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Abstract: A novel empirical approach to categorize oil slicks’ sea surface expressions in synthetic
aperture radar (SAR) measurements into oil seeps or oil spills is investigated, contributing both to
academic remote sensing research and to practical applications for the petroleum industry. We use
linear discriminant analysis (LDA) to try accuracy improvements from our previously published
methods of discriminating seeps from spills that achieved ~70% of overall accuracy. Analyzing
244 RADARSAT-2 scenes containing 4562 slicks observed in Campeche Bay (Gulf of Mexico),
our exploratory data analysis evaluates the impact of 61 combinations of SAR backscatter coefficients
(σ◦, β◦, γ◦), SAR calibrated products (received radar beam given in amplitude or decibel, with or
without a despeckle filter), and data transformations (none, cube root, log10). The LDA ability to
discriminate the oil-slick category is rather independent of backscatter coefficients and calibrated
products, but influenced by data transformations. The combination of attributes plays a role in the
discrimination; combining oil-slicks’ size and SAR information is more effective. We have simplified
our analyses using fewer attributes to reach accuracies comparable to those of our earlier studies, and
we suggest using other multivariate data analyses—cubist or random forest—to attempt to further
improve oil-slick category discrimination.

Keywords: ocean remote sensing; satellite image classification and segmentation; RADARSAT;
synthetic aperture radar (SAR); linear discriminant analysis (LDA); physical oceanography; oil slicks;
oil spills; oil seeps; Campeche Bay (Gulf of Mexico)

1. Introduction

The oil and gas industry has had deleterious ecological impacts on the waters of the Gulf of
Mexico, which has experienced two very large offshore spillage episodes releasing tons of crude
petroleum in this tropical marine environment (Figure 1): the Ixtoc-1 discharge off the Mexican coast in

Remote Sens. 2019, 11, 1652; doi:10.3390/rs11141652 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5282-9812
https://orcid.org/0000-0002-7961-6590
https://orcid.org/0000-0002-9429-2598
http://www.mdpi.com/2072-4292/11/14/1652?type=check_update&version=1
http://dx.doi.org/10.3390/rs11141652
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1652 2 of 26

1979 [1–6], and the Deepwater Horizon event off the U.S. coast in 2010 [7–9]. These two accidents are
recognized as the largest peacetime oil-related environmental incidents [10–12]. The Gulf also contains
a large number of oil seepage sites [13–16]. Among these, is the world’s largest active natural oil leak
at the sea floor, the Cantarell Oil Seep [17,18] in Campeche Bay (Figure 1).
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Figure 1. The location of Campeche Bay (dotted box). The position of the Cantarell Oil Seep (dot),
Ixtoc-1 platform (+), and the Deepwater Horizon well (x) are also shown. Courtesy of Adriano
Vasconcelos (LabSAR/LAMCE/PEC/COPPE/UFRJ).

The use of satellite sensors to identify the sea-surface expression of oil slicks (oil seeps and oil
spills) has been extensively studied by the ocean remote sensing scientific community, e.g., [14–19].
Together with mathematical simulations and field studies [20,21], satellites are able to provide means
for effective surveillance and tracking of oil slicks, as well as to assist in guiding clean-up operations
along shorelines [7,8,22]. Spaceborne microwave synthetic aperture radars (SAR) are well-suited for
detecting oil slicks [23]. SAR faces two major challenges when it comes to discerning oil slicks: first,
the separation of regions in which the return radar backscatter is smoothened from the chaotic rough
sea clutter [18,24–26]; and second, the separation of the non-unique oil (slicks) signature from radar
false targets (e.g., low wind, rain cells, etc.) [27,28]. A third challenge has emerged as a recent subject
matter: the separation of oil (seeps) from oil (spills)—i.e., the discrimination of the slick category: seeps
vs. spills [29–34].

This innovative seep–spill differentiation process contributes in various ways to ocean remote
sensing, to offshore fossil fuel operational activities, to environmental preservation and cleanup,
to the operation of fisheries, and to marine and coastal policy-making in general. The slick category
discrimination provides the scientific community opportunities to put forth a set of systemic structural
recommendations, or solutions, linking the petroleum industry with political, economic, social,
and ecological issues—for instance, in oil-related management practices or in environmental monitoring
strategy responses.

The presently available and upcoming C-band SAR satellite constellation missions (e.g., Sentinel-1
of the Copernicus Programme [35–37] and RADARSAT Constellation Mission [38,39]), along with
the existing free open-source SAR processing toolboxes (e.g., SNAP [40] and POLSARPRO [41]),
can provide academic centers, environmental agencies, nongovernmental organizations, and the
petroleum industry itself with the required support to build libraries with the category of oil slicks
in the vicinities of offshore oil and gas facilities. The scrutiny of these oil-slick category records is
of great interest not only from the political-economic perspective (i.e., discovery of new exploration
frontiers based on the identification of oil seeps observed in the surface of the ocean coming from
active petroleum systems), but is also relevant from the social-ecological viewpoint (i.e., it can assist
in reducing headline uproar inquires with reliable timely information with the detection of oil spills
using more efficient environmental surveillance techniques).
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Our objective in this paper is to use a simple, but mathematically robust multivariate data analysis
technique (i.e., build an algorithm based on linear discriminant analysis (LDA) applied to SAR-derived
measurements) to seek improvements in slick category differentiation. Evolving from our earlier
investigations, which empirically reached almost 70% of overall accuracy to separate seeps from spills
in Campeche Bay [29–34], we set out an exploratory data analysis to try, with more rigor, accuracy
improvements in relation to our previous approach. The investigative nature of the research reported
here aims to answer four scientific questions:

1. Which SAR backscatter coefficient (i.e., sigma–naught (σ◦), beta–naught (β◦), and gamma–naught
(γ◦)) provides the most accurate seep–spill discrimination?

2. Which SAR calibrated product (i.e., measures of the received radar beam given in amplitude or
decibel, with or without a despeckle filter) leads to the best seep–spill discrimination?

3. Which of the three tested data transformations (i.e., none, cube root, and log10) leads to more
effective discrimination between seeped and spilled oil?

4. Which combination of attributes describing the oil-slicks’ signature (e.g., size information and SAR
basic qualitative-quantitative statistics) better discriminates between the two oil-slick categories?

Our study contributes both to academic ocean remote sensing research and to practical applications
in the oil and gas industry and elsewhere. We expect that approaches other than our LDA-based
algorithms may also lead to improved seep–spill discrimination; however, these require further
attention from the scientific community.

This manuscript adopts a customary writing structure: introduction (Section 1), methods (Section 2),
results (Section 3), discussion (Section 4), and concluding remarks (Section 5). While Section 1 dwells
upon our research motivations, justifications, and contributions, Section 2 presents information
about the explored dataset (Section 2.1) and about a specific ongoing operational petroleum industry
application currently applying our proven oil-slick remote sensing technique (Section 2.2), as well as it
discloses the concepts for discriminating the oil-slick category (Section 2.3) and sets forth a description
of our exploratory data analysis (Section 2.4).

2. Materials and Methods

Figure 1 depicts the study area: the oceanographically dynamic, southernmost bight of the Gulf
of Mexico, Campeche Bay. Figure 2 presents the research rationale of our exploratory data analysis
bridging academic research and the petroleum industry. The satellite images have been processed
with PCI Geomatica (PCI Geomatics; Markham, ON, Canada). PAST (PAleontological STatistics: Oslo,
Norway [42–44]) was used to complete the multivariate data analyses.

2.1. Dataset

One of the foremost difficulties in many ocean remote sensing studies is the availability of
field information paired with concurrent satellite imagery—a good baseline training dataset is a
primary prerequisite for the success of environmental analyses [45]. In this sense, we resorted to the
satellite-field data put together by Pemex (Petróleos Mexicanos; Mexico City, Mexico) that carried
out a decadal (2000–2012) environmental monitoring program in Campeche Bay (Figure 1). This
database came from the dire necessity to survey oil slicks in the surroundings of its numerous
fossil fuel facilities in this region [18,46–49]. The entire satellite database has 766 images from the
Canadian C-band SAR satellites: RADARSAT-1 (482; 63%) and RADARSAT-2 (284; 37%); all scenes
of the former are 8-bit HH polarized, whereas most of the latter are 16-bit VV polarized [50,51].
This multi-year data collection of SAR-observed oil slicks—14210 classified in 6202 seeps (44%) and
8008 spills (56%)—that have been identified by domain specialists and field-validated by Pemex, is
comprehensively described elsewhere [29,33,34]; these authors also provide an outlook of Pemex’s
monitoring system and a thorough picture of the observed slicks’ spatial–temporal distribution.
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Here, our long-term exploratory data analysis explores a fraction (32%) of the entire satellite
database: a total of 244 scenes from the low-cost, more numerously available RADARSAT-2 (16-bit VV),
wider swath beam mode: ScanSAR Narrow—SCNA and SCNB, both having swath widths of 300 km
and ground resolutions of 50 m [52]. This avoids the additional cross-comparison effects concerning
technical differences of two the satellites. This dataset is the same one exploited earlier [31,32], and
includes images from 2008 to 2012 that contain 4562 oil slicks; coincidently the same unbalanced
proportion of the entire database: 1994 seeps (44%) and 2568 spills (56%). The experimental methodology
applied to evaluate the outcomes of our LDAs uses all 4562 oil slicks for training the algorithms.
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Figure 2. Research rationale of our exploratory data analysis aimed to try to improve the slick
category discrimination (seeps vs. spills) using linear discriminant analysis (LDA) applied to synthetic
aperture radar (SAR) measurements. Circles’ colors: gray, red, and green (bridge the knowledge of
our academic ocean remote sensing strategy and operational applications of the offshore petroleum
industry); black (our main objective: categorize slicks into seeps or spills); white (our exploratory data
analysis: site-, data-, and algorithm-specific); and blue (our four scientific questions). SAR backscatter
coefficient: sigma–naught (σ◦), beta–naught (β◦), and gamma–naught (γ◦). SAR calibrated product:
reflected radar beam given in amplitude (amp) or in decibel (dB), with or without a despeckle filter.
Data transformations: none, cube root, and log10. Oil-slicks’ signature: size information and SAR basic
qualitative-quantitative statistics.

2.2. Proven Technique

The research reported here is a step in the evolution from a cutting-edge academic oil-slick
remote sensing epistemology strategy to a specific ongoing operational application of the petroleum
industry—Figure 2. Inside this scope, regarding the former, the initial concept and design directed at
discriminating the slick categories (i.e., seeps vs. spills) using LDA applied to SAR measurements
was developed by Carvalho (2015) [29]. In relation to the latter, a semi-public multinational oil and
gas company (i.e., Brazilian Petroleum Corporation: Petrobras) is currently funding a research and
development project—since 2018, with a five-year horizon—perhaps, to implement such an innovative
oil-slick discrimination methodology to assist its strategic field operations to locate prospective offshore
oil exploration frontiers in the Campos and Santos Basins, important physiographic provinces of the
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Brazilian Continental Margin [53,54]. Through its research headquarter, Leopoldo Américo Miguez de
Mello Research and Development Centre (known as CENPES), Petrobras is jointly developing our
freely-available seep–spill discrimination approach with researches at the Pontifical Catholic University
of Rio de Janeiro (PUC-RJ).

2.3. Concepts for Discriminating the Oil-Slick Category

The data processing segments undergone to reach the existing expertise knowledge of
discriminating seeps from spills are disclosed. A chronological outline of the published scientific
literature on the subject of categorizing slicks into seeps and spills is given:

• [29,33,34] describe the dataset;
• [29,30] discuss the original exploratory multivariate data analysis—referred to as the initial

exploratory analysis; and
• [31,32] present further developments of the original analysis in a more controlled fashion—referred

to as the first refined study.

Collectively, these publications bring together our earlier investigations, having in common an
overall accuracy of ~70% in discriminating the slick category. The current research is the second
attempt at trying to improve the seep–spill discrimination, leading us to perform a more rigorous,
detail-oriented approach.

2.3.1. Concept 1: SAR Signature

To cope with the seep–spill discrimination, the initial exploratory analysis used straightforward
LDA-based algorithms applied to measurements of two forms of SAR signatures:

• SAR backscatter coefficients: σ◦, β◦, and γ◦ [55–57]; and
• SAR calibrated products: back-scattered radar beam measurements given in amplitude (amp) or

in decibel (dB), both with or without the application of a despeckle filter [58].

Even though the relationship among σ◦, β◦, and γ◦ are geometrically related at the pixel level
assuming the ocean to be a horizontally flat surface, the sea surface undergoes changes in height and
inclination relative to the incident radar beam due to long-period waves [59]. Given that differences in
sea surface heights are measured by satellite microwave altimeters (e.g., significant wave height [60,61]),
we believe that such variations may influence the SAR backscatter coefficient within the oil slicks’
surface, thus affecting our ability to discriminate the slick category.

The calibrated products differ one from another mathematically, representing possible ways to
influence the discrimination of seeps from spills. In fact, dB values are derived by applying a logarithm
function (log10) to the amplitude of the back-scattered radar beam (denoted amp) and multiplying
it by a constant value (in this case: 20)—this dB transformation occurs in the pixel level. Moreover,
despeckle filtering strategies also alter the value of each pixel (e.g., the Frost filter [62]).

At the outset of the initial analysis [29,30], the full SAR signature set was investigated together as
one entity, then, all calibrated products (four) were analyzed together for each backscatter coefficient
(three). On the other hand, only σ◦ amp with no despeckle filter (SIG.amp) was explored in the refined
study [31,32], thus providing a firmer basis and more control in the understanding of the seep–spill
categorization process.

2.3.2. Concept 2: Explored Attributes

The initial exploratory analysis experimentally choose the simpler as possible variables to represent
four types of attributes: contextual aspects (33 in number; e.g., latitude, longitude, etc.), SAR scene
elements (36; e.g., beam modes and incident angles), size information (10; e.g., area, perimeter, and
several ratios using these fundamental morphological characteristics—e.g., perimeter/area, etc.), and
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SAR basic qualitative-quantitative statistics (423—including all SAR signature forms, e.g., central
tendency, dispersion, etc.).

All size information ratios were identified following the literature but from studies differentiating
oil (slicks) from the so-called look-alike features (e.g., low wind zones), rather than categorizing oil
(seeps) from oil (spills) as in our analyses. The SAR basic statistics consist of quantities describing the
received radar signal strength that are calculated with all pixels of each individual oil slick.

The knowledge evolution imparted by the initial analysis [29,30] that experimentally explored
a broad set of attributes (i.e., >500 variables describing each oil slick) led to the first refined study
drastically reducing the dimensionality by starting the analyses using only 19 variables that performed
with comparable discrimination effectiveness [31,32]. This reduction in the number of attributes mostly
refers to the elimination of: (1) contextual aspects, as their use provides an almost 100% site-specific
flawless discrimination that may limit comparisons with other regions; (2) scene elements, as we
only use one beam mode and do not consider incident angle variations within a given frame; (3) size
information owing the same (or inverted) frequency distributions (i.e., equivalent statistical meanings);
and (4) SAR basic statistics with intra-statistical correlation (i.e., highly correlated attributes), which
are not suitable to be used in LDAs, because they do not bring useful information to discrimination
processes [63].

The initial exploratory analysis [29,30] applied a negative value-scaling filter, whereas the first
refined study [31,32] applied a minimum value-scaling filter. These linear scaling operations bring the
information of each pixel to the positive domain, as the minimum value-scaling filter is applied to all
pixels in oil slicks, in which the new positive value is derived by subtracting the minimum value of
each oil slick from the original pixel value.

2.3.3. Concept 3: Data Transformations

The initial exploratory analysis explored a single non-linear normalization (log10) and one linear
standardization (Ranging). This contrasts with the first refined study in which the impact of eight
non-linear transformations were tested: no transformation (x), reciprocal (1/x), logarithm base 10
(log10(x)), napierian logarithm (ln(x)), square root (x1/2), square power (x2), cube root (x1/3), and third
power (x3). This comparison revealed that cube root and log10 performed superiorly than the other
transformations, having similar seep–spill discrimination accuracies: overall accuracies of ~70%.

Notwithstanding the fact that the data were transformed in multiple ways to seek improvements
in the discrimination process, to obtain the calibrated product in dB, log10 was applied at the pixel level,
whereas the data transformations, which include log10, were applied to the attributes representing the
entire oil slick’s surface (e.g., size information and SAR basic statistics).

2.3.4. Concept 4: Feature Selection Methods

During the initial exploratory analysis [29,30], two feature selection methods were tested in the
R-mode [64]. While dealing with large numbers of variables at the start (>500), these methods selected
similar attributes:

• Correlation-Based Feature Selection (CFS): Automatic-configured routine specifying a “Merit”
to evaluate inter-statistical correlations among different groups of variables using the information
of the categories being discriminated [65,66].

• Unweighted Pair Group Method with Arithmetic Mean (UPGMA): Semi-automated method
exploring rooted-tree diagrams (i.e., dendrograms). Its attribute selection process forms groups
based on a similarity measure (e.g., Pearson’s r correlation coefficient) in which each element
of the matrix undergoes a simple linear two-by-two correlation. This method is adjustable to
the user’s needs as groups of correlated variables are relative to a user-defined cut-off to select
them, that is, a phenon line (e.g., r = 0.5 and 0.9), which is a horizontal line draw across the
dendrograms [67–69].
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Once variables were selected with these methods, they were separately put onto an orthogonal
transformation [64,69]:

• Principal Component Analysis (PCA): Linear transformation approach used to select the most
relevant principal component (PC) axes. The PCs’ scores were the ones used as input to the LDA.

Conversely, during the refined study [31,32], four feature selection methods were tested:

1. Do nothing—i.e., all variables were directly inserted onto the LDA;
2. Using all variables straight to PCAs without passing thought the UPGMA selection;
3. Same approach as used in the initial exploratory analysis [29,30] but using only the UPGMA

analyses as it offers more control in the attribute selection process than the CFS. This time,
the application of a stricter similarity phenon threshold (i.e., r = 0.3, instead of 0.5 or 0.9) guarantees
variables are deemed to have no significant statistical correlation from one another [70]. This leads
to using the values of the attributes directly to the LDA; instead of the PCs’ scores. This alternative
circumvents the application of PCAs and simplifies the seep–spill discrimination process; and

4. The sole and strict UPGMA cut-off but this time with PCA.

Of these four methods, the third has been reckoned to be the simplest, direct, and most
efficient [31,32].

2.3.5. Concept 5: Linear Discriminant Analysis (LDA)

We have been exploring LDA-based algorithms to find a linear combination of predictors
(i.e., attributes—e.g., size information and SAR basic statistics) to best separate targets (i.e., oil
slicks) [64]. We deal with a classification problem of discriminating seeps from spills into mutually
exclusive groups with this parametric method. The LDA is a simple, standard statistical binary
classifier that produces a model whose effectiveness can be as good as more complex non-parametric
regression algorithms [71,72] (i.e., machine learning techniques)—for instance, artificial neural network
(ANN) or support vector machine (SVM) [28,63]. The use of such non-linear mappings to discriminate
seeps from spills should be further explored.

The LDA specifies the maximum probability of an incorrect discrimination to be minimized [64].
It uses predetermined information (i.e., explored attributes) along with the a priori category membership
(i.e., seep or spills). To this matter, the dependent variable (i.e., discriminant function: DF(x)), is given
by the summation of all independent variables (xn) multiplied by their weight (wn), minus a constant
offset (off ), such that: DF(x) = (w1x1 + w2x2 + wnxn) − off. The independent variables are represented
by the values of the explored attributes, whereas wn and off are calculated by the best fit of the
model [64,71,72].

The dependent variable is compared to the category membership to estimate the LDA power.
To access the discrimination accuracy in our investigations, we used a two-by-two table (i.e., confusion
matrix—Table 1 [73,74]) and its associated standard statistical metrics—Table 2 [75–77]. At present,
best overall accuracies are about 70%, obtained from the analyses of several dataset combinations:
44 (initial analysis [29,30]) and 32 (first study [31,32]). The LDA-based algorithms were trained with all
4562 oil-slick samples.

Table 1. Confusion matrix [73,74]. In our current research, our linear discriminant analyses (LDAs)
explore a condensed two-by-two table format—refer to Table 3.

LDA Oil Seeps LDA Oil Spills Known Oil Slicks

Known oil seeps A B A + B

Known oil spills C D C + D

LDA oil slicks A + C B + D A + B + C + D

See Table 2 for A, B, C, and D, as well as for associated metrics [75–77].
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Table 2. List of statistical standard metrics associated with the confusion matrix [75–77]. See Table 1 for
A, B, C, and D. Bold indicates relevant metrics explored herein—refer to Table 3.

Diagonal
of Table 1

A = Correctly identified oil seeps
D = Correctly identified oil spills

A + D = Correctly identified oil slicks

Off-Diagonal
of Table 1

C = Misidentified oil seeps
B = Misidentified oil spills

C + B = Misidentified oil slicks

A + B + C + D = Known oil slicks (i.e., 4562)

Horizontal
Analysis
of Table 1

A + B = Known oil seeps (i.e., 1994)
C + D = Known oil spills (i.e., 2568)

A/(A + B) = Sensitivity
D/(C + D) = Specificity

B/(A + B) = False negative
C/(C + D) = False positive

Vertical
Analysis
of Table 1

A + C = LDA classified oil seeps
B + D = LDA classified oil spills

A/(A + C) = Positive predictive value
D/(B + D) = Negative predictive value

C/(A + C) = Inverse of the positive predictive value
B/(B + D) = Inverse of the negative predictive value

(A + D)/(A + B + C + D) = Overall accuracy

2.4. Exploratory Data Analysis

Even though our current research follows an equivalent pattern as before (see Section 2.3),
we take advantage of our previously acquired understanding [29–34] to reorganize the blueprint of
our exploratory data analysis (Figure 2) into a more rigorous detail-oriented scheme:

• SAR Signature: To verify which combination of SAR backscatter coefficients with SAR calibrated
products provides the finest discrimination accuracy, we separately perform a complete analysis
exploring the full SAR signature set (12)—i.e., SIG.amp, SIG.amp.FF, SIG.dB, SIG.dB.FF, BET.amp,
BET.amp.FF, BET.dB, BET.dB.FF, GAM.amp, GAM.amp.FF, GAM.dB, and GAM.dB.FF; respectively
for σ◦, β◦, and γ◦, given in amp and in dB, with or without a despeckle filter (FF; for Frost filter [62]).
This differs from the initial exploratory analysis that analyzed all calibrated products together for
each backscatter coefficient [29,30].

• Explored Attributes: We apply the minimum value-scaling filter, and because we also intend to
reduce dimensionality, histograms and correlation matrices are examined in an attempt to reduce
the number of variables included in our analyses.

• Data Transformations: To evaluate the impact of the two best non-linear transformations found
in the first refined study (i.e., cube root and log10) we compare them with the original data with
no transformation.

• Feature Selection Methods: We also avoid PCAs and solely use dendrogram analyses with the
strict phenon threshold (r = 0.3), as indicated by the results of the first refined study [31,32].

• Linear Discriminant Analysis (LDA): Our LDA-based algorithms involve an analysis of a number
of combinations of the three backscatter coefficients, each of which is calculated from the four
calibrated products and the three data transformations (36 instances). We also investigate the
standalone use of the size information with the tested transformations (3 instances); these are
referred to as size only. We also consider 22 extra combinations using several of the main 39–data
instances analyzed together—“hybrid schemes”—resembling those used by [75,76]. Therefore,
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we investigate 61–dataset combinations. To this matter, due to the outsized amount of two-by-two
tables analyzed in our current research, these dataset combinations are evaluated based on Table 3,
a condensed form of the classic confusion matrix design. We use this abridged-table format to
simplify the visualization of our outcomes. The exploratory nature of our analyses focuses on
exploring all 4562 oil slicks to train our LDA-based algorithms.

Table 3. Condensed confusion matrix form (i.e., Table 1) showing the statistical metrics (i.e., Table 2)
explored herein to evaluate our linear discriminant analysis (LDA) algorithms.

Oil Seeps Oil Spills Oil Slicks

Correctly
Identified
oil seeps

Sensitivity Correctly
Identified
oil spills

Specificity Correctly
Identified
oil slicks

Overall
accuracyPositive

predictive value
Negative

predictive value

3. Results

The data processing segments aimed at discriminating the slick category using LDA-based
algorithms are summarized in Figure 3.

3.1. Explored Attributes

We removed certain attributes at the start of our analyses using three major correlation matrices:
one for each data transformation, accounting for the three backscatter coefficients and four calibrated
products, accounting for the 19 variables from the first refined study [31,32]. Accordingly, herein, we
simply explore the information of 13 variables, thus reducing the dimensionality of the problem in
relation to our earlier investigations (Figure 3). This set of variables are collectively referred to as the
oil-slicks’ signature:

• Area (Area);
• Perimeter (Per);
• Ratio between Per and Area (PtoA [78]);
• Compact index (4.π.Area/Per2 [28]);
• Fractal index (2.ln(Per/4)/ln(Area) [79]);
• Average (AVG);
• Median (MED);
• Mode (MOD);
• Standard deviation (STD);
• Variance (VAR);
• Coefficient of dispersion (COD: the third interquartile minus the first, divided by their sum);
• Skewness (SKW); and
• Kurtosis (KUR).

The first five correspond to the size information and the next eight are the SAR basic
qualitative-quantitative statistics. The latter are divided in: central tendencies (AVG, MED, and
MOD), measures of dispersion (STD, VAR, and COD), and pixel distribution metrics (SKW and KUR).

An imperative information is that when log10 is applied, only 10 variables are accounted, as Fractal,
SKW, and KUR have negative values preventing their use.
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3.2. Feature Selection Methods

The UPGMA dendrograms for the twelve σ◦ instances are shown in Figure 4 (SIG.amp and
SIG.amp.FF) and Figure 5 (SIG.dB and SIG.dB.FF); those for β◦ and γ◦ are very similar to those of σ◦

independent of data transformation. Using the strict threshold (dotted horizontal phenon similarity
line: r = 0.3), we select one variable (+) from each resulting group. Groups of similar (correlated)
variables are color-coded to facilitate visual interpretation.

The central tendency (green) and dispersion (blue) variables group between each other, and
together they form a single group (Figure 4: amp and amp.FF). The behavior of the central tendency
and dispersion counterparts is disturbed when variables are dB transformed (purple), such that KUR
becomes part of this group once no transformation or cube root occur (Figure 5: left); though, this is
not observed in dB.FF (Figure 5: right). COD also stands out from grouping with the other dispersion
variables in dB and dB.FF (Figure 5: purple), as well as in the original data with no transformation
(Figure 4: amp and amp.FF). From this larger green-blue group VAR is selected.

The pixel distribution (gray) pairs with the twosome of Area and Per (yellow) while in amp and
amp.FF (Figure 4). This pixel distribution behavior breaks down in dB and dB.FF (Figure 5: left and
right). From this gray-yellow larger group KUR is selected.

The size information ratios (red) do not show correlation with any other attribute (r ~0.0). As such,
they are selected when present—i.e., no transformation and cube root. They tend to assemble (Figure 4),
but sometimes this do not hold true (Figure 5: purple).

A distinctive characteristic is revealed when analyzing dB (cube and log10) and dB.FF (log10)—see
(*) in Figure 5. All variables possess significant statistical correlation—i.e., their relationships exceed
below the phenon similarity strict threshold of r = −0.3. Although no variable should have been
selected, to avoid such disrupting action we selected comparable attributes with the other analyses to
perform a second round of dendrogram analysis only with these variables (+). Indeed, their selection
shows no intra-correlation—this is also supported by the major correlation matrices.

Table 4 lists the UPGMA uncorrelated variables selected for each of the main 39–data instances.
Most combinations (26) include the three size information ratios: PtoA, Compact, and Fractal – only in
the log-transformed ones (13) whereby Fractal is not present as it accounts for negative values. Some
combinations (12) also have Area selected, i.e., dB and dB.FF with no transformation and log10. Of the
36–data instances exploring SAR basic statistics, VAR is selected in all of them. In almost all (18) not-
and cube-transformed combinations, KUR is chosen, and in only three instances SKW is selected in its
place: dB with no transformation. Thus, usually (in 15 instances), we have five attributes as the most
frequently used in the LDA-based algorithms: PtoA, Compact, Fractal, VAR, and KUR; independent of
SAR backscatter coefficient, SAR calibrated product, or data transformation. The number of selected
attributes varies from two to six (Table 4):

• Two variables are selected in only one instance: size only log-transformed (1).
• Three attributes are chosen in eight instances: size only with no transformation and log10 (2), and

dB and dB.FF log-transformed (6).
• Four variables are selected in nine instances: cube-dB (3), and amp and amp.FF log-transformed (6).
• Five attributes are accounted in the largest set of instances (fifteen): amp and amp.FF with no

transformation (6), and all cube-transformed ones (9) not including dB.
• Six variables are selected in six instances: when no transformation is applied to dB and dB.FF (6).
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of the attributes, see Section 3.1. 

Figure 4. Unweighted pair group method with arithmetic mean (UPGMA) dendrogram analyses for
sigma–naught (σ◦) given in amplitude (amp), without (left) and with (right) a despeckle filter (FF; for
Frost filter [62]), for the tested non-linear transformations: none (top), cube root (middle), and log10

(bottom). Dotted lines: strict similarity phenon thresholds (r = 0.3 and −0.3). Yellow and red: size
information (basic morphological characteristics and their ratios, respectively). Green and blue: SAR
basic qualitative-quantitative statistics (central tendencies and dispersion, respectively). Gray: pixel
distribution metrics. Uncorrelated variables (+) selected in our current research; see also Table 4. The (@)
indicates those explored in the first refined study (amp instances only [31,32]). For an explanation of the
attributes, see Section 3.1.

Comparing our SIG.amp dendrograms (Figure 4: left panels) with those from the refined
study [31,32], the removal of six attributes to start the analysis (13 against 19) causes only a minor
impact on the similarity of the retained variables, and yields small changes in the in-group configuration
using the same strict similarity cut-off (r = 0.3). The main exception occurs in the log-transformation
Figure 4 (bottom left), in which the size information similarities are altered, but not influencing the
grouping of the variables, nor the selected features. The selection of uncorrelated attributes only varies
between this research and prior approach [31,32] because we opt to select different variables within the
formed groups (i.e., VAR instead of AVG, and KUR in lieu of SKW).
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Figure 5. Unweighted pair group method with arithmetic mean (UPGMA) dendrogram analyses
for sigma–naught (σ◦) given in decibel (dB), without (left) and with (right) a despeckle filter (FF; for
Frost filter [62]), for the tested non-linear transformations: none (top), cube root (middle), and log10

(bottom). Dotted lines: strict similarity phenon thresholds (r = 0.3 and −0.3). Yellow and red: size
information (basic morphological characteristics and their ratios, respectively). Green and blue: SAR
basic qualitative-quantitative statistics (central tendencies and dispersion, respectively). Gray: pixel
distribution metrics. Purple: undefined group. Uncorrelated variables (+) selected in our current
research; see also Table 4. The (*) indicates the requirement of a second round of dendrogram analysis;
see Section 3.2. For an explanation of the attributes, see Section 3.1.
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Table 4. Uncorrelated variables (+) selected with the unweighted pair group method with arithmetic mean (UPGMA) dendrogram analyses for sigma–naught (SIG),
beta–naught (BET), and gamma–naught (GAM), each of which calculated from four SAR calibrated products (received radar beam given in amplitude (amp) or
decibel (dB), with or without a despeckle filter, i.e., FF: for Frost filter [62]), for the tested non-linear transformations: none (left), cube root (middle), and log10 (right).
The twelve SIG instances (shown in bold) have their dendrograms depicted in Figures 4 and 5. See Section 3.1 for explored variables. Oil-slicks’ signature: size
information (1–5) and SAR basic qualitative-quantitative statistics (6–13). Basic morphological features: 1 and 2. Basic morphological ratios: 3–5. Central tendencies:
6–8. Dispersion measures: 9–11. Pixel distribution metrics: 12 and 13.
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(@) Explored in the first refined study [31,32]. (*) Second round of UPGMA analysis required; see the text for 
explanation and Figure 5 for visualization. (o) Variables not accounted for (see Section 3.1). 

3.3. Linear Discriminant Analysis (LDA) 

Because our analyses produced many two-by-two tables, we evoke an abridgment of the classic 
confusion matrix (Table 3) to display the LDA results of the main 39–data instances into a single table, 
as hierarchized in Table 5. These hierarchies are based on the analyses of the overall accuracy and 
associated metrics imparted by Table 3. The seep–spill discrimination accuracies of the 22 hybrid 
schemes (data not shown) fall within the accuracy limits of the main 39–data instances. Therefore, we 
focus on the information in Table 5, as it conveys the LDA outcomes for all 61–data combinations. 
These have been obtained after training the algorithms with all 4562 oil slicks. Other metrics can also 
evaluate the performance of discrimination algorithms (e.g., Cohen’s kappa coefficient); however, we 
choose those in Table 3 as our approach has an operational focus. 

The discretization interval of our LDAs is 0.02%. This resolution limit represents the smallest 
detectable difference of the explored dataset—i.e., one misidentified slick: 1/4561. The worst overall 
accuracy is observed with the original data of the size only combination: 63.90% (2915 slicks correctly 
identified: 1574 seeps and 1341 spill). The most effective accuracy is observed with the log10 GAM.dB 
combination: 68.85% (3141 slicks correctly identified: 1293 seeps and 1848 spill). 

The first important aspect in Table 5 is that key hierarchy–accuracy groupings are formed. There 
are three major blocks influenced by the data transformations. Some combinations are deemed to 
perform better than others—top-down: log10, cube root, and no transformation. Within these major 
blocks, the SAR calibrated products are grouped forming minor blocks; usually dB (with or without 
FF) summits most effectively (except in cube root, where amp.FF reaches better accuracy). The SAR 

(@) Explored in the first refined study [31,32]. (*) Second round of UPGMA analysis required; see the text for explanation and Figure 5 for visualization. (o) Variables not accounted for (see
Section 3.1).
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3.3. Linear Discriminant Analysis (LDA)

Because our analyses produced many two-by-two tables, we evoke an abridgment of the classic
confusion matrix (Table 3) to display the LDA results of the main 39–data instances into a single table,
as hierarchized in Table 5. These hierarchies are based on the analyses of the overall accuracy and
associated metrics imparted by Table 3. The seep–spill discrimination accuracies of the 22 hybrid
schemes (data not shown) fall within the accuracy limits of the main 39–data instances. Therefore,
we focus on the information in Table 5, as it conveys the LDA outcomes for all 61–data combinations.
These have been obtained after training the algorithms with all 4562 oil slicks. Other metrics can also
evaluate the performance of discrimination algorithms (e.g., Cohen’s kappa coefficient); however,
we choose those in Table 3 as our approach has an operational focus.

The discretization interval of our LDAs is 0.02%. This resolution limit represents the smallest
detectable difference of the explored dataset—i.e., one misidentified slick: 1/4561. The worst overall
accuracy is observed with the original data of the size only combination: 63.90% (2915 slicks correctly
identified: 1574 seeps and 1341 spill). The most effective accuracy is observed with the log10 GAM.dB
combination: 68.85% (3141 slicks correctly identified: 1293 seeps and 1848 spill).

The first important aspect in Table 5 is that key hierarchy–accuracy groupings are formed. There are
three major blocks influenced by the data transformations. Some combinations are deemed to perform
better than others—top-down: log10, cube root, and no transformation. Within these major blocks, the
SAR calibrated products are grouped forming minor blocks; usually dB (with or without FF) summits
most effectively (except in cube root, where amp.FF reaches better accuracy). The SAR backscatter
coefficients are distributed within these minor blocks, where γ◦ tends to have better accuracies.

Table 5. Outcomes of our linear discriminant analyses (LDAs). Refer to Table 3 for explanations.

Hierarchy Data Transformation Oil-Slicks’ Signature Oil Seeps Oil Spills Oil Slicks

1 log10 Gamma-naught dB 1293
64.84%

1848
71.96%

3141 68.85%
64.23% 72.50%

2 log10 Beta-naught dB 1292
64.79%

1848
71.96%

3140 68.83%
64.21% 72.47%

3 log10 Sigma-naught dB 1292
64.79%

1845
71.85%

3137 68.76%
64.12% 72.44%

4 log10 Gamma-naught dB.FF 1293
64.84%

1842
71.73%

3135 68.72%
64.04% 72.43%

5 log10 Sigma-naught dB.FF 1292
64.79%

1838
71.57%

3130 68.61%
63.90% 72.36%

6 log10 Size only 1288
64.59%

1841
71.69%

3129 68.59%
63.92% 72.28%

7 log10 Beta-naught dB.FF 1288
64.59%

1840
71.65%

3128 68.57%
63.89% 72.27%

8 log10 Sigma-naught amp.FF 1321
66.25%

1806
70.33%

3127 68.54%
63.42% 72.85%

9 log10 Sigma-naught amp 1323
66.35%

1803
70.21%

3126 68.52%
63.36% 72.88%

10 log10 Beta-naught amp 1324
66.40%

1800
70.09%

3123 68.48%
63.29% 72.87%

11 log10 Gamma-naught amp 1320
66.20%

1803
70.21%

3124 68.46%
63.31% 72.79%

12 log10 Gamma-naught amp.FF 1320
66.20%

1802
70.17%

3122 68.44%
63.28% 72.78%

13 log10 Beta-naught amp.FF 1320
66.20%

1799
70.05%

3119 68.37%
63.19% 72.75%
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Table 5. Cont.

Hierarchy Data Transformation Oil-Slicks’ Signature Oil Seeps Oil Spills Oil Slicks

14 Cube root Gamma-naught amp.FF 1409
70.66%

1709
66.55%

3118 68.35%
62.13% 74.50%

15 Cube root Sigma-naught amp.FF 1410
70.71%

1706
66.43%

3116 68.30%
62.06% 74.50%

16 Cube root Gamma-naught dB.FF 1384
69.41%

1729
67.33%

3113 68.24%
62.26% 73.92%

17 Cube root Beta-naught dB 1393
69.86%

1720
66.98%

3113 68.24%
62.16% 74.11%

18 Cube root Beta-naught amp.FF 1409
70.66%

1703
66.32%

3112 68.22%
61.96% 74.43%

19 Cube root Gamma-naught dB 1391
69.76%

1719
66.94%

3110 68.17%
62.10% 74.03%

20 Cube root Sigma-naught dB.FF 1378
69.11%

1730
67.37%

3108 68.13%
62.18% 73.74%

21 Cube root Beta-naught dB.FF 1385
69.46%

1722
67.06%

3107 68.11%
62.08% 73.87%

22 Cube root Sigma-naught dB 1390
69.70%

1719
66.90%

3109 68.10%
62.10% 74.00%

23 Cube root Sigma-naught amp 1405
70.46%

1701
66.24%

3106 68.08%
61.84% 74.28%

24 Cube root Beta-naught amp 1402
70.31%

1699
66.16%

3101 67.98%
61.73% 74.16%

25 Cube root Gamma-naught amp 1404
70.41%

1697
66.08%

3101 67.98%
61.71% 74.20%

26 Cube root Size only 1400
70.21%

1685
65.62%

3085 67.62%
61.71% 73.94%

27 No transformation Gamma-naught dB.FF 1563
78.39%

1433
55.80%

2996 65.67%
57.93% 76.88%

28 No transformation Beta-naught dB.FF 1560
78.23%

1426
55.53%

2986 65.45%
57.74% 76.67%

29 No transformation Sigma-naught dB.FF 1557
78.08%

1427
55.57%

2984 65.41%
57.71% 76.56%

30 No transformation Gamma-naught dB 1559
78.18%

1410
57.91%

2969 65.08%
57.38% 76.42%

31 No transformation Sigma-naught dB 1555
77.98%

1407
54.79%

2962 64.93%
57.25% 76.22%

32 No transformation Beta-naught dB 1554
77.93%

1403
54.63%

2957 64.82%
57.15% 76.13%

33 No transformation Gamma-naught amp.FF 1580
79.24%

1354
52.73%

2934 64.31%
56.55% 76.58%

34 No transformation Gamma-naught amp 1580
79.24%

1353
52.69%

2933 64.29%
56.23% 76.57%

35 No transformation Sigma-naught amp.FF 1580
79.24%

1353
52.69%

2933 64.29%
56.53% 76.57%

36 No transformation Sigma-naught amp 1579
79.19%

1352
52.65%

2931 64.25%
56.49% 76.51%

37 No transformation Beta-naught amp.FF 1580
79.24%

1351
52.61%

2931 64.25%
56.49% 76.54%

38 No transformation Beta-naught amp 1580
79.24%

1347
52.45%

2927 64.16%
56.41% 76.49%

39 No transformation Size only 1574
78.94%

1341
52.22%

2915 63.90%
56.19% 76.15%
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Quantifying the hierarchy misidentification of the data transformation blocks (Table 5), we observe
that the log10 combinations have the best overall accuracy (GAM.dB: 68.85%). The log10 combinations
have the best oil-spill identification rate (1848 GAM.dB and BET.dB) but correctly detect the least
amount of oil seeps (1288: BET.dB.FF). On the other hand, the not-transformed original data are
inversely propositional to log10—i.e., have a poorer overall accuracy (size only: 63.90%) being the
worst one to identify oil spills (1341: size only) but the best one to correctly identify oil seeps (1580:
GAM and BET, both with amp and amp.FF).

Table 6 presents a summary of the seep–spill discrimination statistics regarding the transformation
blocks. Even though the log-transformed combinations (GAM.dB: 68.85%) outperform the
cube-combinations (GAM.amp.FF: 68.35%), the latter show more balanced seep–spill correct
identification capabilities. The unbalanced seep (spill) log10 dispersal is: min 1288 (1799) and
max 1324 (1848). The balanced min seep (spill) correct cube root identification is 1378 (1685) and
its max seep (spill) correct detection is 1410 (1730). Equivalently, the best original not-transformed
data also have a fairly balanced seep (spill) identification rate; however, with less oil slicks correctly
identified (GAM.dB.FF: 65.67%)—min 1554 (1341) and max 1580 (1433).

From Table 6 we also note the range (226) of the three transformations: oil slicks correctly identified
varied from 3141 (log10 GAM.dB) to as low as 2915 (not-transformed size only). While the oil seeps’
range (292) varied from 1580 (no transformation: GAM and BET, both with amp and amp.FF) to 1288
(log10 BET.dB.FF), the oil spills’ range is larger (507) and goes from 1848 (log10 GAM.dB and BET.dB) to
1341 (not-transformed size only). Some equivalence exists between the seep, spill, and slick ranges
of the log10 (36, 49, and 22) and cube (32, 45, and 33) combinations. The original data ranges are:
26 (seeps), 92 (spills), and 81 (slicks).

Table 6. Statistics summary of our linear discriminant analyses (LDAs) based on the major blocks of
data transformations (log10, cube root, none) from the 39–data instances hierarchized in Table 5.

All Three
Transformations Oil Seeps Sensitivity Oil Spills Specificity Oil Slicks Overall

Accuracy

Maximum 1580 79.24% 1848 71.96% 3141 68.85%
Minimum 1288 64.59% 1341 52.22% 2915 63.90%

Average 1424 71.40% 1639 63.81% 3063 67.13%

Range 292 507 226

log10 Oil Seeps Sensitivity Oil Spills Specificity Oil Slicks Overall
Accuracy

Maximum 1324 66.40% 1848 71.96% 3141 68.85%
Minimum 1288 64.59% 1799 70.05% 3119 68.37%

Average 1305 65.45% 1824 71.04% 3129 68.60%

Range 36 49 22

Cube root Oil Seeps Sensitivity Oil Spills Specificity Oil Slicks Overall
Accuracy

Maximum 1410 70.71% 1730 67.37% 3118 68.35%
Minimum 1378 69.11% 1685 65.62% 3085 67.62%

Average 1397 70.06% 1711 66.62% 3108 68.12%

Range 32 45 33

No
Transformation Oil Seeps Sensitivity Oil Spills Specificity Oil Slicks Overall

Accuracy

Maximum 1580 79.24% 1433 55.80% 2996 65.67%
Minimum 1554 77.93% 1341 52.22% 2915 63.90%

Average 1569 78.70% 1381 53.79% 2951 64.68%

Range 26 92 81
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Table 6 also shows that, on average, the overall accuracy of all oil slicks is 67.13%. If considering
the average of the log10 (68.60%) and cube (68.12%) combinations, these have similar discrimination
performances, though, as pointed out, the latter surpass the former with its more balanced seep–spill
discrimination. The original data with no transformation had the lowest discrimination overall
accuracy average: 64.68%.

The second remarkable aspect observed in Table 5 is related to the hierarchy-accuracy grouping of
the original not-transformed data. None of its 13 data instances are valid. They had very low (<60%)
specificity (i.e., of the a priori know spills, how many the LDA identifies correctly?) and positive
predictive values (i.e., of the LDA-identified seeps, how many are actually seeps?). This means that
the data needs to be normalized to achieve success in discriminating the oil-slick category using our
linear approach.

The third noteworthy aspect observed in Table 5 concerns the choice of variables, i.e., oil-slicks’
signature: size information and SAR basic qualitative-quantitative statistics—see (@) in Table 4. To this
matter, we call a comparison between our current research (Table 5) and the first refined study (Table 7).
Even though the SAR basic statistics we select now (SIG.amp: VAR and KUR) are different from the
ones of the refined study (SIG.amp: AVG and SKW), there is not much change in the discrimination
power between the two analyses. This is independent of the way the data is transformed, for instance,
SIG.amp: log10 (68.52% against 68.50%), cube (68.08% against 68.35%), and no transformation (64.25%
against 63.88%), respectively, for our current research and the first refined study [31,32].

Table 7. Outcomes of the linear discriminant analyses (LDAs) from the first refined study [31,32]. Top:
oil-slicks’ signature (SAR signature: sigma–naught with no despeckle filter—SIG.amp). Bottom: size
information (size only: PtoA and Compact). See also Tables 1–5.

Hierarchy Data
Transformations

Oil-Slicks’
Signature

Oil
Seeps

Oil
Spills

Oil
Slicks

1 log10 SIG.amp 1296
64.99%

1829
71.22%

3125 68.50%
63.69% 72.38%

2 Cube root SIG.amp 1407
70.56%

1711
66.63%

3118 68.35%
62.15% 74.46%

3 No
Transformation

SIG.amp 1570
78.74%

1344
52.34%

2914 63.88%
56.19% 76.02%

Hierarchy Data
Transformations

Size
Information

Oil
Seeps

Oil
Spills

Oil
Slicks

1 log10
PtoA and
Compact 1288

64.59%
1841

71.69%
3129 68.59%

63.92% 72.28%

1 Cube root
PtoA and
Compact 1417

71.06%
1667

64.91%
3084 67.60%

61.13% 74.29%

3 No
Transformation

PtoA and
Compact 1575

78.99%
1338

52.10%
2913 63.85%

56.15% 76.15%

The same holds true when we verify the size only combinations (see (@) in Table 4) between now
(Table 5) and then (Table 7). In our current research we account for three size information variables
(Table 4: PtoA, Compact, and Fractal), whereas in the refined study only two were used (Table 7: PtoA
and Compact). Again, these discrimination outcomes are quite close, with size only log10 categorizing
exactly the same oil slicks in our current research (Table 5) and in the refined study (Table 7): log10

(68.59% against 68.59%), cube (67.62% against 67.60%), and no transformation (63.90% against 63.85%),
respectively, for our current research and the first refined study [31,32].

We also note in Table 7 that the analyses of the size and SAR signatures together (i.e., SIG.amp) do
not impact the outcomes much. For the log-transformed discrimination accuracy, in fact, it worsens the
overall accuracy: 68.59% (size only) and 68.50% (size and SAR together). However, it does impact the
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cube-transformed, improving its seep–spill categorization capacity: 67.60% and 68.35%, respectively.
For the original not-transformed data, only one oil slick is differently classified. Similar patterns
happen in our current analysis (Table 5).

The accuracy behavior of the oil-slicks’ signature (size and SAR), on the other hand, is actually
slightly different once we account for the other SAR backscatter coefficients and SAR calibrated
products (Table 5). In the relation to the data transformations, size only has the poorer performance of
all instances in both no transformation (63.90%) and cube root (67.62%), but when the SAR signature is
taken into account we obtain improved accuracies: no transformation (GAM.dB.FF: 65.67%) and cube
root (GAM.amp.FF: 68.35%). Likewise, when we compare the log10 instances size information without
(size only: 68.59%) and with the SAR signature (GAM.dB: 65.85%), there is also an improvement;
smaller though.

4. Discussion

We have focused on giving more rigor to our detail-oriented seep–spill discrimination (Section 2.4).
This second data-driven effort to try to improve the slick category categorization has benefited from
the findings of our earlier investigations (Section 2.3). The study presented herein bridges our
academic oil-slick remote sensing investigation and a specific ongoing operational application of the
petroleum industry (Section 2.2). Because the seep–spill discrimination research is at an early stage of
development, there is a continuing necessity to devote scientific attention to it. As this need tends
to increase with time, reliable means of improving the capabilities to differentiate the slick category
are required [29–34]. There is a lack of information in the literature concerning this topic; see [29]
and references therein. There have been a number of review papers, but these have focused on the
detection and characterization of oil slicks in satellite remotely sensed images, and have not addressed
the categorization of slicks into seeps or spills—e.g., [80].

We recognize our linear technique exploring LDA-based algorithms is one of several possible
approaches leading to improving seep–spill discrimination skills. So far, our approach has been to
explore simple methods before moving on to more complex ones. Other multivariate data analyses (e.g.,
cubist or random forest) may also lead to better slick category discrimination. Nevertheless, further
studies are needed to investigate whether these approaches can be more successful in discriminating
seeps from spills than our reported results: sound overall accuracy of about 70% and practical levels of
the associated standard statistical metrics—e.g., ~80% of sensitivity, ~75% of specificity, ~65% and ~75%
of positive and negative predictive values, respectively. These have been reached while evaluating our
algorithms using all 4562 oil slicks for training. We look forward to see the exploratory data analysis
promoted by our study motivating other scholars to investigate alternative methods to discriminate
the categories of oil slicks at the sea surface.

The slick category of our earlier investigations occurred with practical overall accuracy levels
of ~70% [29–32]. This was found when starting the analyses with different sets of variables (>500
in [29,30] and 19 in [31,32]) and selecting uncorrelated attributes in two different ways: CFS and the
UPGMA dendrograms both together with PCA in [29,30], and the simple use of a stricter UPGMA
phenon cut-off but without PCA in [31,32]. Notwithstanding the best seep–spill discrimination power
of our current approach being comparable to our previous investigations (~70%), we have improved it
in the sense that our LDA-based efficiency is improved as we started the analysis with only 13 variables,
instead of >500 [29,30] or 19 [31,32] as before (Figure 3). To this matter, the outcomes of our simple
LDA approaches can guide the selection of variables to be possibly used in more complex analyses. In
fact, the possibility to explore fewer variables is indeed an advantage to any eventual operational use
of our seep–spill discrimination strategy.

Regarding the UPGMA dendrograms (Figures 4 and 5), we observe that the SAR basic statistics
variables exhibit significant statistical correlation and group among themselves: the green-blue group.
The pixel distribution metrics and the Area-Per pair also have significant statistical correlation: the
gray-yellow group. From these two larger groups we selected VAR and KUR, while in the first refined
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study we chose AVG and SKW [31,32]. This difference is rooted in the analysis of the major correlation
matrices that show the former pair has less correlation than the latter with all other variables in all
39–data instances. As before [31,32], the three uncorrelated size information ratios (red groups) have
also been selected

Our discrimination accuracy results are based on the analysis of the overall accuracy associated
with other standard statistical metrics (e.g., sensitivity, specificity, positive and negative predictive
values; Table 3). The outcomes of several dataset combinations are presented in a single table (i.e.,
Table 5), from which three remarkable results can be highlighted:

1. Three hierarchy-accuracy groups are formed, ruled by data transformation: log10, cube root,
and no transformation. While the SAR calibrated products influence a second grouping within
the data transformation (dB owing a superior performance), a third grouping is formed within the
second but accounting for the SAR backscatter coefficients (better accuracies are found with γ◦);

2. Even though the LDAs of the not-transformed original data have a good overall accuracy
(GAM.dB.FF: 65.67%), their specificity and positive predictive values of ~50% prevent them from
discriminating successfully between seeps and spills. This follows from the fact that normal
distributions are a fundamental assumption of the LDA method [64,71,72]; and

3. The combination of size information and SAR basic statistics variables is more successful in
categorizing slicks into seeps or spills. However, a comparison of our current results with those
of the first refined study (Table 7) indicates that the choice of different variables within these
two types of attributes (i.e., oil-slicks’ size and SAR information) produces small changes in
the discrimination power—e.g., log10 SIG.amp (68.52% (only size with VAR and KUR) against
68.50% (only size with AVG and SKW)) or only size cube-transformed information (67.62% (PtoA,
Compact, and Fractal) against 67.60% (PtoA and Compact only)).

The size only information has been accounted for herein, but not SAR only (Table 4). This comes
from the fact that the first refined study revealed that if the size information is removed from the
analysis, the LDA is ineffectual to categorize between seeps and spills [31,32]. This means that
the sole use of the selected SAR basic qualitative-quantitative statistics does not achieve successful
discrimination accuracies. Perhaps, the use of other variables may show different results though.

After the completion of our analyses, and the verification of the strong relationship among σ◦, β◦,
and γ◦, we come to conclude that our assumption that changes in the sea surface height associated
with the variation would influence in the seep–spill discrimination is not valid. Even though we have
not measured sea surface heights, our dataset spans for five years and accounted for a large variety of
sea elevations—e.g., flat ocean conditions to long-period waves.

Recommendations for Future Work

If one is to consider an expansion of the seep–spill discrimination developed throughout our
investigations, we suggest, besides categorizing the oil-slick category, the investigation of the categories’
classes or the type of oil, corresponding to Bentz’s Dissertation [28]. This means that, within the oil seep
category, one can possibly use LDAs to separate different seepage clusters. Analogously, among the oil
spills, the LDAs can be directed at differentiating the oil from different offshore oil and gas facilities.

Another matter of interest is the application of our linear methodology (i.e., LDA-based algorithm)
to a dataset containing oil (slicks) and non-oil targets (i.e., radar false targets; e.g., low wind or
upwelling zones) in a similar fashion as accomplished by [28]. However, she used ANN, SVM, etc.,
to differentiate the on-water oil (spills) from look-alike features.

An improvement to our seep–spill discrimination process could be the use of other variables to
start the analysis. We suggest exploring the dynamic fractal [81], ratios accounting for the SAR signals
inside and outside of the oil slicks to standardize for the wind influence [28], gapped pixel space from
transect lines through the oil slicks [82], etc. These new attributes could bring further information to
our capacity to differentiate the slick category. Their statistical correlation with the oil-slick size and
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SAR information explored in our analyses may not be significant, meaning they could improve our
LDA-based algorithm’s accuracy.

Even though we meticulously and systematically analyzed all details of our exploratory data
analysis, searching for improvements in the categorization of oil (slicks) into oil (seeps) and oil (spills)
with a linear multivariate data analysis technique, it may be that the LDA approaches have reached their
discrimination limits (i.e., ~70% of overall accuracy) while using this multi-year satellite-field baseline
training dataset. Because we reached similar effectiveness with fewer attributes in relation to our
previous findings [29–32], we suggest that other non-linear methods—for instance, cubist or random
forest, or even other variants such as ANN or SVM [28,63,71,72]—should be further investigated to
attempt to improve on our oil-slick discrimination approach using satellite SAR measurements.

We have demonstrated that non-linear transformations cause the largest impact on the success
of the seep–spill categorization (Table 5). However, so far, we only have explored the simultaneous
application of the same data transformations to all variables per LDA-based algorithm (i.e., log10 to
Area and to Per or cube root to Area and to Per, etc.). As such, another subject that we believe can
further improve the discrimination power is to apply different non-linear transformations to different
variables on the same LDA algorithm—e.g., log10 to Area together with cube root to Per.

5. Conclusions

We addressed a scientific problem that has also been the focus of our earlier investigations
(i.e., the initial exploratory analysis [29,30] and the first refined study [31,32]) to a transition to the
petroleum industry’s operational application—i.e., the use of simple, mathematically-robust linear
discriminant analysis (LDA) applied to SAR measurements to discriminate the oil-slick category
(oil seeps vs. oil spills). This need continues to increase with time, as new offshore fossil fuel
discoveries continue to be made, but with the requirement to assist ecological monitoring and response.
In fact, the Brazilian Petroleum Corporation (Petrobras) is currently exploring our proven seep–spill
discrimination methodology.

Our exploratory data analysis has focused on oil-slick category discrimination exploiting different
SAR backscatter coefficients (i.e., sigma–naught (σ◦), beta–naught (β◦), and gamma–naught (γ◦))
calculated from various SAR calibrated products (i.e., amplitude (amp) or decibel (dB) measures of the
back-scattered radar beam, with or without a despeckle filter (FF; for Frost filter [62])) applied to three
data transformations (none, cube root, and log10). This resulted in 61–data combinations using several
oil-slicks’ signature (i.e., size information and SAR basic qualitative-quantitative statistics). The worst
overall accuracy of all is found with the original data of the size only combination (63.90%), whereas
the best one is the log-transformed GAM.dB (68.85%).

We explore 244 RADARSAR-2 images containing 4562 slicks (1994 seeps and 2568 spills) observed
in Campeche Bay, Gulf of Mexico, to address our four scientific questions:

1. Although the three backscatter coefficients have similar success at categorizing seeped and
spilled oil (independently of the applied calibrated product or data transformation), γ◦ is
somewhat superior.

2. The discrimination power of the four calibrated products is rather independent of backscatter
coefficient but varies to some extent within data transformation. When log10 is applied, dB
(68.85%: GAM) is followed by dB.FF (68.72%: GAM) and by two amp forms. A baffling pecking
order is observed with cube root, but even though it lacks a defined hierarchy pattern, amp.FF
reaches better accuracy levels (68.35%: GAM) and amp the lowest (67.98%: GAM). With the
not-transformed original data, dB.FF effectiveness is followed by dB, then by the two amp forms
with no definite pattern; however, these have little practical meaning—see point 3 below.

3. The data transformation exerts the most influence over the seep–spill discrimination, dictating the
performance of our optimal linear models. Among the tested ones, the highest overall accuracy
is the log-transformed (68.85%: GAM.dB), though the cube root has slightly more balanced
seep–spill discrimination capabilities and is as successful: 68.35% (GAM.amp.FF). If the data is not
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normalized, the top overall accuracy is 65.67% (GAM.dB.FF); nevertheless, its LDAs are incapable
of separating seeps from spills, as its specificity and positive predictive values are void (~50%).

4. Concerning the use of different attributes describing the oil-slicks’ signature, a comparison with
the first refined study (SIG.amp) demonstrates that even though different size and SAR signatures
have been used between both of our investigations (AVG and SKW against VAR and KUR;
and PtoA and Compact against PtoA, Compact, and Fractal, respectively, for the refined study
and our research), the discrimination improvement is disappointingly small. Although, there is
an improvement once other backscatter coefficients and calibrated products are investigated—e.g.,
cube root size only (67.62%) against cube root GAM.amp.FF (68.35%); the latter accounts for the
same size information as the former, plus VAR and KUR.

Here, the best overall accuracy tops ~70% as before [29–32], reaching practical levels of associated
statistical metrics: sensitivity (~80%), specificity (~75%), positive (~65%) and negative (~75%) predictive
values. These are evaluated using all 4562 oil slicks for training the algorithms. The investigative
nature of our research, besides providing answers to the four complex scientific questions based on
the analysis of 61–dataset combinations, trimmed down the dimensionality to start the analysis to
only 13 variables, instead of >500 in [29,30] and 19 in [31,32]. The opportunity to use fewer variables,
associated with a sound seep–spill discrimination power, benefits a transitioning to operational
applications of our methodology.
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