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Abstract: The objective to fast-track the mapping and registration of large numbers of unrecorded
land rights globally has led to the experimental application of Artificial Intelligence in the domain of
land administration, and specifically the application of automated visual cognition techniques for
cadastral mapping tasks. In this research, we applied and compared the ability of rule-based systems
within Object-Based Image Analysis (OBIA), as opposed to human analysis, to extract visible cadastral
boundaries from very high-resolution World View-2 images, in both rural and urban settings. From
our experiments, machine-based techniques were able to automatically delineate a good proportion of
rural parcels with explicit polygons where the correctness of the automatically extracted boundaries
was 47.4% against 74.24% for humans and the completeness of 45% for the machine compared to
70.4% for humans. On the contrary, in the urban area, automatic results were counterintuitive: even
though urban plots and buildings are clearly marked with visible features such as fences, roads and
tacitly perceptible to eyes, automation resulted in geometrically and topologically poorly structured
data. Thus, these could neither be geometrically compared with human digitisation, nor actual
cadastral data from the field. The results of this study provide an updated snapshot with regards
to the performance of contemporary machine-driven feature extraction techniques compared to
conventional manual digitising. In our methodology, using an iterative approach of segmentation and
classification, we demonstrated how to overcome the weaknesses of having undesirable segments due
to intra-parcel and inter-parcel variability, when using segmentation approaches for cadastral feature
delineation. We also demonstrated how we can easily implement a geometric comparison framework
within the Esri’s ArcGIS software environment and firmly believe the developed methodology can
be reproduced.

Keywords: cadastral intelligence; manual digitisation; expert parameterisation; land administration;
land management; automatic feature extraction; Object-Based Image Analysis

1. Introduction

The emergence of artificial intelligence (AI) concepts, methods and techniques ushered in a new
era of the longstanding philosophical debate and technical competition between the merits of ‘human’
versus ‘machine’. Machine-based techniques exhibit computation capabilities capable of handling
complex issues not quickly solved by humans [1]. Meanwhile, as people become more intelligent, they
can prescribe precision and program performance of a high quantity task to a machine, such as the
extraction of cadastral features from images. Considering that only ~30% of land ownership units
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worldwide are captured in formal cadastres and land registration systems [2,3], automation techniques
could be a supportive tool for the generation of digital parcel boundaries, enabling faster registration
and mapping of land rights.

In light of the recent enhancement to machine-driven feature extraction techniques, the current
study aims to measure the ability of machine-based image analysis algorithms, against manual
digitising, in extracting cadastral parcel boundaries from very high-resolution remotely sensed images.

1.1. Cadastral Intelligence

Our definition of cadastral intelligence draws on the 1983 Howard Gardner’s theory of multiple
intelligences in the area of spatial intelligence [4–6]. Gardner defines spatial intelligence as the ability
to perceive the visual–spatial world [4], to localise and visualise geographic objects [5]. From a remote
sensing perspective, spatial intelligence ranges from visually discriminating geographic objects using
reasoning, and then drawing and manipulating an image [6]. In the cadastral domain, the ability to
acquire and apply spatial intelligence in detecting cadastral boundaries is referred to as cadastral
intelligence [7,8].

Recently, developments in artificial intelligence have reshaped spatial intelligence into “automated
spatial-intelligence” [9,10]. From an artificial intelligence perspective, spatial-intelligence is constituted
by the procedural knowledge exhibited through computational functions represented by a set
of rules and structural knowledge which allow the establishment of the relationship between
image-objects and real-world geographical objects [11]. Artificial intelligence has implied that many
algorithmically-trained perception-capable computing models exist, that beside human operators, can
perceive and understand geographic data and recognise geographically referenced physical features [10].
In the contemporary era, we can witness substantial progress in remote sensing where automatic image
registration allows for the handling of huge volume of remote sensing images [12] efficiently [13,14].
Regarding feature extraction from remotely sensed images, automation, though difficult to configure
and implement, is the eventual solution to the limitations of manual digitisation [15], and this is with no
exception in cadastral mapping [7,8]. For these reasons, the use of artificial intelligence and automation
is generally gaining traction within geoinformatics and land administration research domain [16].

1.2. The Quest of Automation in Cadastral Mapping

The cadastre is a foundation for land management and development [17–21]. An appropriate
cadastral system supports securing property rights and mobilising land capital, and without it,
many development goals for countries are either not met, or greatly impeded [19]. A major issue,
however, is that only around one-third of land ownership units worldwide are covered with the
formal cadastre [2,3]. The full coverage of cadastre is arguably impeded, in part, by procedural and
costly conventional surveying approaches. The latter suggests that all cadastral boundaries must be
‘walked to be mapped’ [22,23] making it resource intensive. Surveying is thus the costliest process
when registering landed or immovable property [24], incurring 30–60% of the total cost of any land
registration project [24,25]. The consequence is a growing aversion towards land registration, lest the
benefits of it would not compensate for the money spent [26].

Emerging geospatial technologies have made it possible to democratise mapping and registration
activities, conventionally undertaken by highly qualified, if not expensive, surveying experts. Mobile
devices equipped with simple web mapping apps, incorporating the ever increasing amount of high
quality aerial imagery and connected to the cloud, have seen a rise in the ‘barefoot’ (Also referred to as
‘grassroots surveyor’ and ‘community mapper’) surveyor and more recently the ‘air-foot’ surveyor [2,7],
in the context of unmanned aerial vehicles (UAVs) applications. The latter, by substituting for the use
of ropes, groma, tape measure, theodolite, total stations and walking outside in the field [27], allows the
detection of visible cadastral boundaries based on their patterns with respect to appearance and form
from a distance [28,29]. Owing to advances in remote sensing, image-based cadastral demarcation
approaches have been proposed and have been experimented with in countries including Rwanda,
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Ethiopia and Namibia. Experimentation demonstrates the effectiveness of remote sensing image-based
demarcation in delivering fast-track land registration [30].

Meanwhile, recent developments in the field of computer vision and artificial intelligence have
led to a renewed interest in cadastral mapping where machine algorithms, able to mimic humans
in exhibiting spatial intelligence, could potentially be used to automate boundary extraction. The
latter approach could allow tapping existing opportunities with very high-resolution remote sensing
data, from various sources and wide coverage. Contemporary satellites, besides manned airborne
photography, have offered sub-metre spatial resolution images, since the late 1990s [31,32]. Furthermore,
with UAV, it is now possible to acquire centimetre-level image resolution and point cloud data, allowing
operators to uncover features occluded by vegetation [29,33,34].

When compared to manual on-screen digitisation, automation offers many potential advantages,
including the removal of inconsistency errors resulting from different users performing digitisation.
Automation also allows coverage of wide areas with minimum labour, and supports cheap and
up-to-date fit-for-purpose solutions that aim to target existing societal needs [35,36]. Automation could
assist with the massive generation of digital property boundaries. Despite the two-sorted ontology
of boundaries, implying that some of the property boundaries are invisible [37,38], the majority
of cadastral boundaries are believed to be self-defining and can be extracted visually [39]. Visible
boundaries are marked by extractable physical features like fences, hedges, roads, footpaths, trees,
water drainages, building walls and pavements [40,41] which are detectable using remote sensors.
Therefore, these features can be extracted from remote sensing data to generate boundaries with
the features they represent [28]. Such features of cadastral boundaries can be detected based on
their specific properties like being regular, linear-shaped or with limited curvature in their geometry,
topology, size and spectral radiometry or texture [42].

Machine-based image analysis approaches, applicable for automated cadastral boundaries
extraction, can be grouped into two categories: (i) pixel-based approaches (PBA) and (ii) object-based
approaches, also well known as Object-Based Image Analysis (OBIA) [28]. The first approach only
considers spectral value or one aspect for boundary class [43]. Thus, PBA algorithms, with the
exception of state-of-the-art convolution neural network (CNN) [28,44–46], may result in a “salt and
pepper” map when applied to very high-resolution images [47]. Due to the lack of an explicit object
topology that might lead to inferior results compared to those from the human vision, PBA falls short
of expectations in topographic mapping applications [11]. Unlike PBA, objects resulting from OBIA are
features with explicit topology, meaning they have geometric properties, such as shape and size [48].
This makes OBIA suitable for extracting cadastral boundaries [28,39,49].

In brief, it appears there are many potentialities for the automation of feature delineation using
artificial intelligence tools such as state of the art CNN models and OBIA. However, the major problem
remains: how to make automation an operational solution [50], especially in cadastral mapping, where
properties need to be delineated with high precision specification geometrically and topologically.
This infers the presence of a compelling need to research more on the usability and applicability
of AI-based cadastral intelligence in land administration [16]. Therefore, our study is built on the
necessity to explore the potentialities of machine-based image analysis algorithms to extract cadastral
parcels. While, theoretically some automation tools could even outperform human operators to extract
features from images [11], little is said on their performance compared to humans within a cadastral
domain-specific application. The focus of this research is, therefore, to investigate the extent to which
automatically captured cadastral boundaries align with existing geometric standards of cadastres.

2. Materials and Methods

This study applied a comparative approach using two case sites, an urban setting and a rural
setting within Kigali city, Rwanda (Figure 1), globally recognised to be among first countries where
image-based demarcation was applied to build a nationwide cadastre system at a low cost. The sites
were selected based on the availability of very high-resolution satellite images, the hypothesised visual
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detectability of cadastral boundaries, and convenience of accessing reference datasets for comparison.
The study used pan-sharpened images for extracting rural parcels and urban plots with building
outlines. The study involved three main steps: pre-processing of the images, boundary extraction
(automation and human digitisation) and geometric comparison.
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2.1. Pre-Processing

Pre-processing concerned preliminary operations: (1) sub-setting the image to eliminate extraneous
data and constrain the image to a manageable area of interest and (2) pan-sharpening by fusing the
2 m resolution multispectral with 0.5 m-resolution panchromatic World View-2 satellite images, tiles
of 280 × 560 m and 320 × 400 m, respectively, for enhanced visual interpretability and analysis. For
pan-sharpening, the nearest-neighbour diffusion algorithms available within the Environment for
Visualising Images (ENVI) software, was applied owing to its advantage of enhancing the salient
spatial features while preserving spectral fidelity [51].

2.2. Parcels and Building Outline Extraction

2.2.1. Automatic process

For automation, we applied the OBIA approach. OBIA can combine spectra, texture, geometry
and contextual information to delineate objects with explicit topology, shape and size [48], which are
key aspects of the cadastral index map. In our study, we tested both fully automated parameterisation
using the estimate scale parameter (ESP2) tool [52] and expert knowledge parameterisation using the
Trimble’s eCognition software which provides a development environment for object-based image
analysis [53]. The extraction of parcels and building outlines were based on object characteristics.
Building outlines, in general, are missing in the Rwanda’s cadastral database [2], while they are
essential for property taxes correction [53]. Thus, automatic extraction of building outlines with correct
shapes could be useful in updating the legal cadastral database.

Fully Automated Parameterisation

Initially, the automated estimate scale parameter (ESP2) tool was applied to automate parcels and
building outlines extraction. The appeal of this tool is that it supports automated optimisation of the
scale parameter (SP), which is the key control in multiresolution segmentation (MRS) process and it is
fully automatic. It produces segments at three spatial levels representing different scales, based on the
concept of local variance with one push of the button.

Expert Knowledge for Parameterisation

While the ESP2 tool can produce segments with one push of the button, it has its limit when
dealing with parcel boundaries with contextual morphological variability, which necessitates expert
contextual knowledge for their extraction. In fact, the selection of parameters such as scale parameter
in segmentation is an objective decision [54] requiring reasoning of the user who can instruct the
machine. In this context, our study mainly employs expert user-developed rule sets for automated
extraction of cadastral features.

In the rural area, parcel automation involved three main operations: segmentation, classification
and boundary enhancement, and used different techniques such as chessboard and multiresolution
segmentation. Due to intra-parcel and inter-parcel variability, segmentation may generate undesired
segments [50]. To deal with this issue, an iterative approach of segmentation and subsequent
classification was applied, and we created several classes of parcels and then a merged an output
containing all parcels.

As indicated in Figure 2, the target input area (see the size of input image) became smaller as we
segmented and classified image features into parcels and merged unclassified image features, as input
for the next round of segmentation and classification and so forth.

For segmentation, the chessboard segmentation with a value of five was used to generate image
objects of 5 × 5 pixels. The open source map (OSM) data set—river for rural site and roads for urban
site—was used as thematic layers in chessboard segmentation. Based on expert ground knowledge,
the distance to vector contextual information was used to classify image objects within 10-m from the
river as the class river strip. Then, MRS was applied to extract ditches. To enhance the detectability of
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ditches, the texture after Haralick—derived from the grey level co-occurrence matrix (GLCM), best
known for localising texture boundaries [55]—was used as a temporary image layer. After extracting
river strips and ditches, the extraction of parcels with varying size, shapes involved tuning the scale
parameters for segmentation and geometric indexes for classification. It is worth noting that unlike in
ESP2, manual scale parameterisation was a trial and error tuning process, and used selected parameters
(see Table 1). In addition, it must be clearly understood that the classification (Table 1) was not intended
to have different thematic classes, i.e., parcels 1–9 are not different thematic classes, but features with
different size/shape/texture that belong to the same “Parcel” class.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 23 
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Table 1. Parameter tuning with different steps followed in rule sets.

Rural

Operation Parameters

Removing non parcel
features

Chessboard
segmentation. Size = 5 pixels;

Contextual information Distance to river = 11 pixels, distance to drainage = 5 pixels
MRS segmentation Scale = 10; shape = 0.1; compactness = 0.5
GLCM entropy features (Quick 8/11) R, (all directions)
MRS segmentation Scale = 20; shape = 0.4; compactness = 0.8
Classification Ditches: elliptic fit = 0; Asymmetry = 0.92

Pa
rc

el
s

ex
tr

ac
t-

io
n

Iteration 1
MRS segmentation Scale = 70; shape = 0.5; compactness = 0.9

Classification Parcels-1 (shape index < 1.2 and rectangular fit ≥ 0.88 and
area >300 m2

Iteration 2
MRS segmentation Scale = 70; shape = 0.6; compactness = 0.8

Classification Parcels-2 (shape index < 1.3 and rectangular fit ≥ 0.9 and
area ≥ 200 m2

Iteration 3
MRS segmentation Scale = 35; shape = 0.4; compactness = 0.8
Classification Parcels-3: rectangular fit ≥ 0.93

Classification Parcels-4: shape index = 1.345 and rectangular fit ≥ 0.88
and area ≥ 425 m2

Iteration 4
MRS segmentation scale = 35; shape = 0.5; compactness = 0.8

Classification Parcel 5 = shape index ≤ 1.35 and rectangular fit > 0.9 and
area >= 400 m2

Iteration 5
MRS segmentation Scale = 70; shape = 0.5; compactness = 0.9
Classification Parcel 6 = shape index ≤ 1.4 and area ≥ 360 m2

Iteration 6
MRS segmentation Scale = 60; shape = 0.5; compactness = 0.8

Classification Parcel 7 = shape index ≤ 1.4 and rectangular fit > 0.9 and
area > 400 m2
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Table 1. Cont.

Iteration 7
MRS segmentation Scale = 70; shape = 0.6; compactness = 0.9
Classification Parcels 8 = shape index ≤ 1.4 and rectangular fit > 0.85

Iteration 8
MRS segmentation Scale = 90; shape = 0.5; compactness = 0.8
Classification Parcels 9: density ≥ 1.6

Enhancemen-t
Opening operator
Chessboard Size 1 × 1 pixel,
Growing region Loop: parcels <unclassified> = 0

Urban
Buildings extraction

Removing road
strips

Chessboard segment. Size = 1 × 1 pixel,
Contextual information Distance to OSM road set = 7 m

Removing vegetation Classification NDVI > 0.73 Maximum difference < 2.05

Buildings MRS segmentation Scale = 70; shape = 0.8; compactness = 0.9
Classification Area > 150 m2

Fences/parcels extraction
Contrast segmentation/Edge ration splitting on
blue band

Chessboard tile = 30; minimum threshold = 0; maximum
threshold = 250, step size = 50

In the urban area, automated extraction of building outlines used chessboard segmentation to
split the image into equal smaller objects of 0.5 m × 0.5 m and buffers of 7 m from the central line of
roads to eliminate road strips. To obtain building shapes, the normalised difference vegetation index
and maximum difference features were used to separate vegetation (garden) and other non-roof objects
from roof objects. Contrast segmentation was used to automate the extraction of parcels that were
marked by dark strips.

2.2.2. Manual Digitisation

Five human cadastral experts were tasked to individually hypothesise and manually digitise
cadastral boundaries using the same dataset as used for automation. Using more than one person
allowed to assess human consistency. In accordance with [56], experts were identified based on
cadastral domain professional qualifications, experience and memberships of the recognised surveying
professional body (Table 2). The domain experts had extensive knowledge and expertise. They were
familiar with the subject at hand and understood analyses by automatic, abstract, intuitive, tacit and
reflexive reasoning. They could perceive systems, organise and interpret information [57]. The team of
experts was provided with an extraction guide that clearly describes cadastral objects to be extracted,
input dataset with clear digitising rules.

Table 2. Human operators.

Expert ID Qualification Professional Body Experience

A Master in Geoinformation and Earth Observation National cadastre 8 years
B Bachelor of Science in Geography National cadastre 8 years
C Bachelor of Science in Geography National cadastre 8 years
D Bachelor of Science in Land Surveying Organisation of surveyor 5 years
E Bachelor of Science in Geography National cadastre 5 years

2.2.3. Geometric Comparison of Automation versus Humans

In our study, geometric precision, that is usually more important than the thematic accuracy of
spatial feature delineation [39], was considered the key aspect in measuring the machine’s performance
against human operators, for parcels and building outlines extraction. Considering that an important
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aspect of developing systems for automated cartographic feature extraction is the rigorous evaluation
of performance, based on precisely defined characteristics [58], we decided to use accurate reference
boundaries, measured out in the field rather than current legally recognised boundaries. Field
surveys used precision survey tablets running Zeno field mapping software. Access to Rwanda
GNSS-CORS-RTK (Global Navigation Satellite System-Continuously Operating Reference Stations
(CORS). Real-Time Kinematic) differential corrections allowed centimetre level accuracy for reference
data. While existing legal boundaries are not accurate enough (with an estimate shift of 1 to 5 m of
the ‘true’ position [59]) to not serve as reference data, they were leveraged on to establish precise
boundaries during field survey.

Considering the scenarios elaborated (Figure 3), we can compute geometric errors such as
over-segmentation error (OS), under-segmentation error (US), edge error (EDerr), fragmentation error
or Number-of-Segments Ratio (NSR) and shape error (SHerr) that evaluate the degree of mismatching
between the reference cadastral object and the corresponding extracted cadastral object on the map as
in [60,61] and as follows:

OSerr(Ri, Ci) = 1−
Ri ∩Ci

Ri
(1)

USerr(Ri, Ci) = 1−
Ci ∩Ri

Ci
(2)

NSR =
abs(Nr−Nc)

Nr
(3)

where, Nr is the number of polygons in the reference dataset and Nc the number of corresponding
extracted parcels.

EDerr(Ri, Ci) = 1−
ε(Ri)∩ (Ci)

εCi
(4)

where ε(Ri) denotes a tolerance introduced to extracts the set of edge area from a generic region Ri in
the recognition of parcel borders. In our study, to find out the tolerance distance that should be used
for assessing the discrepancy between reference boundary lines and extracted boundary lines, the base
image was overlaid with the surveyed reference data. The shift of boundary lines, ditches on image
from surveyed lines, could be measured using the measuring tool in ArcGIS. A shift of 0 to 4 m was
identified. Therefore, ε(Ri) took a value of 4 m.

SHerr = ‖s f (Ri) − s f (Ci)‖ (5)

where, a shape factor s f could be one of several geometry indices like asymmetry, border index,
compactness, density, elliptic fit, main direction, radius of largest enclosed ellipse, rectangular fit,
roundness or shape index [61], the latter was used for ease of computation. It is calculated from the
border length of the object divided by four times the square root of its area:

S f =
Perimeter
4 √Area

(6)

Knowing the geometrical error of the individual classified objects (Erri), a global geometric error
(Errn) for n extracted parcels can computed as:

Errn =
1
n

∑n

i=1
(Erri) (7)

In an ideal case, for Equations (1), (2), (4)–(6), the optimum value is 0 and 1 as the worse
performance. Furthermore, a one-to-one relationship is obtained where desirably one parcel in the
reference is explained by one parcel in the extracted data set (Figure 3a–c, e). In other cases of
one-to-many or many-to-one correspondence (Figure 3d), omission errors and commission errors called
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false negatives and false positives metrics were determined. The false positives (FP) are parcels, which
were erroneously included by either machine or human experts The false negatives (FN) are parcels
not detected by either human or machine but they exist in the reference dataset. The performance
of machine versus humans could be also estimated as the portion of extracted parcels that could
match their corresponding references (correctness) or the portion of reference parcels that could be
reproduced by extraction (completeness) [28].
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In (a), the areas that fall outside the green zone are called over-segments, i.e., the areas omitted
from the reference parcel polygon. (b) The area beyond the red line is under segment and committed
to the reference parcel. (c) Edge error, is where boundaries of extracted parcel mismatch boundaries
of the reference object. (d) Fragmentation error, is where a classifier has split the parcel into several
fragments. (e) The shape in green has deviated from the reference shape in red.

Mathematically,
FN (omitted) + TP (detected) = Reference, (8)

FP (Committed) + TP (Correctly detected) = Extracted, (9)

Correctness =
Extracted ∩ Reference

Extracted
× 100, (10)

Completeness =
Reference ∩ Extracted

Reference
× 100 (11)

A framework for comparing extracted and reference parcels was developed in the Esri ArcGIS
environment (Figure 4). First, we labelled all parcels with unique identifiers. To allow the comparison
of each individual parcel in the reference set with the corresponding parcel in the extraction set, the
splitting by attributes tool was used to split the index cadastral map into individual parcels. Then the
batch intersect tool was used to calculate the intersection for each parcel in the reference data with
each corresponding parcel in the extraction set. Resulting intersects were then merged to have one
attribute table containing the areas of intersection of extracted parcels and reference parcels. These
values were to be fed into Equations (1)–(4). The shape index was computed using the Esri ArcGIS
geoprocessing ‘calculate field’ tool.

For the edge shifting computation using ArcGIS, a model (Figure 5) was built to automate the
process. The edge comparison used the perimeter of parcels. In doing so, we first converted reference
and extracted parcels to lines. Then, a buffer, i.e., distance tolerance of 4 m was applied to reference
lines, and a clip tool was used to get the length from the total perimeter of extracted parcel, which was
correctly extracted to match the reference boundary lines. By clipping automated lines with buffered
reference lines, two cases were possible: (1) the extracted parcel fully matched the reference parcel
and we could use convert lines to polygon to restore the original extracted polygon and (2) when only
few lines belonging to one extracted parcel could match the reference lines. Keeping in mind that in a
cadastral map, a line is shared by two parcels, and converting parcels into lines results in a shared
line with two different identifiers. To know what portion of the line belongs to which parcel we used
dissolve by ID tool.
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3. Experimental Results

This section presents parcel and building extraction results by human and automation/machine
means, and comparing the performance of human operators against a machine. Extraction results are
disaggregated by sites: rural versus urban.

3.1. Extraction of Parcel Boundaries in Rural Area

In the rural area, cadastral professionals hypothesised and digitised parcels following visible
features such as ditches according to their expertise. Figure 6a–e below presents manually digitised
rural parcels. Figure 6f shows the legal boundaries from the national cadastre.

The automated OBIA approach resulted in ragged and highly inaccurate segments (Figure 7a)
when using the fully automated estimate scale parameter (ESP2) tool, with the shape factor of 0.1 and
the compactness of 0.5 for segmentation. The results were improved by modifying the shape factor
and compactness to 0.5 and 0.8, respectively (Figure 7b). As indicated in Figure 7c, better results were
obtained by using the user-developed rule set based on experts’ ground knowledge since it was more
adapted to context than the ESP2 tool.

During automation, the resulting boundaries had dangling features that do not meet cadastral
geometry and topology requirements. In Figure 8a, the parcel in red had a dangling area that needed to
be trimmed off, but also ditches—dark strips—that separate parcels need to be represented as line and
not as polygons. The morphology operator within eCognition was used to improve the boundaries.
In Figure 8b, the pixel-based binary morphology operation is used to trim dangling portion off the main
parcels. Morphology setting was done based on instructions from the eCognition reference manual.
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In Figure 8c, ditches and other loosely extracted features are sliced into smaller image objects using
chessboard segmentation. For smoother results, the object size is set to the smallest size possible, in our
case to 1. In Figure 8d, split segments are set to ‘merge neighbouring parcels’, and parcel boundaries
are improved.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 23 
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3.2. Extraction Parcels in Urban Areas and Building Outlines

The extraction of parcels and buildings in the urban area relied on visible fences, roofs and roads.
Figure 9a–e presents reference parcels (in red) overlaid with manually extracted urban plots (in yellow)
and automated parcels in Figure 9f.
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In addition to building plots, we applied both automatic and manual techniques for the extraction of
building outlines. Figure 10 represents results from the expert team’s manual digitisation (Figure 10a–e)
and automatically extracted building outlines (Figure 10f).
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The automation output in the urban area was counterintuitive, at least compared to human visual
interpretation. The results show that automation resulted in poorly structured parcel boundaries
compared to the manually digitised parcels. As shown on Figure 10f, the machine faced difficulties in
trimming pavements and tiny structures from the main buildings. Blue and black roofed buildings
were omitted as they spectrally appeared to resemble vegetation. On the contrary, humans were more
precise and concise.

3.3. Geometric Comparison of Automated Against Manually Digitised Boundaries

Geometric discrepancies between each reference parcel and the corresponding extracted parcel
were determined by overlaying automatically produced parcels with manually digitised and field
surveyed parcels. A distance tolerance buffer of 4 m was applied considering the shift of boundaries
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inherent in the source image. Note that the comparison was done only for the rural site, where
automation results were geometrically comparable with manual and reference parcel polygons.

In Figure 11, violin graphs are shown, on which white dots mark the median, illustrating the full
distribution of discrepancies between reference parcels, automated and manually digitised parcels.
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In Figure 11, the wider section of the violin plot [62] indicates higher numbers of extracted parcels
within the given error value, whereas the skinnier section shows the reverse case. The graphs allow us
to examine the behaviour during all instances, i.e., the variation and likeness in the full distribution
and the pattern of responses for machine and human can be visualised and compared.

The comparison of machine intelligence to expert knowledge was also done by comparing
automated parcels with hypothesised and manually digitised parcels. Unlike the previous comparison,
the analysis of automated parcels against hypothesised parcels by experts did not necessarily consider
the correctness of detection, i.e., the degree of extraction coinciding with cadastral boundaries. The
focus is the ability to detect visible boundary features on the image. As it can be observed, Figure 12
shows data in agreement with Figure 11, with respect to the shapes of extracted parcels.
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Figure 12. Discrepancies between automated boundaries and manually digitised parcels.

Table 3 presents the global error for each metric considered: over-segmentation, under-
segmentation, shape and edge shifting. Since an optimum and error-free segmentation where
OSerr, USerr, SHerr and EDerr equal 0 is the ideal case, and rare to have, we can simply define an error
tolerance range within which extracted parcels are maintained as acceptable.

Table 3. Overall detection error by machine against humans.

Machine Expert A Expert B Expert C Expert D Expert E

OS 0.15 0.12 0.13 0.11 0.11 0.12
US 0.17 0.14 0.13 0.20 0.15 0.15
SH.err 0.03 0.02 0.05 0.03 0.03 0.02
ED.err (buffer = 4 m) 0.07 0.02 0.06 0.03 0.03 0.02
NSR 0.063 0.049 0.069 0.108 0.020 0.059
FP 14.74% 12.5% 9.57% 12.22% 12.12% 13.68
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Table 3. Cont.

Machine Expert A Expert B Expert C Expert D Expert E

FN 14.85% 15.84% 16.83 25.74% 13.86% 19.80%
Correctness 47.4% 76% 67% 77.8% 77.8% 72.6%
Completeness 45% 73% 63% 70% 77% 69%

Reference = 100 parcels; automation = 95 parcels; expert A = 96 parcels; expert B = 94 parcels; Expert C = 90 parcels;
Expert D = 99 parcels and Expert E = 95 parcels.

4. Discussion

4.1. Manual Extraction Creates Quality Issues

In general, manual digitisation of rural parcels resulted in remarkable inconsistencies among
users. Not all parcels could be extracted equally, despite having the extraction guide provided to
support cadastral experts. The results show a commonality of approximately 60% in detected parcels
by humans, however, 40% are perceived differently amongst the experts. The findings raise questions
regarding cadastral updating: arguably if human operators update boundaries with only imagery
as support, they may introduce different non-systematic errors. Machines may introduce less error
during cadastral updating: the algorithms used, if not changed, will follow the same logic. Therefore,
beyond the issue of higher costs and time usually associated with human users, the issue of quality
repeatability should also enter the discourse.

4.2. Semi-Automated Is More Feasible Than Fully-Automated

The findings of this research suggest that a semi-automated rather than a fully automated approach
is more applicable for cadastral boundary extraction, for ready-to-use data that can be exported as
a vector file, for example, to Esri ArcGIS or other GIS platforms. Semi-automated approaches with
a user-developed rule set, based on experts’ ground knowledge, generate better results since it is
more adapted to context than the ESP2 tool. By improved results here, we mean topologically and
geometrically well-structured parcel boundaries that do not require manual post-processing and
editing. For instance, knowing the setback distance, a user can extract parcels within a defined distance
from specific roads or rivers. Furthermore, since it is not possible to have all parcels with the same
morphological conditions, to adapt to variation in size and shape, semi-automated approaches allow
for a subsequent segmentation and classification.

4.3. Invisible Social Boundaries: A Challenge to Both Machines and Humans

4.3.1. Rural Areas Offer Promise, but Inconsistency Is Evident

While colour is the primary information contained in images with which objects are extracted and
separated [63], individual parcels are not reflected by different colours. In addition, parcel boundaries
shown on images are often social constructs making it rather challenging to extract them. Some parcel
boundaries are visible on imagery, whereas others are invisible and cannot be detected.

In our study, the separability of rural parcels was influenced by the extractability of features
marking boundaries, parcel size and shape. Most of the parcels in rural sites were marked consistently
by visible ditches. Ditches were extractable by the machine as separate elongated narrow strips (Figure 8)
or otherwise it would be difficult to separate two parcels with the same texture. In eCognition, such
elongated features like ditches are characterised by very low elliptic fit values and or being very
highly asymmetric. The ditches being extractable as separate entities from parcels facilitate separating
parcels from their neighbours. Experiments show that a parcel’s layout, size and fragmentation affect
the extraction of boundaries. Regarding shape and size of parcels, it could be observed that having
regular shaped parcels eased the automation whereas highly fragmented parcels prompted omission
and commission errors, due to variation in shapes and size of parcels. As was experienced, when
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classifying segments with shape indexes like rectangular fit, shape index, border index, elliptic fit and
compactness, the over-segmentation error was likely. To avoid this error, a parcel area threshold value
was defined that would remove small (likely committed) parcels from classification. Furthermore,
screening small polygons to prevent over-segmentation resulted in under-segmentation errors as there
exist very tiny plots reflecting the level of land pressure in the country. Not only extracting highly
fragmented parcels was a challenge for automated approaches, but also to humans. Some of the
hypothesised boundaries of human experts could not necessarily match references parcels. This means
that the physical line is not enough to define a boundary. This leads to human subjectivity, because
of individual differences in image interpretation [64], in parcel delineation. Inconsistencies, where
it is likely for one human expert not to produce the same parcels nor uniformly digitise the same
boundaries repeatedly, present a weakening feature of image-based delineation.

4.3.2. Urban Areas Surprisingly More Challenging

Major challenges were encountered in the urban area, owing to higher heterogeneity and diversity
with respect to form, size, layout and material constitution of urban structures. For instance, one
roof surface may display varying spectral signatures, making it very difficult for automated building
extraction. In the studied case, buildings roofs are mostly hip and valley, and prone to spectral
reflectance variation. In fact, depending on the position of the sun at the time of image acquisition,
some parts of the roof are not illuminated which affects the extraction, raising requirement concerns
over the quality of the imagery required for cadastral mapping purposes. Not only roofs, but also the
material composition of fences and marking of plot boundaries varies, making it difficult for parcel
extraction. Fences are very relatively and typically narrow objects, hard to detect with a 0.5-m resolution
image. In some cases, building roofs, the fences marking parcels, building shadows and gardens, had
almost the same spectral signatures, making it almost impossible to separate these features.

Generally, from our experiments, it can be assumed that the extraction of buildings and urban
plot boundaries, using spectral information of roofs and fences is challenging due the complexity of
urban fabric and the quality of the remotely sensed data used by the machine, as opposed to humans.
Looking at the image, buildings and fences are very able to be identified with eyes, and we can also see
good results from digitisation by experts. Counter-intuitive results obtained from automation confirm
observations made in Reference [48].

4.4. Still Areas of Strengths and Weakness for Both Humans and Machines

From the comparison of manually digitised boundaries against automatically generated rural
parcel boundaries (Figure 11), the most striking observation is the likeness of the degree of deviation
of automatically and manually extracted parcel shapes from the real (reference) parcel shapes. This
demonstrates that the deviation of automated parcel shapes from manually digitised parcel shapes
were too small. Results in Figure 12 were in agreement with those in Figure 11, showing that
nearly all extracted parcel polygon areas by experts have less than 20% of their areas committed or
omitted from automated parcels polygon areas. In general, human operators were geometrically more
precise compared to machine algorithms when drawing and reproducing parcel geometries from
images, but the machine’s performance is auspicious in the rural context. On the contrary, in urban
areas, humans outperformed automation. In fact, automated parcels and building outlines were
topologically and geometrically poorly structured and not comparable to manually digitised parcels
and building outlines.

4.5. Corroboration with Previous Studies

Our study findings are in agreement with previous studies [16,35] where obtained automation
performance in rural areas was 24–65%. In contrast to findings by [50,65,66], however, automation
performance was lower due to the focus on geometric precision rather than thematic accuracy. Unlike
previous studies, except the study in Reference [16], this study focused on automated extraction of



Remote Sens. 2019, 11, 1662 19 of 23

whole-parcel boundaries. Here, the importance would not be to consider only higher automation
rates, but also more emphasis on providing information that fit with acceptable cadastral standards.
According to [35,49], even with automation performance, 30–50% will significantly reduce the cost
incurred in land demarcation. Therefore, it can be concluded that the current study achieved promising
results in rural areas. In urban areas, however, while an unambiguous ontology status of buildings,
with shapes that are clearly detectable by humans would ease their delineation [67], results can
be counterintuitive.

4.6. Implications for Practice and Research

Our method for comparison can be implemented in Esri ArcGIS. It is quantitative and hence
reproducible and replicable. As for implications, first, the study instils future researchers to use
geometric accuracy metrics in compliance with cadastral standards.

The second implication of the study derives from the spatial quality of the obtained automation
results leading to, potentially, transferability not of the rule set but the approach used. It was noted,
in experimentation with the ESP2 tool, that the rule set might not be transferable instinctively. It is
because the rule set includes parameter values set to fit a specific context and not the general context.
Likely, the approach is designed in such a way that with small adjustments of the rule parameters
pertaining to shape and size, depending on the context of the concrete case, it can be replicated in other
contexts. This makes our work highly beneficial for future researchers and other case studies.

Third, from reviewed previous proponent works on the automation of cadastral boundaries
extraction (as it is also for the current study as limitation) the issue of scalability emerges. Many
of the inferences made in this work are based on simple case studies using smaller tiles of images
which do not represent the complexity on the ground for whole-country mapping endeavours. The
research problem is aligned to a real-world problem, but the presented solution primarily considers
methodological matters, not the broader set of political, legal, organisational and administrative
challenges. In addition, using automation in small areas might not be a wise idea, in terms of gaining
critical mass and economies of scale. The implication of this is a need to apply automatic tools to a large
area in simulations to real-world practices, rather than using smaller and subjectively selected areas.

Generally, beyond the requirement to understand the data, the experimentation suggests that
automated extraction of cadastral boundaries, also requires knowing the social contexts that shape
landholding structures in a given area. During automation, the user must integrate this contextual
knowledge within the rule sets. Fully automated approaches could not be fruitfully compared with
the user-developed rule set, since it limits user intervention, if not ignores it, and does not integrate
expert ground knowledge.

5. Conclusions and Recommendation

This study compared machine driven techniques, using rule sets within OBIA, and human abilities
in detecting and extracting visible cadastral boundaries from very high-resolution satellite images,
in both urban and rural contexts. Our results show that automation was able to correctly extract 47.4%
of visible rural parcels and achieved 45% of completeness, whereas in urban areas, it failed to generate
explicit polygons owing to urban complexities and spectral reflectance confusion of cadastral features.

Machines are meant to increase human performance in production and service delivery. In the
cadastral field, this will be achieved if human cadastral intelligence—knowing boundaries are social
constructs and perceptible to humankind—is integrated with computational machine power to allow
for the extraction of parcels to support land registration. With the obtained results in rural settings,
land registration service coverage can be taken farther than is currently possible.

Despite the rigorous methods applied, the study does not claim a fully-fledged experimentation
with automation tools. Thus, more studies using other tools and other case studies are required to
broaden the understandings of the tools that best fit the given purpose and context. In this study,
automation was applied on a relatively small area, suggesting that it could also be scaled to larger areas.
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Finally, in urban areas, the study encountered limitations since the colour (i.e., spectral signatures) was
the primary information contained in image data in segmentation. As an implication, the incorporation
of Light Detection and Ranging (LiDAR) information may improve the obtained results and hence
is suggested for the application to similar and other case studies. The overarching aim of our work
on cadastral feature extraction is to generate a rough-cut cadastre that can be taken to the field and
corrected, involving cadastral professionals and owners. The goal is to identify and apply user-friendly
and learnable automation tools that result in precise and GIS-ready cadastral boundaries on as the
largest scale possible.
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