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Abstract: Vegetation indices, such as the Normalised Difference Vegetation Index (NDVI), are common
metrics used for measuring traits of interest in crop phenotyping. However, traditional measurements
of these indices are often influenced by multiple confounding factors such as canopy cover and
reflectance of underlying soil, visible in canopy gaps. Digital cameras mounted to Unmanned Aerial
Vehicles offer the spatial resolution to investigate these confounding factors, however incomplete
methods for radiometric calibration into reflectance units limits how the data can be applied to
phenotyping. In this study, we assess the applicability of very high spatial resolution (1 cm) UAV-based
imagery taken with commercial off the shelf (COTS) digital cameras for both deriving calibrated
reflectance imagery, and isolating vegetation canopy reflectance from that of the underlying soil. We
present new methods for successfully normalising COTS camera imagery for exposure and solar
irradiance effects, generating multispectral (RGB-NIR) orthomosaics of our target field-based wheat
crop trial. Validation against measurements from a ground spectrometer showed good results for
reflectance (R2

≥ 0.6) and NDVI (R2
≥ 0.88). Application of imagery collected through the growing

season and masked using the Excess Green Red index was used to assess the impact of canopy cover
on NDVI measurements. Results showed the impact of canopy cover artificially reducing plot NDVI
values in the early season, where canopy development is low.

Keywords: Unmanned Aerial Vehicle; reflectance; radiometric calibration; NDVI; digital cameras;
canopy reflectance

1. Introduction

In crop phenotyping, vegetation indices (e.g., NDVI) derived from canopy reflectance are
commonly used to assess certain physiological traits of interest [1], including (i) plant vigour [2,3],
(ii) plant biomass [4,5], (iii) plant nitrogen status [6], (iv) plant Leaf Area Index (LAI) [7,8] and (v) final
crop yield [9]. However, these indices are typically influenced by both the target vegetation condition
and variables such as background soil properties and canopy cover/density [10]. The combined
influence of each variable quite often remains unacknowledged when associating vegetation indices
(VIs) to traits of interest—a problem when there are multiple situations (e.g., low canopy cover and
high vegetation vigour versus high canopy cover and low vegetation vigour) that may equate to similar
VI measures. Such situations can provide significant uncertainty, and even false indications of plant
status [11]. Traditional methods of measuring canopy spectral reflectance (e.g., ground spectrometers
and/or satellite based remote sensing) offer insufficient spatial resolution to investigate and dissect
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the influences of the many variables involved in controlling VI measures. Unmanned Aerial Vehicle
(UAV) based remote sensing systems may, however, offer this capability, and are becoming a prominent
method for high throughput phenotyping of field-based crop trials, largely thanks to their very high
spatial resolution imagery [12].

In combination with modified digital cameras or commercially available multispectral imagers,
low-cost UAVs are increasingly being used for high temporal resolution crop condition monitoring and
field phenotyping. More recently, modified single and dual ‘commercial off the shelf’ (COTS) digital
camera systems are being used for collection of multispectral (RGB-NIR) imagery at spatial resolutions
superior to those achieved by commercial cameras such as the Parrot Sequoia [13]. However, captured
imagery is still subject to distortions from camera (exposure, vignetting, file format and spectral
sensitivity), and environmental factors (predominantly solar spectral irradiance) [14–23], weakening
the capacity to extract accurate quantitative information [15,24]. Whilst calibration methods for the
bulk of these factors have been investigated, shortcomings remain in relation to long-term consistency,
particularly with respect to variable solar irradiance. Firstly, obtaining temporally relevant measures of
irradiance for individual UAV images is a challenge. Berra et al. [25] used ground-based artificial targets
of known reflectance, along with the empirical line method, to convert camera measures to reflectance
units. However, inconsistent capturing of targets within individual images limited calibration to final
orthomosaics. Therefore, variations in irradiance during the flight were not corrected for, increasing
errors in the derived reflectance datasets [26]. Furthermore, the temporal stability of reflectance of such
artificial targets left out in the field can vary by up to 16% over a season [27]. An alternative is to use a
supplementary device measuring irradiance concurrently with COTS camera data collection, providing
the information to convert individual images into reflectance units. The Parrot Sequoia employs this
method, utilising its own downwelling light sensor operating at the same spectral bands as the imager
itself. The second shortcoming identified relates to the fixing of exposure settings (aperture, shutter
speed and ISO) to remove influence of camera exposure settings on the amount of light reaching the
sensor, or the sensitivity of the sensor to light. This “fixed settings” approach increases risk of under or
over exposure of images—which equates to lost data [28]. Linear relationships between image Digital
Number (DN) and varying ISO, shutter speed and aperture have been previously demonstrated [29],
indicating post-capture normalising of images of varying exposure can be achieved. As far as we can
tell, this feature has not been utilised for this purpose before.

Given the above, the aim of the current study is to calibrate individual wavebands of dual COTS
cameras to reflectance, with a focus to include individual image irradiance corrections from a separate
irradiance sensor and allowance for non-fixing of camera exposure. Then, within a field phenotyping
setting, using a low-cost UAV utilise the very high-resolution reflectance imagery to temporally analyse
the influence of canopy structure and soil reflectance on derived vegetation indices, specifically NDVI.
Within this framework, specific objectives are to:

1. Develop a method for full radiometric calibration of COTS camera imagery, with new methods
for exposure normalisation and individual image incoming solar irradiance adjustment.

2. Quantitatively assess the influence of the radiometric calibration steps and the final quality of the
derived reflectance and NDVI datasets.

3. Utilise the very high-resolution maps derived from the UAV imagery to analyse the influence of
canopy cover on NDVI trends for a field-based wheat crop trial.

2. Materials and Methods

2.1. Field Site

All data were collected at the experimental farm operated by Rothamsted Research, UK
(51◦48′34.56”N, 0◦21′22.68”W). We focused on the Defra-funded Wheat Genetic Improvement Network
(WGIN) Diversity Field Experiment [24], whose aim is to test the influence of applying different
nitrogen fertiliser treatments to different wheat cultivars. A total of 30 different cultivars were grown
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at 4 different nitrogen application rates, with three replicates making a total of 360 plots. (Table 1) [25].
Each plot consisted of a 9 m × 3 m non-destructive plot and a 2.5 m × 3 m plot reserved for destructive
sampling. This study focuses on the non-destructive part only.

Table 1. Details of the four nitrogen treatments applied to the diversity field experiment for 2017.

Treatment Code Total Nitrogen
Application (kg N ha−1)

Application Date Nitrogen Applied
(kg n ha−1)

N1 0 - 0
- 0
- 0

N2 100 15/03/2017 50
05/04/2017 50
09/05/2017 0

N3 200 15/03/2017 50
05/04/2017 100
09/05/2017 50

N4 350 15/03/2017 50
05/04/2017 250
09/05/2017 50

2.2. UAV Imagery

A DJI S900 UAV [30] fitted with a DJI flight controller was flown on a pre-determined flight plan
at 45 m altitude over the field site nine times between 7 March 2017 and 4 July 2017. The flight plan
was designed to ensure 80% overlap between concurrent images was obtained. Two Sony (Tokyo,
Japan) α5100 mirrorless digital cameras [31] mounted on the UAV were used for the image collection.
These cameras contain 24.3 mega pixel complementary metal-oxide semiconductor (CMOS) sensors,
and both were fitted with 20 mm F2.8 Sony prime lenses. One camera was left as standard to record
RGB imagery, and one had had its internal NIR-blocking filter replaced with an 830 nm long pass filter
to block visible light and enable recording of NIR waveband imagery. The 830 nm filter was selected
to ensure minimal capturing of visible light in the imagery, as seen with the 660 nm filter used by
Berra et al. [25,32].

All images were captured at 1-sec intervals and in Raw format, with focus set to 45 m to reflect the
UAV flying height. Aperture and ISO were left on automatic, whilst shutter speed was fixed to 1/500sec
to ensure minimisation of motion blur. The UAV and cameras were flown over the field site at a time
relatively close to local solar noon, with actual recording times varying from 10:11 to 13.25. Twelve
Ground Control Points, whose positions were measured with a Trimble Geo 7 DGPS [33], were used
for georeferencing final orthomosaics. To provide measures of total incoming solar irradiance, a Tec5
HandySpec Field spectrometer (Oberursel, Germany) [34] fitted with a cosine corrected downwelling
optic was deployed at a fixed location next to the field and set to measure at 1-second intervals. Spectral
measurements were collected at 10 nm spectral resolution across the wavelength range 360–1000 nm.

2.3. Validation Data

Mean plot canopy reflectance, measured with the Tec5 HandySpec Field spectrometer, was used
for validation of UAV derived canopy reflectance measures. To collect the spectrometer measurements,
a single scan of each plot’s canopy was collected with the spectrometer optic held approximately
1 m above the plot; the standard procedure employed by Rothamsted Research. Each scan produced
one spectral reflectance measure for the plot at 10 nm spectral resolution across the wavelength
range 360–1000 nm. This procedure was repeated for all 360 plots on three separate dates during
the growing season between 19 April and 4 July 2017. The Tec5 HandySpec adjusts for changes in
solar illumination between measurements using a downwelling optic fitted with a cosine diffuser;
reflectance is calculated using proprietary software. Before comparing to UAV results, the Tec5 results
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were convolved to the same spectral wavebands as the cameras. These ground-based measurements
were not always collected on the same days as UAV flights due to logistical constraints, but were within
3 days. Additional validation data was obtained by flying a Parrot Sequoia multispectral imager [13]
simultaneously with the dual camera system for a single date (21 June 2017). The Sequoia was set
to capture images every second and the Sequoia’s downwelling sunshine sensor was mounted atop
the UAV for collection of irradiance measurements. The Sequoia images were processed using Pix4D
(Lausanne, Switzerland) (Version 4.3.1) [35] using standard recommended settings, downwelling
light sensor data and manufacturer derived calibrations, producing Green, Red, and NIR reflectance
orthomosaics at a ground sampling distance (GSD) of 5 cm.

Due to the differences between COTS camera and Parrot Sequoia spectral responses (Table 2),
direct comparison between the cameras was not possible. Therefore, assessment of accuracy of the
individual UAV-based imaging systems was conducted by comparing both against the Tec5.

Table 2. Spectral sensitivities for the Parrot Sequoia’s four spectral bands.

Camera Channel Wavelength Range (nm)

Green 530–570
Red 640–680

Red Edge 730–740
NIR 770–810

2.4. Post-Processing of Captured Imagery

The processing of the dual-camera imagery followed the workflow outlined in Figure 1. Specific
details on the main correction steps, including the novel exposure corrections are provided.
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Figure 1. Flow chart of key processing steps used to convert raw images to reflectance images. The blue
circles indicate inputs, green squares indicate processing steps and yellow squares derived products.

2.4.1. Relative Spectral Response

Relative Spectral Responses (RSR), Figure 2, of both cameras were determined using a double
monochromator fitted with an integrating sphere, using the method described by Berra et al. [32]. The
unmodified RGB camera shows greatest sensitivity in the green channel, as expected from a Bayer
matrix colour filter array [32]. For the modified NIR camera, overall sensitivity was similar in all three
bands that originally measured Red, Green and Blue waveband light. Whilst now mostly sensitive to
NIR wavelength light, all channels show some sensitivity to light below 830 nm (i.e., sensitivity to
radiation outside the NIR spectral range remained), indicating that the modified internal filter was
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not performing at 100% at 830 nm. The ‘Blue’ channel of the NIR-adapted camera displayed the least
sensitivity to light below 830 nm, therefore was best suited for use as the NIR channel. The wavebands
determined for each channel of the RGB and NIR channels are presented in Table 3.
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Table 3. Sony α5100 camera band sensitivities. Sensitivities were measured using a double
monochromator fitted with an integrating sphere.

Model Channel Wavelength Range (nm)

“RGB” Camera Red 580–660
Green 420–610
Blue 410–540

“NIR” Camera NIR (blue channel) 800–900

2.4.2. RAW Conversion

Images were collected in RAW format before conversion to 16-bit Tagged Image File Format (TIFF)
format using DCRAW 9.27 [36]. This was done using bilinear conversion algorithms and a dark current
correction, to maintain original sensor DN measurements. The exact settings are presented in Table 4.
Dark current correction images for each camera were captured in complete darkness (i.e., lens cap on
and lights turned off), and used for the DCRAW processing.

Table 4. Details of DCRAW settings used to convert images from raw to Tagged Image File Format (TIFF).

DCRAW Command Action

–v Print verbose messages
–6 Write 16bit
–W No automatic image brightening

–g 1 1 Apply unadjusted gamma curve
–T Write Tiff format

–r 1 1 1 1 Set unadjusted white balance
–t 0 Do not rotate image
–q 0 Apply linear demosaicing
–o 0 Raw output colour space

–K darkimage.pgm Apply dark image correction using file specified

2.4.3. Exposure Corrections

To determine the relationships between DN and exposure settings (aperture and ISO), a series of
images were collected of a Lambertian spectralon reflectance panel, set up indoors under constant
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illumination with a white incandescent bulb light. For each exposure setting (aperture, ISO and shutter
speed), a series of images were captured under the settings full range (e.g., ISO100–ISO1000), whilst
other settings remained fixed. As illumination remained constant; three image sets were produced,
each modelling the influence of changing one exposure setting on image DNs.

Linear relationships between pixel DN and aperture and ISO were observed (Figure 3). From
these relationships, the aperture correction factor (CFapp) was derived to normalise images captured
under varied aperture to an aperture value of 1 (Equations (1) and (2)).

Imageapp =
ImageRAW

CFapp
(1)

where
CFapp =

1(
f stopimage

)2 (2)

where f-stop is the aperture value the image was captured with and ImageRAW is the DCRAW converted
TIFF image and Imageapp is the aperture corrected image.
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For ISO, Equation (3) was used to normalise images to an ISO value of 100, the lowest and most
commonly used setting on the cameras.

ImageISO =
Imageapp(

ISOimage
100

) (3)

where ISOimage is the ISO setting used to capture the image; Imageapp is the aperture corrected image;
and ImageISO is the ISO and aperture corrected image.

2.4.4. Vignetting Correction

An adapted version of the method outlined by LeLong et al. [16] was used in this study; such that
camera, band and aperture-specific vignetting correction filters were generated for each data collection
date. For each flight, the following steps were taken to produce vignetting filters:

1. Images of matching camera, band and aperture settings were summed together and averaged.
2. The radial vignetting profile of the averaged image was modelled using the median of evenly

spaced concentric rings.
3. A 2nd degree polynomial function interpolated the vignetting profile from the median of rings.
4. The interpolation values were then divided by the minimum value to produce a multiplicative

correction factor which brightened the corners.
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5. The concentric rings are given the value of the correction factor corresponding to its distance
from the centre to produce the final vignetting filter (Figure 4 middle).

Unlike LeLong et al. [16], the vignetting filter was applied as a multiplicative filter rather than
additive—this is in order to preserve the underlying patterns within the original images.
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Before converting image DNs to reflectance, it was necessary to cross calibrate the Tec5 downwelling
sensor and the cameras. To do this, the empirical line method was used to retrieve the relationship
between Tec5 irradiance measures and exposure and vignetting corrected image DN, over 5 Lambertian
reference targets (Figure 5).
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Figure 5. Results of relationships between exposure and vignetting corrected image DNs and Tec5
spectrometer reflectance in wavebands (a) Blue, (b) Green, (c) Red and (d) Near Infrared (NIR). All
camera bands show strong linear agreements with Tec5 reflectance. Measurements of five black, grey
and white spectral reflectance targets were used for this.
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The camera and band specific calibration factors, Table 5, were applied to individual images,
before Equation (4) was used to convert images from DN to reflectance using time matched Tec5
irradiance measurements.

Rb,t =
Imageb,t

Tec5 irradianceb,t
(4)

where Rb,t is the final reflectance image at time t and waveband b, Imageb,t is the single image captured
at time t and band b, and Tec5 irradianceb,t is the Tec5 irradiance measurement captured at the same
time, t and convolved to the same band b as the image.

Table 5. Calibration equations for each of the four camera bands. Equations were derived from
comparison of camera and Tec5 measurements of five reference targets.

Camera and Band Calibration Equation

RGB-Blue 0.0092 × DN + 0.00889
RGB-Green 0.00773 × DN + 0.00757

RGB-Red 0.0189 × DN + 0.00603
NIR-Blue 0.0249 × DN− 0.00706

2.4.6. Orthomosaic Generation

Agisoft Photoscan (St. Petersburg, Russia) (1.4.3) [37] was used to process final imagery to
orthomosaics, including automatic lens correction. For each date, two orthomosaics were generated,
RGB and NIR. Agisoft processing settings, Table 6, were kept consistent for all orthomosaics. In order
to minimise the impact of geometric distortion and variation, the disabled blending mode was used to
generate the orthomosaic [38]. This mode takes pixel data from the image whose view is closest to
nadir. Orthomosaics were generated and exported at 1 cm Ground Sampling Distance (GSD).

Table 6. Processing settings for Agisoft Photoscan. The same settings were used for all
Orthomosaics generated.

Processing Step Setting

Align photos High
Generate dense point cloud Medium

Generate mesh High
Generate orthomosaic Disabled

NDVI orthomosaics were generated using Equation (5), before mean values for each plot in
each camera band and NDVI were extracted using custom Python-based processing tools. As in
Holman et al. [12], a 50 cm buffer was applied to each plot before extracting mean values in order to
prevent the influence of the plot edge effect.

NDVI =
RNIR −Rr

RNIR + Rr
(5)

where RNIR is measured reflectance in the NIR band and Rr is measured reflectance in the red band.

2.5. Canopy Masking

To dissect green canopy from background variables, the Excess Green Red (ExGR) index was used
(Equation (6)), with a threshold of > 0 to classify green vegetation [39,40]. Figure 6 shows an example
of the produced mask, with reasonable agreement between visual green canopy and pixels classified
as green by ExGR. The masks were used to extract mean plot NDVI of green pixels only.

ExGR = (2×G−R− B) − (1.4×R−G) (6)
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ExGR mask, white represents green classified pixels and black non-green pixels. Imagery is from the 21
June 2017 UAV data collection campaign.

3. Results

3.1. Validation of Calibrations

The influence of the calibration steps applied to COTS camera imagery on precision of results was
first assessed. For a single date (21 June 2017), camera imagery was processed with corrections applied
cumulatively to understand their influence on results. For clarity, extracted mean plot results for the
red and NIR bands have been scaled to a range 0–1.

Red band results (Figure 7) show little impact on linear trend and intercept from correction steps,
with consistent slopes around 1.2 and intercepts of 0.07. Correlations show improvement with addition
of corrections, R2

RAW = 0.82 up to R2
Vignetting = 0.89, with camera-related exposure and vignetting

offering the greatest gains. No meaningful effect on nRMSE and bias is gained from corrections.
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Figure 7. Assessment of the cumulative influence of correction steps on the precision of scaled mean
plot measurements in the Red band. Scaled reflectance for (a) Raw, (b) Irradiance, (c) Exposure and (d)
Vignetting corrected images are compared to scaled COTS camera convolved Tec5 measurements of
mean plot reflectance. The dashed line represents the 1:1 line.
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For the NIR band (Figure 8), a more significant impact of correction steps is observed. Gains in
both the linear fit and R2 are achieved at each step, with vignetting indicating the most significant
influence. Both nRMSE and bias decline in accuracy with the addition of correction steps.
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Figure 8. Assessment of the cumulative influence of correction steps on the precision of scaled mean
plot measurements in the NIR band. Scaled reflectance for (a) Raw, (b) Irradiance, (c) Exposure and
(d) Vignetting corrected images are compared to scaled COTS camera convolved Tec5 measurements of
mean plot reflectance. The dashed line represents the 1:1 line.

The influence of corrections on NDVI, calculated from non-scaled data (Figure 9), indicates high
precision (R2 = 0.91) but poor accuracy (nRMSE = 0.85, Bias = −0.57) compared to the ground validation
data. Addition of irradiance correction greatly improves accuracy, particularly nRMSE, bias and linear
trend. Exposure corrections improve correlation, though drops in nRMSE and bias are also introduced.
Finally, the addition of vignetting improves all statistics, indicating that the complete collection of
calibration steps produces best results in terms of both accuracy and precision.
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altering the red to NIR ratio. Inclusion of the varying solar spectral irradiance data corrects this, 
improving the data consistency greatly; inclusion of exposure and vignetting corrections removes all 
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Figure 9. Assessment of the cumulative influence of radiometric corrections applied to COTS
camera-derived NDVI. Results for (a) Raw, (b) Irradiance, (c) Exposure and (d) Vignetting corrected
NDVI are compared to scaled COTS camera convolved Tec5 measurements of mean plot NDVI. Dashed
line indicates the 1:1 line.

Further investigation of camera settings (Figure 10), via calculation on Exposure Value
(Equation (7)), highlights how the cameras adjusted exposure independently during UAV flight.
This independence explains the poor accuracy of NDVI from raw images, where variable camera
settings (which can vary between the independent cameras used to gather RGB and NIR data) artificially
altering the red to NIR ratio. Inclusion of the varying solar spectral irradiance data corrects this,
improving the data consistency greatly; inclusion of exposure and vignetting corrections removes all
influence of variable exposure settings, producing even higher accuracy data.

ExposureValuei = 2× log2( fi) − log2(ti) − log2(ISOi/100) (7)

where fi is the image aperture, ti is the image shutter speed and ISOi is the image ISO value.
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Figure 10. Exposure value for the RGB and NIR cameras over the duration of a flight showing the
cameras adjusting exposure independently. Data is from the flight on 21 June 2017.

3.2. Accuracy Assessment of COTS Camera Reflectance

For three dates (19 April 2017, 21 June 2017, and 4 July 2017), the COTS camera-derived mean plot
reflectance and calculated NDVI were assessed against Tec5 results. Results for the blue reflectance
band (Figure 11) show good fit against the Tec5 in the first two dates (R2 > 0.79), with slopes close to 1
and intercepts close to 0. Small nRMSE and biases also indicate good agreement with the spectrometer.
Poorer results in all statistics in the last date (4 July 2017) show reduced agreement with Tec5 reflectance
measurements. At this later date, onset of senescence will increase the variability in canopy reflectance
both within and between plots, as seen by the increase in vertical error bars. This spatial non-uniformity
of senescence onset is better measured by the UAV data as opposed to the spectrometer, leading to
poorer statistics at this time point.
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Figure 11. Accuracy assessments of blue band reflectance for three dates. Tec5 reflectance is convolved
to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.
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The green (Figure 12) and red bands (Figure 13) show very similar trends in accuracy to the blue
band. Both bands show good fit (R2

≥ 0.84) and consistent small negative biases, indicating slight
underestimation of reflectance from the cameras. The same trend between nitrogen treatments over
time is also present, as well as the greater within-plot variation for the last date compared to the
earlier two.
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Figure 12. Accuracy assessments of green band reflectance for three dates. Tec5 reflectance is convolved
to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.
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Figure 13. Accuracy assessments of red band reflectance for three dates. Tec5 reflectance is convolved to
the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.

The NIR band (Figure 14) shows reduced fit in comparison to the visible bands (0.64 ≥ R2
≤ 0.7)

and larger biases indicate lower accuracies achieved in the NIR band. In contrast to the visible
bands, the NIR shows lowest accuracy in the first date before improving for the subsequent two dates.
Trends between nitrogen treatments show that N1 treatments consistently have the lowest reflectance,
indicating reduced vegetation in these plots, as expected. Standard deviations show the same increased
variability in plot reflectance of the last date. Overall, the results of the NIR camera indicate lower
sensitivity to higher canopy reflectance compared to the Tec5.
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Figure 14. Accuracy assessments of NIR band reflectance for three dates. Tec5 reflectance is convolved
to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.

Accuracy assessments of calculated NDVI (Figure 15) show high correlations (R2
≥ 0.88) and

low nRMSE. Additionally, biases indicating overall very good accuracy are achieved from the COTS
cameras. Temporal accuracy shows a similar drop in accuracy for the final date, as seen in the visible
bands, but overall good stability is achieved. The lower accuracy of the NIR band appears to not
impact the accuracy of calculated NDVI.
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Figure 15. Accuracy assessments COTS camera-derived NDVI for three dates. The points are coloured
based on nitrogen treatment applied to the plot. Standard deviation of reflectance measured by the
COTS cameras is presented by vertical error bars. The dashed line represents the 1:1 line.

Additional assessment compared results from the COTS cameras with the Parrot Sequoia
(Figure 16), a commercially available multispectral imager whose data is processed using proprietary
calibrations. Of the individual bands, green showed the strongest agreement between the two camera
systems, with comparable R2, nRMSE and bias. The red band indicated poorer accuracy achieved by
the Sequoia, with large nRMSE, negative biases and poorer linear agreement with the Tec5. In the NIR
band, both camera systems showed comparable accuracy levels and precision. NDVI results show
greater accuracy achieved by the COTS cameras, with the Sequoia overestimating NDVI compared to
the TEC5 (as indicated by positive bias). The similarity in results between the COTS cameras and Parrot
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Sequoia, particularly in the NIR waveband, suggests discrepancy between imaging and non-imaging
spectral monitoring technologies.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 21 
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3.3. Influence of Canopy on NDVI 

The focus of this component of the study was to investigate the potential for high spatial 
resolution imagery to be used to dissect the influence of canopy cover on derived vegetation indices. 
For nine dates, the COTS camera imagery was calibrated, processed and NDVI calculated. For one 
date, 18 May 2017, significant shadowing impacted on the results of masking; as such, this date was 
removed from further processing. For the remaining eight dates, a subset of ten cultivars have been 
used. Examples of cropped NDVI orthomosaics for three dates highlight the temporal and spatial 
variation achieved from the COTS cameras (Figure 17). 

Figure 16. Comparison of accuracies achieved by COTS (blue) cameras and Parrot Sequoia (red) in
(a) green, (b) red and (c) NIR reflectance and (d) NDVI. Comparisons are made against Tec5 measure
reflectances and NDVI. Reflectance was measured from both cameras on the same date (21 June 2017),
whilst Tec5 measurements were collected two days later. The dashed line represents the 1:1 line.

3.3. Influence of Canopy on NDVI

The focus of this component of the study was to investigate the potential for high spatial resolution
imagery to be used to dissect the influence of canopy cover on derived vegetation indices. For nine
dates, the COTS camera imagery was calibrated, processed and NDVI calculated. For one date, 18 May
2017, significant shadowing impacted on the results of masking; as such, this date was removed from
further processing. For the remaining eight dates, a subset of ten cultivars have been used. Examples
of cropped NDVI orthomosaics for three dates highlight the temporal and spatial variation achieved
from the COTS cameras (Figure 17).

Assessment of NDVIunmasked (Figure 18a, top row) shows typical trends over time and between
nitrogen treatments. All cultivars and treatment levels show a starting NDVI value around 0.4,
increasing to a peak in late-May before dropping off at the end of the season. Comparison between
nitrogen treatments shows clear differences between plots with (N2, N3 and N4) and without (N1)
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fertiliser application, with the N1 treatment showing lower maximum NDVI, despite similar initial
NDVI values (~0.4). The drop in NDVI values at the end of the season is likely a result of senescence
and the browning of crop canopy. Application of ExGR derived masks (Figure 18b, second row) to
extract NDVI of green classified pixels only, produces new trends between treatments and over time.
For all treatments, shallower temporal trends in NDVI are observed, with the N1 treatment displaying
a close to horizontal trend with the peak in late-May no longer featuring. Comparing the difference
between NDVIunmasked and NDVIExGR (Figure 18c, third row) shows the greatest influence of masking
occurs early season where % green pixel is lowest (Figure 18d, bottom row).
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Figure 17. Example subset of NDVI orthomosaics from three dates—27 March 2017 (left), 18 May 2017
(middle), 21 June 2017 (right). Orthomosaics highlight the spatial variability of NDVI both between
and within plots.
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Figure 18. Temporal trends of ten wheat cultivars grown under four different nitrogen treatments for:
(a) the standard unmasked mean NDVI; (b) mean NDVI derived from ExGR masked plots to remove
the influence of background soil; (c) displaying temporal differences between masked and unmasked
NDVI results; (d) percentage green pixel as calculated from the ExGR masks. Nitrogen application
dates and quantities for the N2, N3 and N4 treatments are presented by the vertical lines. All data
represent the means of three replicates.
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4. Discussion

This study has provided a quantitative assessment of commercial off the shelf (COTS) digital
cameras for supporting the UAV-based remote sensing of field-based crop trials. COTS cameras
provide very high spatial resolution imagery, potentially enabling the separation of canopy influences
on vegetation indices from those of the background soil and thus making the derived information
more relevant to crop health assessment and monitoring.

We have designed and tested a data processing workflow to radiometrically calibrate COTS
camera imagery into reflectance units, in blue, green, red and NIR wavebands. Cameras were allowed
to vary their exposure settings during flight, to cope with varying solar illumination conditions, whilst
having a fixed shutter speed to avoid blurring from the UAV-motion. We find that our processing
workflow can cope with this setup, and that the influence of the different pre-processing steps varies by
band. In particular, the NIR band showed greater impact from vignetting corrections than the visible
wavebands, agreeing with past studies which found that the modified internal filters used in NIR
COTS cameras increase the impact of vignetting in images by up to 30% [16,25]. The influence of varied
exposure settings as well as the success of the developed corrections was perhaps most clear during
calculations of NDVI, because the separate visible and NIR COTS cameras used did not necessarily
change their exposure settings in the same way at the same time, leading to artificial changes in
derived NDVI. Even without corrections, good precision is observed in COTS camera calculated NDVI.
However, NDVI values calculated from such raw camera data (or that calibrated into radiances rather
than reflectances) are always significantly different to those derived from calibrated reflectances, and
this difference is sensor specific [41]. Ultimately, this means VIs calculated from different sensors can
only be intercompared in a fully meaningful way if calculated from calibrated reflectance measures.

Temporal consistency of the developed workflow was tested over three dates via comparison
of COTS camera and Tec5 field-spectrometer-derived mean plot reflectance. Results showed good
accuracy with NDVI results (R2

≥ 0.88, nRMSE ≤ 0.15) comparable to those achieved by other
studies [25,42,43]. Consistency of results over this period indicates a good level of robustness in the
developed methods for variable weather conditions both during and between data collection flights.
Some variability occurred between time points in all bands and NDVI; likely a result of the UAV and
Tec5 spectrometer obtaining measurements at different spatial resolutions [38] and datasets not being
collected on the same date. Rossi et al. [44] demonstrated the impact of non-concurrent data collection
when comparing different reflectance from different sensors, with a single day lag negatively impacting
on correlation results. Variability in accuracy also occurred between bands, particularly for visible
versus NIR, which was observed consistently over time. The same variations were also observed in
the Parrot Sequoia results, as well as by Aasen and Bolten [38], who found that the varying field of
views between cameras and spectrometers coupled with varying bidirectional reflectance factors in
visible and NIR wavelengths impacted on correlations in the NIR band. Lack of influence of the NIR
results on NDVI accuracy further indicates disparity between imaging and non-imaging measurement
systems, as opposed to error in the NIR band. Investigation of this variability between bands and data
sources should be a focus of future work.

Application of the very high resolution (GSD = 1 cm) reflectance imagery over time was used to
investigate the impact of canopy cover and background soil on derived NDVI. Results of the unmasked
NDVI presented temporal trends over a season in relation to differing nitrogen treatments and for
different wheat cultivars. Masking of background soil pixels, via Excess Green Red, offered new insights
into temporal NDVI trends in relation to canopy cover. Greatest differences between NDVIunmasked

and NDVIExGR (Figure 18d) occurred in the early season, where canopy cover is lowest [45], indicating
that background soil and canopy cover can artificially influence measured vegetation indices. Isolation
of the crop canopy for VI measurements should provide improved relationships between VI and
traits of interest such as yield, canopy quality, senescence and canopy chlorophyll content [10,46], and
therefore should be a focus of future studies.
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5. Conclusions

This study has presented methods for radiometric calibration of commercial off the shelf
digital camera imagery to reflectance for use in plant phenotyping. New calibrations for image
exposure normalisation, combined with robust vignetting and irradiance corrections produced
accurate reflectance and NDVI, comparable to a Parrot Sequoia multispectral camera and Tec5 ground
spectrometer. The very high-resolution imagery obtained provided new insights into the influence of
canopy cover and background soil on derived plot NDVI, especially in the early season. Future studies
should look to incorporate additional UAV phenotyping methods such as 3D structure and thermal
measurements to provide a more extensive low-cost phenotyping UAV-based system.
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