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Abstract: For soils with shallow groundwater and high organic carbon content, water table depth
(WTD) is a key parameter to describe their hydrologic state and to estimate greenhouse gas emissions
(GHG). Since the microwave backscatter coefficient (σ0) is sensitive to soil moisture, the application
of Sentinel-1 satellite data might support the monitoring of these climate-relevant soils at high spatial
resolution (~100 m) by detecting spatial and temporal changes in local field and water management.
Despite the low penetration depth of the C-band, σ0 is influenced by shallow WTD fluctuations
via the soil hydraulic connection between the water table and surface soil. Here, we analyzed
σ0 at 60 monitoring wells in a drained temperate peatland with degraded organic soils used as
extensive grassland. We evaluated temporal Spearman correlation coefficients between σ0 and WTD
considering the soil and vegetation information. To account for the effects of seasonal vegetation
changes, we used the cross-over (incidence) angle method. Climatologies of the slope of the incidence
angle dependency derived from two years of Sentinel-1 data and their application to the cross-over
angle method did improve correlations, though the effect was minor. Overall, averaged over all sites,
a temporal Spearman correlation coefficient of 0.45 (±0.17) was obtained. The loss of correlation
during summer (higher vegetation, deeper WTD) and the effects of cuts and grazing are discussed.
The site-specific general wetness level, described by the mean WTD of each site was shown to be
a major factor controlling the strength of the correlation. Mean WTD deeper than about −0.60 m
lowered the correlations across sites, which might indicate an important limit of the application.
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1. Introduction

Water table depth (WTD) is one of the major factors controlling biogeochemical processes in
peatlands and other organic soils. Pristine peatlands are characterized by shallow water table depth,
which protects the remains of peat forming plants (e.g., Sphagnum spp., Carex spp.) from complete
decomposition. Therefore, peatlands have acted as sinks for atmospheric carbon dioxide (CO2) for
millennia and nowadays they store more than one third of the global soil organic carbon [1]. Generally,
peat soils differ greatly from mineral soils due to their high content of soil organic matter (30–100%
according to the German soil classification [2]), low bulk density (from 0.09 to 0.68 g cm−3 for peat
soils under agriculture [3]), high porosity (up to 98% [4]), and thus potentially, very high volumetric
water content.

Drainage, e.g., from agriculture or forestry increases the thickness of the aerated soil layer and
thus accelerates the decomposition rates of organic carbon. Consequently, low water tables cause high
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CO2 emissions [5]. On the other hand, inundation, e.g., due to peatland re-wetting measures might
increase the emissions of methane (CH4) [6]. Due to their high CO2 emissions, drained peatlands
form a major share of the total greenhouse gas (GHG) emissions from the agriculture and land-use,
land-use change and forestry (LULUCF) sectors in countries where large areas of peatland have been
drained [7,8]. Furthermore, they play a complex role in nutrient retention and the water balance of
a catchment.

Information on WTD is thus of great interest for almost all aspects of peatland science and
management. For example, such information can be used to evaluate the success of peatland re-wetting
measures or serve as a proxy for estimating GHG emissions. Commonly, water tables are measured
at monitoring wells, but this does not provide information on the spatial scale that is required to
evaluate project or country-wide effects of re-wetting measures or of increased drainage activities.
Moisture-sensitive satellite observations (such as radar) offer an efficient way to obtain regular
information about the status of peatlands with complete spatial coverage. This could improve large
scale regionalization of WTD, for example, for GHG emission models as well as regional water
management or the monitoring of re-wetting effects, especially in inaccessible areas.

WTD influences peat soil moisture in the unsaturated zone through capillary forces [9].
The capillary connection of the surface soil moisture to the water table depends on the physical
properties of the peat (hydraulic conductivity and water retention characteristics), which are highly
variable and depend, e.g., on peat type and degree of decomposition [3,10]. Due to the shallow WTD
in natural peatlands, hydrostatic equilibrium conditions occur frequently [9], and thus, peatlands with
a shallow water table and sparse tree cover theoretically offer ideal conditions to infer WTD from radar
data, despite typically low soil penetration depths of a few centimetres.

Several approaches have been used to derive soil moisture from radar satellites. Several products
with almost global coverage are available from passive and active microwave observations [11–13]
but their spatial resolution is often too coarse to represent the strong variability in small peatlands.
However, the spatial resolution of synthetic aperture radar (SAR) is advantageous. A SAR system
transmits and receives electromagnetic radiation as backscatter of the Earth’s surface, which is described
with the backscatter coefficient (σ0). The C-band penetrates just a few centimetres into the soil under
moderately dense vegetation cover conditions. Different sensor parameters, e.g., incidence angles
resulting from different orbits lead to different penetration depths depending on the travel distance
through vegetation. However, SAR data is strongly affected by several other factors including the
roughness of the ground surface, the vegetation structure and other surface elements such as buildings
and open water surfaces.

For our study, σ0 is assumed to increase with increasing water tables (= shallower water table depth)
due to the wetting of surface soil layers through capillary rise (Figure 1). Inundation, however, lowers
σ0 again, which is of interest for flood mapping and wetland monitoring [14]. In peatlands used as
grassland, inundation occurs only temporarily with large variability at small scale. A slight increase of
σ0 in the case of shallowly inundated vegetation might occur due to double bounce backscattering [15].

Change detection is one empirical approach to account for roughness and vegetation. According to
this concept, short-term changes of σ0 relate to changes in moisture, whereas changes on longer time
scales also relate to changes in vegetation biomass and structure. Thus, this approach can be applied
without prior knowledge of ground surface roughness and vegetation structure. Using a change
detection approach, C-band radar has been shown to be sensitive to the surface soil moisture of crop
sites [16] as well as of peatlands [17]. Dense vegetation suppresses information on soil moisture [18].
To overcome this problem, the cross-over angle concept originally developed by Wagner et al. [19]
uses the temporally variable incidence angle dependency of σ0 to account for seasonal changes in
vegetation biomass.
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Figure 1. Schematic illustration of backscatter in peatlands with different water table depth (WTD). 
WTD influences surface soil moisture in the upper centimetres of the soil due to capillary connection. 
Shown are situations with (a) deep WTD and low backscatter, (b) shallow WTD with high backscatter 
and (c) inundation with very low backscatter. 
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[20] such data is—in comparison to mineral soil—barely available [21]. Evaluation of remote sensing 
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which are caused by different moisture states and water levels [22–24]. In SAR applications, soil 
moisture has been estimated from σ0 [15,17,25–28] or polarimetry [27], while coherence data has been 
used to derive surface water levels [28]. In particular, previous studies have shown promising 
correlations between σ0 and WTD in peatlands, but they have either focussed on forested peatlands 
with limited in situ data for WTD [28] or on large-scale applications, which did not allow conclusions 
to be drawn on the effect of soil properties and vegetation [29]. The latter study showed a dependency 
between C-band SAR and WTD using ENVISAT-ASAR data in several German peatlands. Promising 
results were also shown by Kim et al. [28] who found a strong correlation between soil moisture, 
WTD, L-band and C-band radar for a small number of observations in forested peatlands. However, 
besides the work of Bechtold et al. [29], no other studies have focused on drained or re-wetted 
peatlands, which require attention due to their GHG emissions and their emission mitigation 
potential [5–7]. Despite the shallow WTD, the application of SAR data in peatlands is still challenging 
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(posted raster cell size ~10 m) enables new approaches to distinguish even small and narrow parcels 
of land, as is typical for cultivated peatlands [31]. 

In this study, we focus on managed grasslands with small parcel size and high variability in the 
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Figure 1. Schematic illustration of backscatter in peatlands with different water table depth (WTD).
WTD influences surface soil moisture in the upper centimetres of the soil due to capillary connection.
Shown are situations with (a) deep WTD and low backscatter, (b) shallow WTD with high backscatter
and (c) inundation with very low backscatter.

Information derived from satellite data is increasingly used for monitoring hydrological conditions
in peatlands. Since data on soil moisture is technically challenging to obtain in peatlands [20] such data
is—in comparison to mineral soil—barely available [21]. Evaluation of remote sensing methods is thus
often conducted with WTD data, which is more easily available. Sensors operating in the optical and
infrared spectrum are capable of detecting spectral changes in Sphagnum mosses, which are caused
by different moisture states and water levels [22–24]. In SAR applications, soil moisture has been
estimated from σ0 [15,17,25–28] or polarimetry [27], while coherence data has been used to derive
surface water levels [28]. In particular, previous studies have shown promising correlations between
σ0 and WTD in peatlands, but they have either focussed on forested peatlands with limited in situ
data for WTD [28] or on large-scale applications, which did not allow conclusions to be drawn on the
effect of soil properties and vegetation [29]. The latter study showed a dependency between C-band
SAR and WTD using ENVISAT-ASAR data in several German peatlands. Promising results were also
shown by Kim et al. [28] who found a strong correlation between soil moisture, WTD, L-band and
C-band radar for a small number of observations in forested peatlands. However, besides the work of
Bechtold et al. [29], no other studies have focused on drained or re-wetted peatlands, which require
attention due to their GHG emissions and their emission mitigation potential [5–7]. Despite the shallow
WTD, the application of SAR data in peatlands is still challenging because of small-scale variability in
vegetation, biomass and peat properties.

Sentinel-1 is an Earth observation mission of the European Space Agency (ESA), which consists of
the satellites Sentinel-1A and Sentinel-1B. They carry a SAR which uses C-band radar with a frequency
of 5.4 GHz in dual polarization [30]. Sentinel-1 data has been recently applied for soil moisture
estimation in mineral soils [18] as well as in organic soils [25]. The high spatial resolution (posted
raster cell size ~10 m) enables new approaches to distinguish even small and narrow parcels of land,
as is typical for cultivated peatlands [31].

In this study, we focus on managed grasslands with small parcel size and high variability in the
landscape. To provide a detailed analysis for a potential application of Sentinel-1 data in managed
peatlands, the objectives of this study are to investigate:

• the correlation of WTD and σ0 at several study sites
• the effects of vegetation, soil properties, and the overall site wetness (characterized by mean WTD)

on correlation coefficients
• the influence of grassland management practices at two exemplary study sites.
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2. Materials and Methods

2.1. Study Area

The Drömling is a lowland landscape in the German federal states of Saxony-Anhalt and Lower
Saxony. In Saxony-Anhalt, large parts of the Drömling are protected as a nature park, which comprises
several nature reserves [32]. Fen peat developed between sand islands deposited by the Aller and
Ohre rivers. Due to the flat topography and the underlying sand, horizontal hydraulic gradients are
small, i.e., the groundwater surface is rather flat. Therefore, it can be assumed that the absolute level of
the water table measured at one point is representative for a larger area.

The area has been cultivated and systematically drained for agricultural purpose since the late
18th century. Additionally, parts of the Drömling peatlands have been covered by sand to improve
trafficability (‘Rimpau’sche Moordammkultur’). Due to peat mineralisation and subsidence caused by
drainage, the peat depth is shallow nowadays (from ~15 to 60 cm) and large areas are at the boundary
between mineral and organic soils in terms of their organic carbon content. Land parcels are small
with numerous ditches as well as shrubs and trees next to the fields. In the last few decades, the area of
cropland has decreased and conversion of grassland to cropland has been banned to reduce land-use
intensity and to support conservation efforts in the core zone of the park [31]. Currently, most of the
area is used as grassland with low intensity management (73% in 2012 [31]).

Long-term mean precipitation and temperature are 560 mm and 8.7◦C, respectively [33].
During summer, evapotranspiration frequently exceeds precipitation and groundwater inflow, which
can result in low water tables of around 1 m. In some parts of the Drömling, re-wetting measures have
been implemented to raise the water table, but inundation only occurred at a few sites during the
investigated time period in winter.

The study area was chosen because it is data-rich, i.e., WTD has been monitored in the Drömling
area of Saxony-Anhalt (eastern part) at about 100 monitoring wells. We focused our analysis on
grassland because this is the major land use type for both the Drömling [31] and organic soils in
Germany in general [5,7].

2.2. In Situ Data: Water Table, Soil and Vegetation

In total, 60 monitoring wells (Figure 2) were used to obtain in situ data for a correlation analysis
between WTD and σ0 using a change detection approach.

For comparison with σ0, the study sites were defined as an area of 130 m × 130 m around the
monitoring wells. These dimensions were derived from pre-tests that aimed at finding an appropriate
speckle filter size (details in Section 2.3.2). Study sites are situated all over the Drömling in grassland
parcels with differently managed water levels, and thus they differ in mean WTD, vegetation type and
soil properties. The available length of time series overlapping with our analyzed Sentinel-1 period
differ among the monitoring wells and range from 365 to 787 days, although the time period is mostly
about two years long. Mean annual WTD of the study sites ranged from −0.80 to −0.05 m (negative =

below ground surface).
Information on ground elevation was derived from a digital elevation model (DEM). The DEM is

based on an airborne laser scan from 1998 and has a spatial resolution of 5 m and a height uncertainty
of 0.08 m [34]. After 18 years, soil subsidence due to peat mineralisation has to be expected. Therefore,
we measured the current ground elevation at several study sites and found that the peat surface
was around 10 cm lower than indicated by the laser scan. Thus, the DEM was corrected accordingly.
WTD was derived by subtracting the ground elevation (mean of the 130 m × 130 m area) from water
table elevation. Precipitation and soil temperature at a 5 cm depth were measured hourly at the climate
station of the German Weather Service in Gardelegen, which is about 18 km from the study area.
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Figure 2. Study area with the location of 60 study sites with monitoring wells in the Nature Park, Drömling.

Soil information was supplied by the Nature Park administration, who conducted a detailed field
mapping. Main soil types are shallow (up to 0.60 m) Histosols with strongly decomposed fen peat,
Histic Gleysols and sand-covered Histosols [35]. Soils that have very shallow or no peat but a high
SOC content such as Histic Gleysols are referred to below as “other organic soils”. Study sites are
further classified by peat depth (medium-deep fen peat for depths > 0.40 m and shallow fen peat for
depths < 0.40 m).

All study sites are grasslands managed with low intensity (one or two cuts per year, low intensity
grazing). Recent information on vegetation was available from field mapping campaigns in 2016,
according to the habitat classification approach of the EU Habitat Directive [36] and to the biotope type
classification (BTC) in Lower Saxony [37]. However, as these maps covered only parts of the study
area, biotope type groups based on colour-infrared (CIR) data from 2009 were used in case of missing
information [38]. In both cases, information for each study site was extracted with a rectangular buffer
of 130 m representing the area of the adapted speckle filter. While the CIR-based map only contains
coarse classes of vegetation, detailed subclasses were available from the more recent data. We decided
to subdivide the vegetation into broad classes: wet grassland (n = 19), sedges (n = 1) and mesophile
grassland (n = 34) with the subclass of lowland hay meadow (n = 6) (details in Table A1).

Vegetation biomass changes seasonally and annually not only due to climatic conditions, but also
due to differences in management. The parcels within the study sites are either cut once or twice
a year, used as pasture (usually for cattle) or a combination of both. To complicate matters, a few
parcels are cut in alternating strips for conservation purposes. Management decisions depend on
hydro-meteorological conditions (e.g., trafficability, which is understood here as the soil’s ability to
support agricultural traffic without major soil degradation) and on conservation goals (e.g., the date of
the first cuts is optimized for breeding birds). However, detailed management information was only
available for a few sites.

Three exemplary study sites were chosen to demonstrate the time series of σ0 and WTD,
but management data was only available for two of these (Figure 3). The first study site (Meadow) had
quite homogeneous wet grassland vegetation, which reached a height of about 1.4 m in 2016. At the
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second study site (Pasture), around 20 cm of sand has been added on the top of the peat layer and the
upper layer is now a peat-sand mixture. The vegetation and its biomass vary on a small scale due
to inhomogeneous grazing of cattle. The third study site (Grazing meadow) is similar to the second,
but with generally higher vegetation and small strips of shrubs around ditches. The Grazing meadow
serves as an example of those sites that show a weak correlation between WTD and σ0 (Section 3.3).
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Vegetation  Homogeneous wet 
grassland 

Pattern of grazing at 
mesophile grassland 

Heterogeneous mesophile 
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June 1th until November 1th 
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Figure 3. Exemplary study sites for which time series will be shown, including key information on
vegetation, soil, peat depth, grassland management practices and mean water table depth (WTD).

2.3. Sentinel-1 Data

2.3.1. Data Availability and Scene Filtering

Data products from Sentinel-1 satellites were downloaded from the Copernicus Open Access
Hub [39] for the study period from October 2014 to December 2016. The products were processed
as Level-1 data from Interferometric Wide Swath Mode (IW) and Ground Range Detected (GRD).
All available scenes (in total 262) from Sentinel-1A and Sentinel-1B were used. Two polarization
products were available with vertical transmission and either vertical reception (VV) or horizontal
reception (VH). The posted raster cell size of the data products was about 10 m × 10 m. The scenes were
received from four different orbits. Scenes differ in viewing direction, incidence angle (depending on
the orbit, either about 35◦or 43◦ for the study area) and sensing time (either in the morning at 06.00 CET
or in the evening at 18.00 CET). Because of the different viewing geometries, scenes were divided
into ascending and descending orbits. To ensure (as much as possible) the hydrostatic (+ unfrozen)
equilibrium condition that is the basis of the direct monitoring of WTD with backscatter data, we tested
various thresholds for soil temperature and time since last precipitation. The rationale of the latter is
that precipitation just before the overpass would lead to high backscatter values due to a temporary
wetter surface layer, which is poorly connected to the current water table position. We found that
a 2◦C threshold and a rain-free period of 6 h successfully filtered outliers that otherwise blurred our
correlation coefficients. Therefore, only scenes of dates where the soil temperature was higher than 2◦C
and no precipitation occurred at the weather station for the last six hours were used. Filtering reduced
the number of analyzed scenes to 144.

2.3.2. Data Processing

The radar data were pre-processed with ESA’s Sentinel-1 Toolbox in the software SNAP (Version
6.0) [40]. The processing routine included thermal noise removal. For geocoding precise orbit files and
the Range-Doppler Terrain Correction was applied. Input data for the terrain correction is the German



Remote Sens. 2019, 11, 1659 7 of 19

digital terrain model with a raster width of 25 m with adjusted elevation from German Combined
Quasigeoid. Sentinel-1 raster cells were transformed to represent an area of 10 × 10 m on the ground.
The digital numbers of the raster were radiometrically calibrated to the radar cross-section σ0 in decibel
and are hereafter referred to as σ0 backscatter coefficients, or just σ0.

Areas of forest, croplands and permanent open water bodies in the study area were masked by the
CIR map to avoid influences on σ0 at the study sites. After that, a median window speckle filter with
a size of 13 × 13 raster cells was applied. The filter reduces small scale differences due to speckle but
also heterogeneities within the grassland. The filter size was chosen after pre-tests as a compromise
between smoothing smaller scale heterogeneities and resolving abrupt changes between differently
managed parcels. For three study sites, backscatter values were masked within the study sites during
the application of the land use mask. Missing values for these study sites were extrapolated during
speckle filtering up to half of the speckle filter size.

For each study site and both polarizations, σ0 was extracted at the position of the monitoring
wells. They were further analyzed in R (Version 3.4.3) [41]. Additional information on incidence angles
for each study site and scene were extracted from the Sentinel-1 incident angle raster of the product.

2.3.3. Derivation of Slopes of σ0 Incidence Angle Dependency

All σ0 were normalized to a reference angle of 40◦ with a constant and a dynamic slope according
to the cross-over angle concept [19]. Since only two incidence angles are available for Sentinel-1
satellites, information on curvature cannot be derived. Therefore, the cross-over angle concept is
applied in a simplified manner neglecting the effects of dynamic vegetation on the curvature of the
incidence angle dependency [42]. The slope is supposed to account for the major effects of seasonal
vegetation development. The constant slope was calculated as the mean slope between σ0 and incidence
angle from two complete years of Sentinel-1 data (Figure 4). The dynamic slopes, which represent
the climatology of the area, were derived according to Bechtold et al. [29]. For each day of a year,
the slope was derived with a moving average window. Weighting of the scenes accounted for irregular
incidence angles inside the moving window. The cross-over angle concept was only applied to VV
polarization because it showed a better correlation with WTD in pre-tests. Normalized σ0 will be
referred to as σ0

θ, with σ0
θ constant and σ0

θ cross-over referring to the constant and cross-over angle
method, respectively.
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Figure 4. Schematic illustration of derived constant and dynamic slopes between backscatter and
incidence angle (modified after [19]). Slope is influenced by vegetation biomass. Moisture shifts the
absolute levels of backscatter. Dry and wet cross-over angles are set to 25◦ and 40◦. Incidence angles of
Sentinel-1 (S-1) over the study area are also indicated.
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As a further indicator of vegetation development, the polarization difference (PD) was calculated as

PD constant = σ0
θ (VV) constant− σ0

θ(VH) constant (1)

2.3.4. Correlation Analysis

We applied a correlation analysis to evaluate the potential of backscatter time series for WTD
monitoring. Simple univariate correlation coefficients between backscatter (or soil wetness indices
derived from scaled backscatter) and soil moisture are frequently reported in the remote sensing of
soil moisture field [43,44]. Since WTD and σ0

θ dependencies were slightly nonlinear for several study
sites, correlation coefficients were calculated using Spearman rank correlation, as done, e.g., in Dorigo
et al. [43]. The correlation coefficients are not independent from vegetation changes. To account for
vegetation as a confounding factor, we calculated partial correlation coefficients between σ0

θ (VV)
constant and WTD after [45] with the effect of the controlling random variable PD, as proxy for
vegetation, removed. For all correlation analysis, dates with a WTD shallower than −0.05 m were
excluded from the calculation of correlation coefficients because a partly inundated ground surface
would lead to a contrary relationship between σ0 and WTD (Figure 1). To separate the effects of soil
properties, vegetation types or the general wetness level (mean WTD) on the correlation coefficients,
we classified study sites by these characteristics. The distance to ditches, trees, shrubs and open water
bodies was tested for their effect on the correlation.

3. Results

3.1. Influence of Polarization, Incidence Angle Normalization and Orbit on the Correlation of WTD
and Backscatter

Figure 5 summarizes the correlations between the various backscatter variables and WTD.
On average, the orbit pass (ascending/descending) did not systematically affect correlations.
Combining both orbits, the highest mean correlation coefficient (0.46) was achieved with VV polarized
σ0 with cross-over angle normalization directly followed by VV polarized σ0 with constant slope
normalization (0.45). Partial correlation analysis indicates a slight decrease in the correlations between
VV polarized σ0

θ and WTD (shown for σ0
θ constant only). VH polarization showed a correlation

coefficient of only about 0.32.
The application of the cross-over angle principle increased the mean correlation coefficient by,

on average, only 0.01. However, the moving window approach yielded mostly plausible slope
parameter climatologies, although only two different incidence angles were available (Figure 6).
The slope value increased during summer, i.e., during periods with high vegetation biomass (see also
Figure 4). One exception was a study site with a vegetation cover dominated by sedges, which did
not show the expected pattern (Figure 6d). Longer time series are necessary to evaluate whether this
pattern is consistent over time. It can be further noted that differences between the vegetation classes,
mesophile grassland and wet grassland were very small. However, wet grassland had greater quantile
values, which might point to greater diversity between the study sites.
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Figure 5. Boxplot of Spearman temporal correlation coefficients between σ0 and WTD with median
(bold line), quartiles and mean (diamond) value (n = 60 monitoring wells). Whiskers display the range
of 1.5 times the interquartile range above the third quartile or below the first quartile with outliers
beyond. σ0

θ (VV) constant: VV polarization normalized with a constant slope, σ0
θ (VV) cross-over:

VV polarization with cross-over angle correction, σ0
θ (VV pcor PD) constant: VV polarization

normalized with a constant slope and using partial correlation analysis with PD as controlling variable,
σ0

θ (VH) constant: VH polarization normalized with a constant slope. Results are grouped for
correlations of ascending, descending and all orbits.
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Figure 6. Climatologies (median and quartiles) of the slope of the incidence angle dependency derived
from two years of Sentinel-1 data. Study sites are grouped into the vegetation classes (a) mesophile
grassland (n = 34), (b) wet grassland (n = 19), (c) lowland hay meadow (n = 6) and (d) sedges (n = 1).

3.2. Influence of Mean WTD, Vegetation and Soil on the Correlation between WTD and Backscatter

Since the cross-over angle correction had only a minor impact, the following analysis is restricted
to the σ0

θ (VV) constant data from both orbits. Overall, study sites showed a large variability in
correlation coefficients (0.10–0.74). Figure 7 illustrates the temporal correlation coefficients for all
study sites classified by the main vegetation class (Figure 7a) and soil class (Figure 7b). It can be
observed that both very dry and very wet study sites had lower correlation coefficients, while there
seemed to be an optimum at a mean WTD of around −0.40 m. Accordingly, the drier study sites of
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the wet grassland and the wetter study sites of the mesophile grasslands and lowland hay meadows
showed relatively high correlation coefficients. In the range where the mean WTD of the vegetation
classes overlap (−0.50 to −0.30 m), there was no systematic influence of the vegetation class. Overall,
the results indicated that correlation coefficients were influenced by the general “wetness level” of a
site, i.e., the mean WTD.
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source information (different symbols), and (b) soil class. The correlation coefficients were calculated
after excluding times with WTD > −0.05 m. The source of the vegetation class is either a colour-infrared
based classification (CIR), habitat classification (HTC) or biotope type classification (BTC).

As expected, the class of other organic soils generally showed deeper mean WTD than study
sites with fen peat (Figure 7b). However, while the correlation decreased with deeper mean WTD
(Figure 7b) within the soil classes, there were no systematic differences between the soil classes.
Independent of vegetation and soil class, correlation coefficients were low at shallow mean WTD,
even though inundation events were excluded from the analysis and a considerable range of WTD
fluctuations (>0.6 m) was still present for every site.

It should be noted that even at similar mean WTD, there was a large range of correlation
coefficients. We analyzed features of footprint heterogeneity such as the distance to shrubs, open water,
wood or more detailed habitat types (data not shown), but critical factors governing the strength of
the correlation between WTD and σ0 could not be identified. Furthermore, we observed a high and
WTD-independent variability in the absolute values of σ0 across different study sites that could also
not be explained by the aforementioned site factors (Figure S1).

3.3. Exemplary Time Series: Influence of Grassland Management Activities

As described above, the dynamics of σ0 tracked the WTD dynamics well at some sites, while at
others there was a very weak correlation. At the first exemplary study site (Meadow) in Figure 8a,
σ0 matched several rises in water level but the dependency was weaker in summer. However, there were
considerable differences between the two summer periods; in 2015, the σ0 dynamics matched the WTD
well, especially after the harvest (grass cut), while in June 2016 one major rise in WTD could not be
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captured by the σ0 time series. This might be explained by the high vegetation biomass at the time of
the WTD rise because in that year, the harvest took place after a major increase in WTD.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 19 
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Figure 8. Time series of water table depth (WTD), backscatter coefficients (σ0
θ (VV) constant and σ0

θ

(VH) constant, ascending), and polarization difference (PD) for three different exemplary study sites
(Figure 3). The first study site (a) Meadow is cut once a year in August, which is marked with arrows
(r = 0.75). At the second study site (b) Pasture one major inundation event occurred, marked with
a circle, and the grazing period is highlighted in green (r = 0.77). The third site, (c) Grazing meadow is
an example of a low correlation coefficient (r = 0.37).

At the grazed study site (Pasture) in Figure 8b there was, in general, a stronger correlation between
σ0 and WTD throughout the summer, which might be due to generally shorter vegetation due to
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grazing. Grazing took place from 1 June until 1 November. The WTD rise in summer 2016, which was
not captured by σ0 at the Meadow site, could be observed in the σ0 time series of the Pasture site.

Inundation of the grazed site in February 2016 led to a drop in σ0 (marked by a circle in Figure 8b).
This study site was one of the very few sites where inundation occurred. It should be noted that σ0

during inundation are similar to σ0 during very dry conditions.
Figure 8c shows a representative example of a study site (Grazing meadow) with a low correlation

coefficient (r = 0.37) even at an intermediate mean WTD (−0.44 m), for which we observed most of the
highest correlation coefficients. The management and soil properties are quite similar to the Pasture
site, but the speckle filter window of the Grazing meadow study site is fragmented into several very
small parcels and, despite grazing, we observed high vegetation during a field campaign in summer
2016. Furthermore, there are many ditches (every 20 m) surrounded by shrubs at this site. It might be
the combination of all these potentially confounding factors that lead to the weak correlation, as one
factor alone (e.g., high ditch density) did not explain low correlation coefficients at other sites.

For the shown time series, we could (visually) not identify direct connections between seasonal
or management-induced changes in vegetation characteristics and the time series of PD and VH
(Figure 8a,8b,8c).

4. Discussion

4.1. General Dependency of Backscatter on WTD

Our study demonstrated a dependency of Sentinel-1 σ0 on WTD in a drained temperate
peatland with degraded organic soils used as extensive grassland (Figure 5), as previously shown
by Kim et al. [28] in a forested peatland for Radarsat-1 data and by Bechtold et al. [29] for ENVISAT
ASAR data across several study sites in Germany. We emphasize that the organic-rich soil in our
study area was highly degraded, and, thus, showed rather high surface soil moisture despite the (for
natural peatlands) rather deep WTD. The dependency of σ0 on WTD was, therefore, likely stronger
and less complex than in other studies on organic soils with a fibric undecomposed organic-rich soil
surface layer for which confounding effects can occur due to considerable subsurface scattering [46,47].
The derived correlation coefficients of our study were similar to the results of Bechtold et al. [29]
who found mean correlation coefficients between 0.42 and 0.47 with VV polarized ENIVSAT ASAR
data. Overall, the derived coefficients were also comparable to correlations between σ0 and peat soil
moisture determined by Dabrowska-Zielinska et al. [25]. For drained organic soil used as intensive
grassland, these authors showed a decrease in the correlation with increasing soil moisture sensing
depth (from 5 to 20 cm), though moderate correlation coefficients between 0.26 and 0.55 were still
derived for soil moisture at a 20 cm depth. The partial correlation analysis with PD as the controlling
variable and proxy for aboveground biomass [25] indicates that VV remains correlated to WTD even
considering biomass as a confounding factor.

Similarly to Bechtold et al. [29], the use of the cross-over method improved the correlation
coefficients only marginally compared to constant slopes. The uncertainty of the dynamic slope
parameter probably limited the potentially higher benefit of the cross-over angle concept. Two years of
Sentinel-1 data is a short timeframe and it was insufficient to cover different moisture states at the
different incidence angles, which only covered a narrow incidence angle range of 8◦ over our study
area and thus further hindered a reliable derivation. Additionally, abrupt vegetation changes due to
management activities are problematic since the current approach relies on smooth climatologies of
the slope of the incidence angle dependency. Furthermore, it is unclear whether the current globally
applied cross-over angles used for the cross-over angle concept, which were originally derived over
the Iberian Peninsula [19] and never adapted, are optimal for peatland conditions in Central Europe
(see discussion in [29]). A direct derivation of the cross-over angles from data as done in [19] is not
possible due to the general lack of conditions in drained peatlands whereby high water tables and
high vegetation biomass occur simultaneously [29]. Such conditions would be necessary to constrain
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the wet reference (Figure 4). In our study area, an additional limiting factor is that only two different
incidence angles were available, which covered only a small range (35◦ and 43◦) whereas previous
studies used data with several (15◦ to 45◦) incidence angles [19,29,48].

Lower correlation coefficients for VH polarization are consistent with other studies on soil moisture
estimation from σ0 and confirm the assumption that VH is more dependent on volume scattering
in the vegetation [49]. If VH were well related to vegetation cover it would be advantageous to
integrate information on VH or PD into the results of σ0 (VV). As a substitute for NDVI, PD was used
by Dabrowska-Zielinska et al. [25] as a parameter for vegetation in a soil moisture retrieval model.
At a global scale, Greifeneder et al. [49] showed that the integration of PR (polar ratio, which has
similar information content as PD) into a soil moisture change detection model in addition to the
cross-over angle method, improved the correlation between soil moisture and σ0 for individual study
sites, but not for the whole data set. There is a need to conduct in-depth polarimetric investigations on
the basis of more detailed vegetation information than that available for our study sites to detect the
systematic effects for managed peatlands.

4.2. Influence of Mean WTD and Soil Properties on Correlation

At our sites, the mean WTD exerted the strongest influence on the strength of the correlation
between WTD and σ0 (Figure 7). In the dry range, the observed loss of correlation is similar to the
findings of Akbar et al. [50] who analyzed SMAP data and found a weak link between observed surface
soil moisture and soil moisture from deeper layers for drier geographical regions. For our shallow
water table conditions, there are at least two mechanisms that could cause a decrease in correlation for
sites with deeper mean WTD. First, surface soil moisture (and thus backscatter) variations might be
diminished for deep WTD fluctuations due to the insensitivity of the corresponding drier sections of
the soil water retention curve. This effect is supported by our available soil hydraulic information.
A surface soil sampling of ten study sites and subsequent laboratory experiments using methods tested
and optimized for peat samples [3,51] indicated that we can assume about 35% less change in surface
water content for water table changes at −0.7 than at −0.4 m (Figure 9). As a second mechanism,
lower correlation coefficients at study sites with deeper mean WTD might also be explained by a loss
of hydrostatic equilibrium, that is, by the loss of the strong capillary connection between the water
table and the “sensed” surface soil layer. The occurrence of disequilibrium conditions becomes more
likely with deeper WTD.

Given that deep water tables occur during summer in most cases, when vegetation biomass is
highest, it is problematic to analyze loss of sensitivity (backscatter/surface moisture to WTD) further at
the level of single sites. For periods with low vegetation biomass, the amount of data for deep water
tables is insufficient to evaluate the loss of sensitivity without the very confounding effect of a mostly
dense summer vegetation layer. We emphasize that our interpretation of the loss of sensitivity with
deeper WTD is only based on multi-site analysis using site-specific mean WTD.

We further expanded soil physical considerations using the available soil maps. Soil physical
properties may vary strongly between different peat types and degradation stages [9,52,53], but we
did not detect any differences in correlation for different soil classes at the same WTD. Originally,
we expected differences between sandy topsoils, which drain at lower suctions and lose capillary
connection earlier and peat topsoils, which are supposed to have a capillary connection over a wider
WTD range. The fact that we did not observe this effect might be related to an unmapped variability in
the soil properties within the 130 × 130 m squares (the definition of a study area). It is also possible that
differences in physical properties between the soil classes are simply too small to have notable effects
at this spatial scale. This might not be true at larger scales or when comparing different peatlands as
the soil properties (strongly degraded fen peat and other organic soils) and the peat depth (generally
rather shallow) of the study area only cover a small range of peat properties and depths occurring
at a larger spatial scale. Another factor that might mask any potential effects of the soil type is the
presence of silty organic sediments (sedimentary material deposited at the bottom of water bodies
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before the onset of peat formation) within the unsaturated zone. Such occurrences were sporadically
encountered in some soil profiles at depths of 30 to 50 cm and these may alter the capillary connection
between the topsoil and water table.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19 
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Figure 9. Soil water retention curves from ten different study sites. Mean soil water retention curve is
obtained by averaging volumetric soil moisture at the same values of the pressure head. Rectangles
(light blue) symbolize surface moisture ranges corresponding to two exemplary WTD ranges of 20 cm
and assuming hydrostatic equilibrium conditions.

The decrease in correlation coefficients at the highest mean WTD (Figure 7) might be due to
small-scale microtopography, which causes local ponding under wet conditions. Such periods might
not be well filtered by our WTD threshold of −0.05 m. One of the exemplary time series (Figure 8b)
clearly shows that even shallow inundation has a crucial influence on σ0. Most inundation events occur
during winter when the vegetation of our managed grasslands is low and the inundation water is
only sparsely covered by vegetation. Under these conditions, a decrease in σ0 can be expected [15,17],
and probably explains why we did not observe an increase in backscatter due to the double bounce
effect, as in [28]. The detection of flooded areas could improve water management and the estimation
of GHG emissions. However, a precise method to distinguish inundated vegetation from deep WTD is
needed because both situations have strong, but opposite effects on GHG emissions—low groundwater
tables cause high emissions of CO2, while lasting inundation (particularly in summer) might cause
high methane (CH4) emissions from both grassland [5] and re-wetted sites [54]. Inundation during
winter, however, is generally less problematic. A challenge will be to account for small-scale inundation
patterns under vegetation [55] throughout the different parts of peatlands and to develop a reliable
method for a variety of sites. However, this would be needed if CH4 emissions were the focus of
a particular project or if re-wetting measures are to be identified at the larger scale.

4.3. Influence of Vegetation on Correlations and Backscatter Time Series

Whereas the different vegetation classes show no distinguishable influence besides the correlation
to mean WTD, abrupt changes in biomass due to management cannot be captured by the current
cross-over angle method based on a moving window approach. In many peatlands and also in
the Drömling, management strongly depends on hydro-meteorological conditions, which makes
averaging across years more problematic than with unmanaged land. Dynamic characterization of
the incidence angle dependency that resolves inter-annual variability, as for Metop ASCAT data [56],
is hardly obtainable from the limited incidence angles of the Sentinel-1 configuration. Theoretically,
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supplementary information (e.g., harvest dates) on vegetation could be used to improve the moving
window approach and to account for management, although management practices with regard to
grassland in Germany are highly variable and difficult to obtain at a parcel scale. Approaches to
estimate cuts on grassland from remote sensing data include, e.g., the use of coherence data [57] and
optical data from Sentinel-2 [58]. However, due to cloudiness, there were not enough scenes from
Sentinel-2 during the study period to test such an approach. In future, the necessary information might
be derived from other satellite data, but currently, in situ data remains irreplaceable and sparse.

WTD at grazed sites might be easier to predict because of both lower vegetation and no abrupt
changes in vegetation height. High biomass has been shown to reduce the accuracy of predicting
soil moisture [59], showing a decrease in correlation for the summer months [25]. Although grazed
sites might be very inhomogeneous due to the fodder preferences of the cattle (as we have noticed
during several site visits in summer 2016), this heterogeneity might have been smoothed by the use
of a relatively large speckle filter. However, to conclude on whether and/or to what degree high
vegetation or non-equilibrium soil water conditions are responsible for weaker correlations between
σ0 and WTD during summer, more detailed information on grassland management and the additional
monitoring of surface soil moisture is needed.

5. Conclusions

In this study, we evaluated for the first time, the correlation between high spatial resolution (here
130 m) Sentinel-1 σ0 and water table depth (WTD) in drained (and thus degraded) organic soils (partly
peatlands) with grassland management. Averaged over 60 monitoring sites, the temporal Spearman
correlation coefficient between σ0 and WTD was 0.45. The highest correlations were found for sites with
a mean annual WTD of around −0.40 m. For sites with a mean annual WTD deeper than appr. −0.60 m
or shallower than appr. −0.20 m, we observed a clear decrease in correlation. A reduced surface
soil moisture variability for deeper WTD changes (still assuming hydrostatic equilibrium conditions)
and the potential loss of the capillary connection between the water table and the surface soil layer
(penetrated by the microwaves) during dry periods (assuming disequilibrium conditions) are two
potential explanations for the reduced correlation at the drier sites. At the wettest sites, the correlation
is possibly influenced by periods of partial inundation during which specular reflection reduces σ0.
The reduced correlation in very dry and very wet sites can be considered as a potential limit in the
application of σ0 for WTD monitoring at high spatial resolution. This observation could not be made
in a similar previous study [29], in which much coarser σ0 data from ENVISAT-ASAR was analyzed,
and thus, higher sub-resolution heterogeneity of WTD occurred.

In order to use Sentinel-1 σ0 for upscaling GHG emissions from organic soils in which WTD is
a key parameter [5,60], three challenges should be addressed in future research. First, a method is
needed to resolve the observed ambiguity of low σ0 from deep WTD (high CO2 emissions) and partial
inundation in the course of re-wetting measures (low CO2 emissions or even uptake, but potentially
high CH4 emissions). Second, tall vegetation during summer needs to be addressed, either corrected
for or masked, because it might cause the correlation between σ0 and WTD to completely disappear.
The integration of management and vegetation data (e.g., harvest dates, estimates of vegetation height
or biomass) could improve (i) the identification of periods with applicable σ0 data, and/or (ii) the
cross-over angle method that, in our study, only slightly increased the correlation between σ0 and WTD
compared to a simple constant slope incidence angle correction. Third, the absolute level of σ0 varied
strongly across sites, which makes the estimation of absolute WTD and the spatial transferability of
correlations impossible at the moment. A stratification of the study sites by vegetation and soil class
did not yet help in this regard.

Despite the above challenges, the obtained correlation between σ0 and WTD suggests the direct
use of Sentinel-1 σ0 in a data assimilation framework, as done in [61] in order to improve estimates
of WTD fluctuations, provided that the framework addresses the peatland-specific hydrology with
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an adequate land surface modelling concept [62], including a drainage component for the land fraction
of drained organic soils.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/14/1659/s1,
Figure S1: Boxplot of backscatter (σ0 (VV) constant: VV polarization normalized to a reference angle of 40◦ with
a constant slope) for all 60 study sites and the entire study period shown for bins of water table depth (WTD) of
10 cm. The boxplot indicates a high and WTD-independent variability of absolute values of σ0.
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Appendix A

Table A1. Established vegetation classes and their subclasses from habitat mapping (HTC) and biotope
type mapping (CIR + BTC) [36–38].

Vegetation Class Description Name of Subclass Habitat Types
Code

Biotope Types
Code

Mesophile grassland
Moderately dry to

moderately wet
nutrient-rich sites

Mesophile grassland GMA GM
Other mesophile

grassland GMX

Lowland hay meadow
Extensively managed,

species-rich hay meadows
rich in flowers

Lowland hay meadow 6510 6510

Wet grassland
Moderately wet to wet
grassland, extensively

used or fallow

Wet grassland GF
Fallow of wet grassland GFX

Periodically flooded
grassland GFE

Other wet grassland GFY GF
Sedges Mainly sedges at wet sites Sedges NSD
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