected because errors exist in measurements
while the real geometry remains unchanged, which means that the time delay remains equal to the
accuracy value.

2.3. QPE Approximation

QPE can be expressed in radians as [23]

QPE = π∆ fr

(
Tint

2

)2
(4)

in which fr is the Doppler rate of the echo signal, and Tint represents the integration time, also known
as the synthetic-aperture time. In stripmap SAR geometry, the integration time is the time it takes the
point of interest to enter and exit the entire 3 dB edge of the SAR antenna’s beam illumination.
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The variables Rst, Vst, and Ast represent the relative position, velocity, and acceleration of the
spaceborne SAR satellite, respectively. In the ECI system, for the antenna aiming point on the ground,
the commonly used fr expression in stripmap mode when the squint angle equals zero is

fr =
2
λ

[
Vst ·Vst

|Rst|
+

Ast ·Rst

|Rst|
− (Vst ·Rst)

2

|Rst|3

]
(5)

The fr expression in Equation (5) is an approximation expression, and it can achieve high precision
if more terms remain. In the analytical approximation model, only the first two terms in Equation (5)
are analyzed. This simplifies the model while retaining a relatively high precision.

The orbit determination system measurements contain errors, which will lead to errors in Rst, Vst,
and Ast. The terms that define the differences between the state vectors derived from measurements
and the true state vectors are

∆Rst = Rst,e −Rst (6)

∆Vst = Vst,e −Vst (7)

∆Ast = Ast,e −Ast (8)

where the subscript e indicates that the vectors contain measurement errors. Thus, the difference
between the measured fr and true fr value is

∆ fr = fr,e − fr (9)

The parameter fr in Equation (5) is often used to determine the precise value for SAR raw data
simulation or imaging algorithms. For the approximate expression of QPE, considering the magnitude
of each term in fr, some terms can be omitted while still achieving an acceptable approximation
of QPE. The VLS method in Section 2.2 maintains the real value of the relative range ρ = |Rst|.
Thus, Equation (4) combined with Equation (9) gives the QPE approximation expression

QPE = π ( fr,e − fr)

(
Tint

2

)2

≈ 2π

λρ
(2∆Vst ·Vst + ∆Ast ·Rst)

(
Tint

2

)2
(10)

For convenience, the terms ∆Vst ·Vst and ∆Ast ·Rst are named velocity and acceleration vector term
in the following sections.

The approximation of QPE in Equation (10) is the basis of the QPE analytical approximation
function and maximum QPE derivation.

3. Key Variables in the Analytical Approximation Model

For a given true anomaly ν, the distance between the satellite and the Earth’s center is

r =
a
(
1− e2)

1 + e cos ν
=

p
1 + e cos ν

(11)

where p = a
(
1− e2) in Equation (11) is the semi-latus rectum of the elliptic orbit. The position,

velocity, and acceleration vectors of the satellite in the orbital plane (OP) are
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Psat,OP = r

cos ν

sin ν

0

 (12)

Vsat,OP =

√
µ

p

 − sin ν

e + cos ν

0

 (13)

Asat,OP = −µ (1 + e cos ν)2

p2

cos ν

sin ν

0

 (14)

where µ is the standard gravitational parameter of the Earth.
The transformation matrix AO2E is used to convert the vector in the orbital plane to the ECI system:

AO2E =

cos ω − sin ω 0
sin ω cos ω 0

0 0 1


1 0 0

0 cos i − sin i
0 sin i cos i


cos Ω − sin Ω 0

sin Ω cos Ω 0
0 0 1

 (15)

The parameter Ω in AO2E results in rotation with the z-axis in the ECI system. Considering the
geometry and the Earth’s ellipsoid reference, in the following discussion, we set Ω = 0 for convenience,
and this will not result in an error value in the QPE approximation.

The onboard orbit determination system measurements are given in ECI terms, which can be
regarded as the true state vector plus an error vector. With the assumption that the measurement
errors of the satellite’s position and velocity follow a normal distribution with an expected value of 0,
the error vectors can be described as

∆P =

∆px

∆py

∆pz

 ∼


N
(

0, σ2
p,x

)
N
(

0, σ2
p,y

)
N
(

0, σ2
p,z

)
 (16)

∆V =

∆vx

∆vy

∆vz

 ∼
N

(
0, σ2

v,x
)

N
(

0, σ2
v,y

)
N
(
0, σ2

v,z
)
 (17)

Then, the state vector measurements of the satellite are

Psat,ECI,e = AO2EPsat,OP + ∆P (18)

Vsat,ECI,e = AO2EVsat,OP + ∆V (19)

From Equations (2), (3), (18) and (19), the position vectors of the antenna aiming point are

Ptar,ECI,e = Psat,ECI,e + ρ · ûa,ECI (20)
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With the help of Equations (3), (19) and (20), the difference in the relative velocity from the satellite
to the antenna aiming point can be given as

∆Vst = (Vsat,ECI,e −Vtar,ECI,e)− (Vsat,ECI −Vtar,ECI) =

∆vx + ωe∆py

∆vy −ωe∆px

∆vz

 (21)

3.1. The Velocity Vector Term in the Approximate Doppler Rate

With Equation (21), we have ∆Vst. However, we still need the expression of Vst to calculate
the velocity vector term ∆Vst ·Vst. It is worth recalling that we need the approximate Doppler rate
expression. To calculate the velocity vector term in Equation (10), we propose using the velocity vector
of a satellite traveling in a circular orbit Vs in our analytical approximation model rather than using
Vst. Thus, we have

Vst = AO2EVsat,OP|e=0

=

√
µ

p

 − sin (ν + ω)

cos (ν + ω) cos i
cos (ν + ω) sin i

 (22)

The velocity vector term results in a Doppler rate difference by

∆ fr,v =
2

λρ
· 2∆Vst ·Vst

=
4

λρ

√
µ

p
[
−
(
∆vx + ωe∆py

)
sin (ν + ω)

+
(
∆vy −ωe∆px

)
cos (ν + ω) cos i + ∆vz cos (ν + ω) sin i

]
(23)

Assuming that the variances of the position and velocity errors are the same standard deviation
in the x-, y-, and z-direction in the ECI system, i.e., σp,x = σp,y = σp,z = σp and σv,x = σv,y = σv,z = σv,
we can find the expected value and standard deviation of ∆ fr,v by

E [∆ fr,v] = 0 (24)

σ [∆ fr,v] =
4

λρ

√
µ

p

√
σ2

v + ω2
e
[
sin2 (ν + ω) + cos2 (ν + ω) cos2 i

]
σ2

p (25)

We also need an approximate maximum value of the standard deviation of ∆ fr,v to calculate the
approximate maximum value of QPE. We suppose that cos i has a maximum value of cos i = 1, and

σ [∆ fr,v]max =
4

λρ

√
µ

p
·
√

ω2
e σ2

p + σ2
v (26)

3.2. True Anomaly

Equation (21) gives the expression of difference vectors in the velocity vector term in Equation (10).
However, the difference vector in the acceleration vector term, i.e., ∆Ast, is given its expression with
the help of true anomaly calculation.
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The accurate acceleration vector term in the orbital plane is given in Equation (14). True anomaly ν

should be calculated using the onboard-measured satellite’s position and velocity vectors. A common
way to solve ν is given in [24]

ν = atan2
(√

p
µ
(Vsat,ECI ·Rsat,ECI) , p− |Rsat,ECI |

)
(27)

where the atan2 (Y, X) function returns an unambiguous result of arctan (Y/X) with a range of (−π, π].
Obviously, the measured state vectors of the satellite Psat,ECI,e and Vsat,ECI,e will result in a value of
νe that is not accurate. The probably distribution parameters of νe should be determined in order to
analyze the term ∆Ast and its influence on QPE.

The detailed derivation is in Appendix A. Here, the standard deviation and its maximum value
of the difference between the calculated νe and its accurate value ∆ν = νe − ν are given.

σ [∆ν] = |cos ν| · 1 + e cos ν√
µae2 (1− e2)

·
√

µ

p
(1 + e2 + 2e cos ν) σ2

p +
p2

(1 + e cos ν)2 σ2
v (28)

σ [∆ν]max =
1
e

√
1
a2 σ2

p +
a
µ

σ2
v (29)

We assume that the variances of the position and velocity errors are the same standard deviation
in the x-, y-, and z-direction in the ECI system, i.e., σp,x = σp,y = σp,z = σp and σv,x = σv,y = σv,z = σv.
Equation (29) can provide a good approximation when orbit eccentricity e is rather small.

It is important to point out that σ [ν]max is not equal to the exact maximum value of σ [ν] for
ν ∈ [0, 2π]. This approximate maximum value is subsequently used to calculate the maximum value
of QPE. With this assumption, it would be clearer to identify the core error terms of each variable.
A more general expression without the assumption can be found in Appendix A.

3.3. The Acceleration Vector Term in the Approximate Doppler Rate

With the expression σ [∆ν], the standard deviation of the difference between ν calculated from
state vector measurements and its true value is addressed, and the acceleration vector term can now
can be dealt with. As Rst needs to be analyzed, the traditional yaw steering method [25] is applied here.

θyaw = arctan
[

sin i
N − cos i

cos (ν + ω)

]
(30)

where N is the number of revolutions per day.
In this approximation model, we replace ∆Ast with ∆As only and ignore the errors in the target

acceleration vector while keeping the satellite’s part. In the meantime, ν is replaced by ν + ∆ν in the
row vector of Equation (14). We can combine Equations (14), (18) and (20) with

ûa,ECI =

− sin ν − cos ν 0
cos ν − sin ν 0

0 0 1


cos θyaw 0 − sin θyaw

0 1 0
sin θyaw 0 cos θyaw


1 0 0

0 cos θL sin θL
0 − sin θL cos θL


0

1
0

 (31)

where θL is the center off-nadir angle in stripmap SAR. The acceleration vector term results in a
Doppler rate difference of
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∆ fr,a =
2

λρ
∆Ast ·Rst

= ka

[
cos θL +

√
sin2 θL sin2 θyaw + cos2 θL sin

(
∆ν− arctan

cos θL
sin θL sin θyaw

)]
(32)

in which

ka =
2µ (1 + e cos ν)2

λp2 (33)

In common SAR operations, θyaw is usually small. Then, we have the following expansion without
cubic and higher-order terms.

arctan
cos θL

sin θL sin θyaw
=

π

2
− arctan

sin θL sin θyaw

cos θL

≈ π

2
− tan θL sin θyaw (34)

With the result from Appendix B and Equations (32)–(34), the expected value and standard
deviation of ∆ fr,a are

E [∆ fr,a] = ka cos θL + ka

√
sin2 θL sin2 θyaw + cos2 θL

(
1− Var [∆ν]

2

)(
1
2

tan2 θL sin2 θyaw − 1
)

(35)

σ [∆ fr,a] = ka

√
sin2 θL sin2 θyaw + cos2 θL

√
Var [∆ν]

(
tan2 θL sin2 θyaw +

Var [∆ν]

2

)
(36)

Equation (35) shows an interesting result. Instead of the expected zero value, we have E [∆ fr,a],
which means there will be bias in the expected value of the Doppler rate fr due to the calculated true
anomaly. This bias can be and should be removed when calculating the Doppler parameters for the
imaging algorithm.

However, we need the approximate maximum value of σ [∆ fr,a]. If we put aside the quadratic
term of Var [∆ν] in Equation (36), the leftover part is modulated by Var [∆ν] and sin2 θyaw at each
ν point. When x is relatively small, arctan x ∝ x. Combined with Equation (30), we can ascertain
that sin2 θyaw ∝ sin2 [cos (ν + ω)] ∝ cos2 (ν + ω). It can also be found that, from Equation (28),
if we take the appropriate approximation, then σ [∆ν] ∝ cos ν. From these approximations, ν in
f (ν) = cos (ν + ω) cos ν when it reaches its maximum value f (ν)max, and the very same ν will also
make σ [∆ fr,a] reach its maximum. Obviously, at this moment,

ν = kπ − ω

2
, for k ∈ Z>0 (37)

If k = 1, then

Var [∆ν]max
∣∣
ν=π−ω/2 ≈

(∣∣∣cos
ω

2

∣∣∣ σ [∆ν]max

)2

=
cos2 ω

2
e2

(
1
a2 σ2

p +
a
µ

σ2
v

)
(38)

together with

ka,max =
2µ (1 + e)2

λp2 (39)
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and θyaw = θyaw,max in Equation (36). Thus, we have

σ [∆ fr,a]max = ka,max

√
sin2 θL sin2 θyaw,max + cos2 θL

·

√
Var [∆ν]max

(
tan2 θL sin2 θyaw,max +

Var [∆ν]max
2

)
(40)

3.4. Integration Time, Slant Range, and Approximate QPE

For a given SAR configuration and true anomaly, the integration time is used to calculate QPE,
while the slant range contributes both to the integration time and QPE. In our proposed analytical
approximation model for QPE, both the accurate and approximate integration time and slant range are
considered. The former ones are applied to generate the approximate QPE with true anomaly as the
independent variable, and the latter ones are merged into the maximum of the QPE calculation.

In the accurate calculation, the slant ranges are obtained by solving a quadratic equation:

(ρûa,ECI,x + Rsat,ECI,x)
2 +

(
ρûa,ECI,y + Rsat,ECI,y

)2

E2
a

+
(ρûa,ECI,z + Rsat,ECI,z)

2

E2
b

= 1 (41)

where Ea = 6,378,137.000 m and Eb = 6,356,752.314 m are the semi-major axis and semi-minor axis of
the ellipsoid reference in WGS 84, respectively. Then, the integration time is

Tint =
λ

La

|Rst|
|Vst|

|Rs|
|Rt|

(42)

In the approximate maximum QPE calculation, we use a slant range that is based on the circular
Earth with a radius of Emean = (2Ea + Eb) /3 and

ρmean = Emean
sin [θL + π − arcsin (a sin θL/Emean)]

sin θL
(43)

With the satellite’s velocity at apogee only instead of |Vst|, together with a instead of |Rs|, we get
the mean integration time.

Tint,mean =
aλρmean

EmeanLa

√
a (1 + e)
µ (1− e)

(44)

Thus, we have the approximate expected value and standard deviation of QPE and its
maximum expression:

E [QPE] = π E [∆ fr,a]

(
Tint

2

)2
(45)

σ [QPE] = π
√

σ2 [∆ fr,v] + σ2 [∆ fr,a]

(
Tint

2

)2

=
√

σ2 [QPEv] + σ2 [QPEa] (46)

σ [QPE]max = π
√

σ2 [∆ fr,v]max + σ2 [∆ fr,a]max

(
Tint,mean

2

)2
(47)

where σ [QPEv] and σ [QPEa] are the standard deviations of QPE introduced by the velocity vector
term and acceleration vector term, respectively.
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4. Evaluation and Results

In this section, the analytical approximation model is evaluated by comparing it with the Monte
Carlo simulation approach.

4.1. Evaluation Model

For the purpose of validating the proposed analytical approximation model for QPE, a Monte
Carlo-based numerical simulation is introduced as a reference for validating the proposed method.
In the simulation approach, large samples of error data are generated first according to the specified
probability distribution parameters. Then, these error samples are input to a simulation program.
For each sample of error data in the orbit determination data, the simulation program calculates the
Doppler parameters of the SAR imaging procedure with and without the given error sample set and
records the difference between these two situations. The probability distribution of the difference from
the Doppler parameter simulation is analyzed to provide a reference for the validation of the analytical
approximation model.

In this simulation program, there are no approximations such as those in the analytical
approximation model. For beam steering, the simulation uses the total zero Doppler steering (TZDS)
method [26] of TerraSAR-X, which has a joint yaw and pitch steering to minimize the Doppler centroid
residence. The ellipsoid reference in WGS 84 is chosen to be the Earth’s surface mode in the simulation.

The QPE approximation has the same slant range and integration time data as the Monte Carlo
simulation in order to get a more precise approximation result for ν ∈ [0, 2π]. The QPE maximum value
calculation works with the mean slant range and integration time for a much simpler computation.

The Monte Carlo method generates 30,000 error samples of the position and velocity vectors per
true anomaly, and there are 1000 true anomaly calculation points in ν ∈ [0, 2π].

The inputs of the simulation are provided in Table 1. These parameters can be divided into
four groups. The first group includes the Earth’s physical parameters Ea and Eb, which represent
the semi-major and semi-minor axes of the Earth ellipsoid, respectively. The second group includes
the satellite platform orbit parameters, namely, the semi-major axes of the orbit a, the argument of
periapsis ω, the orbital inclination i, and the eccentricity e. The third group contains the SAR payload
parameters, i.e., the center frequency of the transmitting signal, the center off-nadir angle, and the
azimuth length of the antenna. The last group represents the probability distribution of the errors in
the real-time orbit determination data. The errors have a normal distribution with an expected value
of zero, thus only the standard deviations are listed in the table. σp and σv represent the standard
deviations of the errors in the position and velocity data from the real-time orbit determination system.
A comparison of the 3D positioning residuals (RMS) using broadcast ephemerides results in around
1.5 m in the reference [21]. We selected a 3 m standard deviation in the real-time positioning errors.
The standard deviation in the real-time velocity error is approximated by the results in [20].

Table 1. Simulation Parameters.

Parameter Value Parameter Value

Ea 6,378,137.000 m Eb 6,356,752.314 m

a 6,778,140.000 m ω 90.00◦

i 97.42◦ e 0.0011

SAR Center Frequency 9.60 GHz σp 3 m

Center off-nadir angle 33.8◦ σv 0.1 m/s

Antenna Azimuth Length 1.92 m
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4.2. Approximation of the Velocity Vector Term

Figure 2 shows the result of comparing the statistical parameters of ∆ fr,v and QPEv between
the Monte Carlo simulation and the analytical approximation model. E [QPEv] shows oscillations
around zero, and these are due to the Monte Carlo simulation method. With more error samples
processed in the numerical simulation, the oscillation would be much smaller, which confirms the
effectiveness of the analytical approximation model. The mean differences in the results between the
numerical simulation and analytical approximation model in Figure 2c,d are 1.64× 10−3 Hz/s and
0.093◦. The difference of σ [∆ fr,v] may be high for the algorithm method, but it is a satisfactory result
for the approximate QPE calculation. The integration time is not a consistent value, which leads to the
differently shaped curves in Figure 2c,d.
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Figure 2. Velocity vector term: numerical simulation results (blue) and analytical approximation
results (red). The figures show that the results from the analytical approximation model are consistent
with the numerical simulation results. (a,b) The expected values have no significant relationship
with the variation in the true anomaly and are positioned at a relatively low level, i.e., around
zero. The differences between the two sets of results in (c,d) are due to the ignored terms in the
approximation derivations.

4.3. True Anomaly Calculation

σ [∆ν] plays an important role in the analytical approximation model of QPE, and Figure 3 presents
the results from both the numerical simulation and the analytical approximation model. Figure 3a
indicates that the results of the analytical approximation model are almost identical to those of the
numerical simulation. However, in the analytical approximation model, at 90◦ and 270◦, σ [∆ν] reaches
zero according to Equation (28), while the numerical simulation result is not zero at that position.
In the proposed model, we assume that there are no errors in the term p− |Rsat,ECI | in Equation (27),
which leads to a value of zero for σ [∆ν] when the satellite is positioned at true anomalies 90◦ and
270◦. In fact, at those positions, the errors in the measurements start playing a major role in the σ [∆ν]

calculation. However, at those two specific positions, σ [∆ν] reaches its minimum, thus it does not
introduce much error to the analytical approximation model.
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Figure 3. The true anomaly result from measurements between numerical simulation and the analytical
approximation model. (a) The analytical approximation model (red) fits the numerical simulation (blue)
in most areas of true anomaly. However, at certain true anomalies, which are the unique positions of
the satellite in its orbit, the difference between the two sets of results increases. (b) At around 90◦ and
270◦, significant peaks arise for approximately 0.023◦ in the standard deviation of ∆ν.

4.4. Approximation of the Acceleration Vector Term

The expected value of the Doppler rate by the acceleration vector term E [∆ fr,a] shows different
characteristics from those of the velocity vector terms. Figure 4a no longer has an expected value of
zero compared with Figure 2a. This non-zero E [∆ fr,a] value is due to the calculation of true anomaly
from onboard state vector measurements, which also result in a non-zero E [QPEa]. In addition, the
analytical approximation model fits the numerical simulation result for all ν ∈ [0, 2π].

0 90 180 270 360
True Anomaly (Deg)

-0.10

 0.00

 0.10

 0.20

 0.30

 0.40

D
op

pl
er

 R
at

e 
(1

0-1
H

z/
s)

(a) E [∆ fr,a]

0 90 180 270 360
True Anomaly (Deg)

-0.50

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

Q
P

E
 (

de
g)

(b) E [QPEa]

0 90 180 270 360
True Anomaly (Deg)

0.00

0.20

0.40

0.60

0.80

1.00

D
op

pl
er

 R
at

e 
(1

0-1
H

z/
s)

(c) σ [∆ fr,a]

0 90 180 270 360
True Anomaly (Deg)

0.00

2.00

4.00

6.00

8.00

Q
P

E
 (

de
g)

(d) σ [QPEa]

Figure 4. Acceleration vector term: numerical simulation results (blue) and analytical approximation
results (red). The analytical approximation results are consistent with the numerical simulation
results. The expected values in (a,b) no longer have an expected value of zero, indicating different
characteristics from those of the velocity vector terms. The differences around 90◦ and 270◦ of true
anomaly between the two sets of results in (c,d) are due to the ignored terms in the calculated true
anomaly approximation derivations.

For the comparison between σ [∆ fr,a] and σ [QPEa], at most positions, the analytical approximation
model fits the numerical simulation point by point. Apart from some simulation points, it maintains
accuracy. From the comparison of Figure 4c,d, the influence of the integration time may not seem
significant in contrast to the comparison of Figure 2c,d. In fact, both σ [QPEa] and σ [QPEv] are
calculated with the same integration time series. This major difference in the curve appearance is
caused by the relatively narrow fluctuation interval of σ [QPEv].
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4.5. QPE Approximation

The Monte Carlo simulation and analytical approximation model are illustrated in Figure 5.
Figure 5a shows exactly the same result as that in Figure 4b, which confirms Equation (45) in the
analytical approximation model. The results of σ [QPE] in Figure 5b, however, are presented in a
slightly complex form. This is because of the combination of the properties of σ [QPEv] and σ [QPEa].
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Figure 5. QPE result from numerical simulation (blue) compared with that from the analytical
approximation model (red). The expected value and standard deviation of QPE are shown in (a)
and (b), respectively. The dashed magenta line in (b) is the value of σ [QPE]max from Equation (47).

The dashed magenta line in Figure 5b is σ [QPE]max. This maximum value does not equal the
exact maximum of σ [QPE]; instead, it has a 1.80% relative error with the given simulation parameters.
The most important advantage of σ [QPE]max is that researchers can calculate this value easily with
the aid of only a calculator and the appropriate parameters, combined with Equation (47) and related
equations, and an acceptable approximation maximum value can still be determined.

5. Discussion

We designed an analytical approximation model of the QPE introduced by orbit determination
errors. Our aim is to reduce the calculations and the processing time while revealing the core of the
process by which error is transferred to QPE calculations. The technical parameter iteration period
during early-stage development for an onboard real-time SAR imaging mission will benefit from the
proposed methods.

SAR imaging requires the relative position, velocity, and acceleration vectors between the radar
antenna and the targets to estimate the Doppler centroid and Doppler rate. Currently, in many
ground-based processing systems for existing SAR missions, high-accuracy orbit determination data
are applied to estimate the Doppler parameters. Such data have a time delay from the SAR raw data
acquisition period, which is usually in the range of several hours or more. For real-time onboard SAR
imaging missions, it is not realistic to wait for such high-accuracy orbit determination data to meet
the “real-time” requirement. Real-time onboard orbit determination data have to be applied in the
real-time onboard SAR imaging procedure. Current spaceborne SAR missions are usually based on
a professional remote sensing satellite platform, and they are not as sensitive to perturbation. For a
spaceborne SAR payload mounted on a small satellite platform to perform a constellation mission,
such as MirrorSAR proposed by the DLR [27], there will be some differences (i.e., it is not as steady
as a large remote sensing satellite platform) in the movement of the actual target satellite. In these
situations, the errors in the real-time onboard orbit determination data should be evaluated in order to
examine whether they will jeopardize the new real-time SAR imaging mission concept.

There exist other terms of phase error in the context of SAR data processing [28]. Besides QPE,
there are linear, higher-order (more than cubic), sinusoidal, and random phase errors, among others.
We selected QPE as the error of interest because it has defocus and loss-of-resolution effects on the
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image. An acceptable QPE should be seen as a tool that is used out of necessity but is not adequate for
new SAR missions.

Research on the prediction of SAR imaging quality from the precision of the orbit ephemeris has
been carried out [29]: the upper limit expressions of multiple phase errors and their sensitivity to the
orbit ephemeris covariance have been previously established. However, this method has two major
limitations when applied to spaceborne real-time SAR imaging missions. Firstly, those upper limits
only reflect the extreme situation, which will not always occur during a mission. We need to examine
the whole situation of the phase error, as well as its probability form. Currently, the numerical
simulation method can produce the probability of the phase error, but it is time-consuming.
Secondly, in spaceborne real-time SAR imaging missions, it is impossible to get the orbit ephemeris
directly, and it is calculated from onboard orbit determination data. The direct link between the
precision of the onboard orbit determination data and the phase error in SAR imaging is still unclear.
The proposed analytical approximation model is a potential solution to the two limitations above.
With the precision of the onboard orbit determination system, which can be measured on the ground,
the proposed analytical approximation model gives the direct QPE probability distribution result,
which can simplify the analysis.

Compared with existing methods, the proposed analytical approximation model reduces the
total calculations and processing time while revealing the core of the process by which errors are
transferred to QPE calculations. This proposed analytical approximation model can reveal the QPE
distribution, compared with the extreme value method mentioned in Section 1. For the numerical
simulation method, with M error samples for each true anomaly calculation point and a total of N true
anomaly calculation points, the calculation complexity reaches O (MN). It is important to point out
that M is usually a large number for better statistical results. No error sample set is generated in the
analytical approximation model; thus, the calculation complexity is reduced. The QPE distribution
result for N true anomaly calculation points is O (N), and for the distribution parameters, the validated
true anomaly ν ∈ [0, 2π] is O (1), which can significantly reduce the total calculation and processing
time. Spaceborne real-time SAR imaging mission designers can quickly determine the maximum
QPE with the help of only a calculator and the appropriate parameters. Therefore, this model will
accelerate the technical parameter iteration procedure during the early-stage development of an
onboard real-time SAR imaging mission and provide strong proof for the feasibility of such spaceborne
real-time SAR missions.

There will always be some processing blocks in the design of a spaceborne SAR system. For each
processing block, the errors introduced by processing must be limited for optimal performance of the
whole system. From the design practice of the existing system, an azimuth impulse response width of
1.02 can be an acceptable limitation for a single processing block, which equals a QPE of no more than
0.27π [23]. The results in Section 4 are used here as an example. With the analytical approximation
model, the result, and the three-sigma rule, it is clear that, with the simulation parameters given,
if E [∆ fr,a] is removed during the Doppler rate calculation, then the QPE introduced by the onboard
orbit determination system will be less than 40.02◦, with a probability of 99.73%. This result equals an
azimuth impulse response width of less than 2%, with a probability of 99.73%.

In its current form, the proposed analytical approximation model is given when the attitude error
is ignored; i.e., the orbit determination error and the attitude error of the platform are decoupled.
The next generation of the analytical approximation model will take the attitude error into consideration
in order to examine the coupled relationship. In addition, for spaceborne bistatic real-time SAR
imaging missions, a bistatic form of the model will be needed. These two directions will be our future
research topics.

6. Conclusions

As the errors in the state vectors from an onboard orbit determination system for a spaceborne
SAR affect real-time SAR imaging quality, this paper proposes an analytical approximation model
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to identify the introduction of QPE by state vector errors. This analytical approximation model can
provide approximation results at two granularities, i.e., the approximation with the satellite’s true
anomaly as the independent variable and the approximation for ν ∈ [0, 2π]. Compared with numerical
simulation methods such as Monte Carlo, the proposed analytical approximation model reduces the
total calculations and processing time. Another benefit of the proposed analytical approximation
model is that it reveals the core of the error transfer, so each parameter’s role in the introduced QPE is
clear. Spaceborne real-time SAR imaging mission designers can quickly determine QPE with the help
of only a calculator and the appropriate parameters. In some ways, this will accelerate the technical
parameter iteration period during early-stage development of an onboard real-time SAR imaging
mission and provide convincing evidence of the feasibility of spaceborne real-time SAR missions.
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Appendix A. Errors in Calculating True Anomaly

Let us have

Y =

√
p
µ

Vsat,ECI ·Rsat,ECI (A1)

X = p− |Rsat,ECI | (A2)

with the assumption that the position error has no influence on term X in Equation (A2). Thus, we have

∆
Y
X

=

√
p
µ
· 1

p− r
∆V ·R (A3)

The term ∆V · R is the difference in the term Vsat,ECI · Rsat,ECI in Equation (A1) between the
measured data and the accurate value.

∆V ·R =Vsat,ECI,e ·Rsat,ECI,e −Vsat,ECI ·Rsat,ECI

= (AO2EVsat,OP + ∆V) · (AO2EPsat,OP + ∆P)−AO2EVsat,OP ·AO2EPsat,OP

≈cp

√
µ

p
+ cv

a
(
1− e2)

1 + e cos ν
(A4)

where the position error times the velocity error are ignored and

cp = −∆px [sin (ν + ω) + e sin ω] + ∆py [cos (ν + ω) + e cos ω] cos i + ∆pz [cos (ν + ω) + e cos ω] sin i (A5)

cv = ∆vx cos (ν + ω) + ∆vy sin (ν + ω) cos i + ∆vz sin (ν + ω) sin i (A6)

The cp and cv parameters in Equations (A5) and (A6) can be regarded as the core function of the
error introduced by position and velocity errors when calculating true anomaly. The calculated true
anomaly’s variance depends directly on the variance of the terms cp and cv, which link directly to the
variance of the measurement errors of position and velocity in each axis of the ECI system.
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Considering the derivative of Equation (27), with Y/X = tan ν, we have the difference in
calculated ν and its real value.

∆ν =

(
atan2

Y
X

)′
· ∆ Y

X

=
1

1 + (Y/X)2 ·
√

p
µ
· 1

p− r
· ∆V ·R

=
cos ν (1 + e cos ν)

e
√

µa (1− e2)

[
cp

√
µ

p
+ cv

a
(
1− e2)

1 + e cos ν

]
(A7)

The variance of ∆ν is

Var [∆ν] = cos2 ν · (1 + e cos ν)2

µae2 (1− e2)
·

µ

p
Var

[
cp
]
+

(
a
(
1− e2)

1 + e cos ν

)2

Var [cv]

 (A8)

A general expression of the variance of cp and cv is

Var
[
cp
]
= Var [∆px] [sin (ν + ω) + e sin ω]2 + Var

[
∆py

]
[cos (ν + ω) + e cos ω]2 cos2 i

+Var [∆pz] [cos (ν + ω) + e cos ω]2 sin2 i (A9)

Var [cv] = Var [∆vx] cos2 (ν + ω) + Var
[
∆vy

]
sin2 (ν + ω) cos2 i + Var [∆vz] sin2 (ν + ω) sin2 i (A10)

If all the variances of position and velocity errors are the same standard deviation in the x-, y-,
and z-directions in the ECI system, i.e., σp,x = σp,y = σp,z = σp and σv,x = σv,y = σv,z = σv, simpler
expressions for cp and cv can be given by

Var
[
cp
]
= σ2

p

(
1 + e2 + 2e cos ν

)
(A11)

Var [cv] = σ2
v (A12)

With Equations (A8), (A11) and (A12), we can derive Equation (28) in Section 3.2. This expression
can be used to determine the dependent variable σ [∆ν] with the independent variable ν. In addition,
we need a simpler expression of the maximum σ [∆ν] in order to support the quick calculation method
for QPE. Beginning with Equation (28), we can ignore some terms in the equation related to orbit
eccentricity e when its value is rather small (less than 0.01). Thus, we have

σ [∆ν]max =
1
e

√
σ2

p

a2 +
aσ2

v
µ

(A13)

which is Equation (29) in Section 3.2.

Appendix B. Expected Value and Variance of the Trigonometric Function of a Variable with a
Normal Distribution

Suppose θ ∼ N
(
0, σ2). Then, consider another variable,

ejθ = cos θ + j sin θ (A14)

where j is the imaginary unit. In the meantime, the moment-generating function of θ with a normal
distribution is
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E
[
ejθ
]
= e0+(jσ)2/2 = e−σ2/2 (A15)

which means

E [cos θ] = e−σ2/2 (A16)

E [sin θ] = 0 (A17)

The variance of cos θ and sin θ is

Var [cos θ] = E
[
cos2 θ

]
−E [cos θ]2

=
1
2
(1 +E [cos 2θ])−

(
e−σ2/2

)2

=
1
2

(
1− e−σ2

)2
(A18)

Var [sin θ] = E
[
sin2 θ

]
−E [sin θ]2

=
1
2 E [1− cos 2θ]

=
1
2

(
1− e−2σ2

)
(A19)

For a new variable z ∼ N
(
µ, σ2), θ = z− µ,

E [cos z] = E [cos (θ + µ)]

= E [cos θ cos µ− sin θ sin µ]

= cos µE [cos θ]− sin µE [sin θ]

= e−σ2/2 cos µ (A20)

E [sin z] = E [sin (θ + µ)]

= E [sin θ cos µ + cos θ sin µ]

= cos µE [sin θ] + sin µE [cos θ]

= e−σ2/2 sin µ (A21)

The variance of cos z and sin z is

Var [cos z] = E
[
cos2 z

]
−E [cos z]2

=
1
2
+

1
2 E [cos (2θ + 2µ)]−E [cos z]2

=
1
2
+

1
2

e−2σ2
cos 2µ− e−σ2

cos2 µ (A22)

Var [sin z] = E
[
sin2 z

]
−E [sin z]2

=
1
2
− 1

2 E [cos (2θ + 2µ)]−E [sin z]2

=
1
2
− 1

2
e−2σ2

cos 2µ− e−σ2
sin2 µ (A23)
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