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Abstract: There is an ever-increasing interest and need for accurate georegistration of remotely sensed
data products to a common global geometric reference. Although georegistration has improved
substantially in the last decade, the lack of an accurate global ground reference dataset poses serious
issues for data providers seeking to make geometrically stackable analysis-ready data. The existing
Global Land Survey 2000 (GLS2000) dataset derived from Landsat 7 images provides global coverage
and can be used as a reference dataset, but its accuracy is much lower than what can be attained
using the agile and precise pointing capability of the new spacecrafts. The improved position
and pointing knowledge of the new spacecrafts such as Landsat 8 can be used to improve the
accuracy of the existing global ground control points using a space-based triangulation method. This
paper discusses the theoretical basis, formulation, and application of the space-based triangulation
method at a continental scale to improve the accuracy of the GLS-derived ground control points.
Our triangulation method involves adjusting the spacecraft position, velocity, attitude, attitude
rate, and ground control point locations, iteratively, by linearizing the non-linear viewing geometry,
such that the residual errors in the measured image points are minimized. The complexity of the
numerical inversion and processing is dealt with in our approach by processing and eliminating the
ground points one at a time. This helps to reduce the size of the normal matrix significantly, thereby
making the triangulation of a continent-wide scale block feasible and efficient. One of the unique
characteristics of our method is the use of a correlation model linking the attitude corrections between
images of the same pass, which promotes consistency in the attitude corrections. We evaluated
the performance of our triangulation method over the Australian continent using the Australian
Geographic Reference Image (AGRI) dataset as a reference. Both a free adjustment, using only the
pointing information of the Landsat 8 spacecraft, and a constrained adjustment using the AGRI
as external control were performed and the results compared. The Australian block’s horizontal
accuracy improved from 15.4 m to 3.6 m with the use of AGRI controls and from 15.4 m to 8.8 m
without the use of AGRI controls.

Keywords: triangulation; bundle adjustment; Landsat; Sentinel; geometric reference; GLS2000;
ground control; geometric correction

1. Introduction

With the recent advancements in remote sensing and data processing technologies, there has
been a substantial increase in the use of medium- and high-resolution satellite data to monitor and
assess the changes in the global landscape. The scientific users of today have access to more data
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that are at a higher resolution in spatial, spectral, and temporal coverage than ever before. This can
be attributed to an increase in the number of remote sensing missions across the globe which make
the data available at very low to no cost to the end users. Although the large volume of data helps
to analyze and better understand land cover changes over time, it increases the disparity between
the data, which necessitates additional data preparation work before valuable information can be
extracted. There is a growing trend, however, among imagery providers to generate analysis-ready
data (ARD), with a goal of reducing the magnitude of data processing and providing data that are
consistent and of the highest scientific standards.

To achieve this goal, the task of georeferencing has now assumed greater importance, and it is
essential to ensure that orthorectified products generated over time are well registered to the ground.
For Landsat, the geolocation operation is performed by registering to a global reference dataset,
referred as the Global Land Survey (GLS), using correlation-based image matching techniques [1,2].
Although the current GLS version, circa 2000 (GLS2000), is a major improvement over earlier versions,
large geolocation errors and inconsistencies between adjacent scenes have been observed in some of
the GLS data. The GLS2000 in general is accurate to 25 m root mean square (RMS) error, but studies
using Landsat 8 with an absolute geolocation accuracy of 18 m at 90% circular error (CE90) suggests
that there are several scenes with geolocation errors on the order of 50 to 100 m [3,4]. The large errors
observed in the GLS correlates to the regions where accurate ground controls were unavailable during
GLS construction. The large inaccuracies and inconsistencies motivated us to work on improving the
GLS dataset using better methods, such as space-based triangulation adjustment.

The bundle adjustment techniques using space-based triangulation have been used successfully
for validation and have produced consistent and accurate datasets [3,5–14]. Some of these methods
use traditional bundle adjustment techniques used in aerial photogrammetry by adjusting the interior
and exterior orientation parameters ([11,15]), while others have refined this approach by using rational
polynomial coefficients ([13]) and with additional constraints provided from a digital elevation model
(DEM) [8,9]. Many of these studies focused on using bundle adjustment techniques for improving the
geoposition of the data but were limited to a few images or over a small geographic area. The study
by GeoScience Australia (GA) ([5]) is an exception, as they produced a georeferenced dataset at a
continental-wide scale. The GA produced a georeferenced dataset over Australia by using a long-strip
adjustment technique that facilitated a refinement in the georeferencing process of orbit and attitude
parameters of Advanced Land Observing Satellite (ALOS) Panchromatic Remote-Sensing Instrument
for Stereo Mapping (PRISM) images [5]. This dataset is referred to as the Australian Geographic
Reference Image (AGRI). Their studies suggest that the long-strip adjustment technique using a limited
number of accurate ground control points can georeference to about 1-pixel accuracy with an expected
RMS error close to 2.5 m and a 90% CE of 5.5 m. This is a significant advancement in the process
of generating reference imageries using space-based strip adjustment, but implementation of such
a technique directly to improve the GLS dataset is not feasible. For example, the strip adjustment
technique corrects for bias errors in the attitude and ephemeris, but does not account for the error
in the time-varying aspect of these parameters. The bias-only adjustment, though reasonable for the
relatively small orbital pass duration over Australia, can introduce large errors in the geoposition for
longer passes. This will invalidate the requirement to have reference datasets that are not only accurate
but also consistent with the adjacent regions. Other triangulation-based bundle adjustment methods
involve a large number of accurate ground control points and use rational polynomial coefficients.
This will increase the number of adjusted parameters and the corresponding complexity of the normal
matrix especially over large geographical regions. Our approach differs from others by applying
bundle adjustment techniques using a physical exterior orientation model to improve the geolocation
errors in the triangulated ground points. The purpose of our satellite block triangulation algorithm is
to integrate the information from a large number of image point observations, sparse ground control
information, and the a priori knowledge of the spacecraft position and attitude to yield a geometrically
consistent and minimum variance solution. While most other triangulation applications are directed at
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correcting the triangulated images, we are using triangulation in a geopositioning application to create
an accurate and consistent control point set.

In this paper, we have provided a detailed description of our space-based triangulation algorithm
that was developed and implemented to improve the geopositional accuracy of the GLS dataset using
Landsat 8 images. The remainder of this paper is organized into three sections. The overview of our
algorithm, theoretical construct and structure of the normal matrix used in the triangulation procedure,
and the method used to reduce and solve the large normal matrix using sequential elimination
techniques are introduced and discussed in Section 2. The application of this algorithm to improve the
GLS over Australia is discussed in Section 3, and the overall conclusions from our study are given in
Section 4.

2. Methods

The bundle adjustment using triangulation-based methods involves iteratively adjusting the
spacecraft position, velocity, attitude, attitude rate corrections, and ground point coordinates so
that the residual errors in the measured image points are minimized. The observation equation or
look-point equation, which relates the ephemeris, attitude, and ground control point data to the
image observations, is non-linear. Our approach uses a Taylor series approximation with numerically
computed partial derivatives to linearize the look-point equation. The linearized equation is solved
iteratively using an initial approximation, a priori covariance information, and computed partial
derivatives. Each iteration yields a set of incremental correction parameters that are accumulated
over all iterations. As the iterative solution converges, the incremental adjustments computed in each
iteration grow progressively smaller. The iterations are halted when the adjustments to the parameters
are smaller than a specified convergence threshold. In essence, the method solves a non-linear least
squares problem using a priori knowledge of the spacecraft and ground control points to minimize
the residual errors from image-based observations of the ground control points. The mathematical
formulation and description of our method is described in the following sections.

A pictorial representation of the space-based triangulation procedure is shown in Figure 1.
The orbital tracks prior to the triangulation for the two passes, pass 1 and pass 2, are shown in solid
red and blue curves, respectively. The corresponding dotted lines (red, blue) denote the orbital track
after the triangulation procedure. The solid red and blue line of sight vectors from the spacecraft to the
ground represent the viewing geometry of a specific ground point observed in the image, prior to the
triangulation process. The adjusted line of sight vectors to the ground point after the triangulation
are denoted by dotted lines. The pre-triangulated positions of the ground points are shown in black
dots, and their corresponding locations estimated from the spacecraft’s pre-adjustment attitude and
ephemeris are shown by red and blue dots for pass 1 and pass 2, respectively. The same points in
image 2 are shown as red and blue circles for passes 1 and 2, respectively. The green stars represent
the triangulated positions of the ground points, and the black arrows indicate the positional offsets
(∆G) for the ground points after triangulation. In general, a spacecraft flying in an orbit (solid red
curve) images a ground point (black dot) at a location offset from the ground point location (geodetic
offsets), due to the inaccuracies (random errors) in the spacecraft’s position and orientation. In cases
where the ground point locations are also inaccurate, the true position of the ground points cannot
be determined accurately due to the uncertainties in the observations. The space-based triangulation
process reduces the uncertainty in the estimation of the true position of the ground point by using
additional information provided by the other passes or images. In this case, pass 2 observes the
same ground point but locates it on the ground (blue dot) at a different place than pass 1. Using
the a priori information of the spacecraft’s ephemeris, attitude, and the ground control point, the
minimum-variance-based bundle adjustment technique simultaneously solves for the new position of
the ground control point that minimizes the overall error in the spacecraft and ground parameters.
In Figure 1, the corrections to the spacecraft parameters are denoted by (∆P1, ∆V1, ∆α11, ∆ᾱ11) and
(∆P2, ∆V2, ∆α21, ∆ᾱ21) for passes 1 and 2, respectively, and the corresponding adjustments to the ground
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parameters are denoted by ∆G. The advantage of the bundle adjustment is that the ground points that
are observed only in a single image (and pass) are also improved by adjusting the spacecraft’s position
and orientation parameters.

Figure 1. A pictorial representation of the space-based triangulation procedure. The orbital tracks
prior to the triangulation for the two passes, pass 1 and pass 2, are shown in solid red and blue curves,
respectively. The corresponding dotted lines (red, blue) denote the orbital track after the triangulation
procedure. The solid red and blue line-of-sight vectors from the spacecraft to the ground represent
the viewing geometry of a specific ground point observed in the image, prior to the triangulation
process. The adjusted line-of-sight vectors to the ground point after the triangulation are denoted by
dotted lines. The pre-triangulated positions of the ground points are shown in black dots, and their
corresponding locations estimated from the spacecraft’s pre-adjustment attitude and ephemeris are
shown by red and blue dots for pass 1 and pass 2, respectively. The same points in image 2 are shown
as red and blue circles for passes 1 and 2, respectively. The green stars represent the triangulated
positions of the ground points, and the black arrows indicate the positional offsets (∆G) for the ground
points after triangulation.

2.1. Data Synthesis

This section discusses the formulation and the procedure used to construct and extract the
necessary information/data to set up the observation equations for least squares.

2.1.1. Solution Parameters

The solution parameters or unknowns in our bundle adjustment process consist of 6 ephemeris
correction parameters (3 position and 3 velocity) for each satellite pass, 6 attitude correction parameters
(3 bias and 3 rate) for each image, and 3 position correction parameters for each ground point measured
as shown in Equation (1). In this context, an image refers to a single Worldwide Reference System
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(WRS-2) Landsat scene, while a pass consists of an entire descending orbit and may contain one
or more images, which need not be contiguous. The WRS-2 is a global notation system used to
reference and catalog Landsat data. It enables the user to identify a specific geographic region of
the world in the Landsat archive by the corresponding WRS-2 designation, which uses two numbers
namely, path and row. The path numbers identify the nominal satellite orbital tracks, while the row
numbers relate to the latitudinal center line of a frame of imagery or scene. The “pass” in this paper
refers to an image acquisition interval by Landsat over a WRS path on a particular day, while an
image refers to a WRS scene within a pass, which is approximately 24 seconds of contiguous data.
The pass corrections are limited to one set of ephemeris corrections to account for the fact that the
ephemeris errors are highly time correlated due to the dynamics of the spacecraft orbit. Furthermore,
restricting the ephemeris correction parameters to a single set per pass also helps to decorrelate the
ephemeris corrections from the attitude corrections. Attitude corrections are introduced for each image
to account for the more rapidly varying attitude knowledge errors. But the parameters for all images
from the same pass are linked using correlation observations to provide along-track continuity in the
attitude correction solution. This unique approach of linking attitude corrections within a pass using a
time-based correlation model limits both the magnitude and direction of attitude correction of each
image. The attitude correlation model is explained in Section 2.2.2. Each image has an associated scene
center time (tscj), and each pass has an associated pass center time (tpassj), which is calculated as the
median of the scene center times (tscj) for the scenes in the pass. Note that there will be one or more
image observations associated with each ground point, which may come from adjacent images of a
single pass and/or images from adjacent passes.

∆Pk =

 ∆PATk

∆PXTk

∆PRadialk

 , ∆V k =

 ∆VATk

∆VXTk

∆VRadialk

 ,

∆αj =

 ∆αrollj

∆αpitchj

∆αyawj

 , ∆ᾱj =

∆ᾱrratej

∆ᾱpratej

∆ᾱyratej

 , ∆Xgn =

∆Xgn

∆Ygn

∆Zgn

 ,

(1)

where
∆Pk and ∆V k are the ephemeris position and velocity corrections, respectively (one set per pass “k”) in
the along-track (AT), across-track (XT), and radial (Radial) directions;
∆αk and ∆ᾱk are the attitude bias and rate corrections, respectively (one set per image “j”) in the roll,
pitch, and yaw orientations;
∆Xgn refers to the ground control point corrections (one set per ground point “n”) in the
Earth-centered-Earth-fixed (ECEF) X, Y, and Z coordinate axes.

The correction terms as defined in Equation (1) are initialized to their a priori value of zero. These a
priori parameters have associated a priori covariance information, which is provided by the user as
parameters of the triangulation solution in the form of a priori weights on the ephemeris, attitude,
and ground control data. The covariance information for the ephemeris and attitude is dependent
on the characteristics and accuracy of the spacecraft. For example, the Landsat 8 spacecraft uses an
on-board global positioning system (GPS) to estimate its position and velocity, and has sophisticated
and advanced gyro systems with low drift errors, which are more accurate and precise than the
systems used in earlier Landsat missions (Landsat 5, Landsat 7). Therefore, it is important to use the
appropriate a priori covariance information that is tailored to the specific satellite system. Similar to
spacecraft position and orientation, the ground point covariance data can also be varied depending on
the accuracy of the data source and the type of ground point. For example, GPS surveyed points can
be assigned a smaller a priori variance (larger a priori weight) than control points transferred from
orthorectified images. Similarly, within the triangulation procedure, control points may be assigned
a smaller a priori variance than a tie point. As in the case with spacecraft covariance information,
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the covariance for ground points should be chosen based on the expected accuracy of the control
point data. An underestimate or overestimate of the a priori covariance can lead to an increased
number of iterations within the least squares and also produce larger residuals, resulting in poor
correction estimates for the pass, image, and ground points. In this study, we used the existing GLS
ground control points used by the Landsat product generation system [3,16,17] as control points with
sufficiently large a priori variance as they are expected to be less accurate. The a priori weights used in
this study are discussed in Section 3.

2.1.2. Image Point Observations

In this study, we used the Image Assessment System (IAS), a tool developed by U.S. Geological
Survey (USGS) for Landsat calibration [17,18], to measure the location of the ground control points
in the images. The control points are measured in Landsat 8 images that have been geometrically
corrected with compensation for terrain relief effects, but without reference to ground control—a
systematic terrain-corrected (L1GT) image product. The resampling grid used to generate the L1GT
image allows us to map the measured control point locations back to the original unresampled sensor
space. This allows us to recover the time of observation and the corresponding spacecraft position
and velocity. The measured coordinates in the Earth-referenced L1GT image and the corresponding
height from the DEM used to create the L1GT image provide the information needed to construct
the apparent ECEF ground point position. We construct the image observation vector using the
spacecraft position at the time of observation and the apparent ground point position, rather than
explicitly reconstructing the sensor viewing geometry from the sensor model. For each observation
point i, several data elements, as shown in Table 1, are collected to formulate the coordinate axes, the
observation vector, and to compute the observation covariance as shown in Equation (2)–(4). For each
observation, we record the observation vector (xi), time of observation (tobsi), spacecraft position and
velocity (Pi, V i, respectively), and observation covariance (Σi).

The orbital coordinate system axes are given as

k =
−Pi
|Pi|

, j =
V i × Pi
|V i × Pi|

, i = j× k, and M =

 iT

jT

kT

 . (2)

Using this, we can construct the observation vector as

L =

Xi − Xoi
Yi −Yoi
Zi − Zoi

 = Xi − Pi,

L′ = ML = M(X i−Pi ) =

L • i
L • j
L • k

 ,

xi =

[
xi
yi

]
=

 L•i
L•k
L•j
L•k

 .

(3)

Each image measurement adds two observations, one in the along-track and the other in
the across-track directions. Ground points with multiple image observations from different paths
can be positioned in the 3 dimensions (horizontal and vertical), whereas the points with single
image observations rely on the a priori knowledge of the height to update the horizontal position.
The observation covariance is estimated numerically by perturbing the linei and sampi (by adding 1)
without changing the tobsi. For example, xi

′ is calculated for (linei + 1, sampi), and the partial of xi
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with respect to line is calculated by taking the difference of xi from xi
′. Similarly, the partial derivative

of xi with respect to sample is calculated by perturbing sampi.

∂xi
∂line

= xi
′ − xi =

[
∂xi/∂line
∂yi/∂line

]
and

∂xi
∂samp

= xi
′′ − xi =

[
∂xi/∂samp
∂yi/∂samp

]

Σi =

[
∂xi

∂line
∂xi

∂samp
∂yi

∂line
∂yi

∂samp

] [
σ2

line 0
0 σ2

samp

] [
∂xi

∂line
∂yi

∂line
∂xi

∂samp
∂yi

∂samp

] (4)

Table 1. Observation data collected for each observation point (i).

Symbol Description

linei Measured image line coordinate
sampi Measured image sample coordinate
σline Line measurement standard deviation

σsample Sample measurement standard deviation
tobsi Time of observation of the image point based on its coordinates

Xi =
[
Xi Yi Zi

]T Apparent ECEF ground coordinate determined from the image measured coordinates
Pi =

[
Xoi Yoi Zoi

]T Spacecraft ECEF position vector at time tobsi

Vi =
[
VXoi VYoi VZoi

]T Spacecraft ECEF velocity vector at time tobsi
tsc Time of image scene center

ECEF: Earth Centered Earth Fixed coordinate system.

2.1.3. Ground Point Information

All the ground control points used in the study are specified in WGS84 ellipsoidal latitude,
longitude, and height. The ground point position vector in the Earth-centered-Earth fixed coordinate
system (ECEF), Xgn, is computed from the geodetic latitude (φ), geodetic longitude (λ), and height (h)
using the standard transformation [18], as shown in Equation (5).

The ground point position vector is given as

Xgn =

X
Y
Z

 =

 (N + h)cosφcosλ

(N + h)cosφsinλ

(N(1− e2) + h)sinφ

 , (5)

where N = a√
1−e2sin2φ

, and a and e are the WGS84 ellipsoidal semi-major axis and eccentricity,

respectively.
The covariance for the ground point vector in ECEF (Σgn) can be computed from the geodetic

covariance matrix (Σφ) as

Σgn = WΣφW T ,

Σφ =

σ2
φ 0 0

0 σ2
λ 0

0 0 σ2
h

 W =


∂X
∂φ

∂X
∂λ

∂X
∂h

∂Y
∂φ

∂Y
∂λ

∂Y
∂h

∂Z
∂φ

∂Z
∂λ

∂Z
∂h

 ,
(6)

where
σφ is the latitude standard deviation based on the accuracy of the ground control point (GCP);
σλ is the longitude standard deviation based on the accuracy of the GCP;
σh is the height standard deviation based on the accuracy of the GCP.
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The Jacobian matrix (W) is determined directly by taking the partial derivative of the trigonometric
functions in Equation (5), as shown in Equation (7).

∂N
∂φ = ae2sinφcosφ

(1−e2sin2φ)3/2

∂X
∂φ = −(N + h)sinφcosλ + ∂N

∂φ cosφcosλ ∂X
∂λ = −Y ∂X

∂h = cosφcosλ

∂Y
∂φ = −(N + h)sinφsinλ + ∂N

∂φ cosφsinλ ∂Y
∂λ = X ∂Y

∂h = cosφsinλ

∂Z
∂φ = (N(1− e2) + h)cosφ + ∂N

∂φ (1− e2)sinφ ∂Z
∂λ = 0 ∂Z

∂h = sinφ

(7)

For each ground control point, we record the ground control position vector (Xgn) and its
covariance matrix (Σgn).

2.2. Algorithm Overview

As discussed earlier, the space-based bundle block adjustment technique linearizes the non-linear
problem using a Taylor series expansion to solve for the correction estimates in attitude, ephemeris,
and ground control points using a least squares approach. The least squares problem is formulated
as Nδ = C, where N is the normal equation matrix, δ is the vector of unknowns as discussed in
Section 2.1.1, and C is the right-hand-side vector. Note that in an iterative solution such as this, the
unknowns are the current iteration’s incremental adjustments to the net correction parameters. These
incremental corrections should be driven to zero (or convergence threshold) as the iterative solution
converges. At the beginning of each triangulation solution iteration, the normal equations are initialized
with a priori “observations” that capture our knowledge of the accuracy of the ephemeris and attitude
data. These observations constrain the magnitude of the ephemeris and attitude corrections and also
provide the linkages between attitude correction parameters from the same pass. Once the normal
equations are initialized, the ground points are processed one at a time. All image observations
for a given ground point are processed, and that ground point is eliminated (temporarily) from the
triangulation solution before proceeding to the next ground point. Once all the ground points have been
processed, the “reduced” normal equations, containing only the ephemeris and attitude correction
unknowns, are solved, and the resulting corrections are used in a back-substitution procedure to
calculate the (previously eliminated) ground point correction unknowns. The advantage of this
parameter reduction/elimination technique is that the size of the normal equation matrix will be
considerably smaller, and therefore, its inverse can be computed with limited memory requirements in
a reasonable time. The formulation of this ground point elimination procedure is discussed in detail in
Section 2.2.3.

We begin the least squares process by gathering all the observations for each ground control point,
which are then used to construct the normal equation matrix as described below.

For each ground point, n:

(1) Update the initial ground position with the current correction estimate: X̂gn = Xgn +

∆Xgn.
(2) For each image point i, viewing ground point n, in image j and pass k:

(a) Compute the local ECEF to orbital coordinate system rotation matrix, Mi, using the
spacecraft state vector for this tie point, Pi, V i (see Equation (2)).
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(b) Update the spacecraft position and attitude with the current corrections. Note that
the corrections ∆Pk and ∆V k are in the orbital coordinate system; therefore, they
must be converted to ECEF to be applied to the initial state vector.

P̂i = Pi + MT
i (∆Pk + ∆V k(tobsi − tpassk))

V̂ i = V i + MT
i ∆V k

∆α̂j = ∆αj + ∆ᾱj(tobsi − tscj)

(8)

(c) Compute the updated ECEF to orbital (M̂) and attitude correction (T̂) matrices:

P̂i, V̂ i → M̂i =

 î
T

ĵ
T

k̂
T

 , ∆α̂i → T̂ i.

The attitude correction rotation matix (T) for roll (r), pitch (p), and yaw (y) is given as

T =


cos(p) cos(y) sin(r) sin(p) cos(y) + cos(r) sin(y) sin(r) sin(y)− cos(r) sin(p) cos(y)

− cos(p) sin(y) cos(r) cos(y)− sin(r) sin(p) sin(y) cos(r) sin(p) sin(y) + sin(r) cos(y)

sin(p) − sin(r) cos(p) cos(r) cos(p)

 . (9)

(d) Construct the predicted three-dimensional observation vector d(ui, νi), which
expresses the image measurements, ui, and observation residuals, νi, as a function
of the point, pass, and image unknowns for observation i.

T̂ id(ui, νi) = M̂i(X̂gn − P̂i) = L̂i

d(ui, νi) = T̂
−1
i L̂i = T̂

T
i L̂i

L̂′ i = T̂
T
i M̂i(X̂gn − P̂i) =

L̂′i1
L̂′i2
L̂′i3

 = d(ui, νi) = s

uxi + νxi
uyi + νyi

1


We can eliminate the unknown scale factor “s” by dividing the first and second

element by the third element to construct a two-dimensional observation vector x̂i

x̂i =

[
L̂′i1/L̂′i3
L̂′i2/L̂′i3

]
= F(∆Xgn, ∆Pk, ∆V k, ∆αj, ∆ᾱj).

(10)
(e) Construct the line of sight/look-point equation by combining the measured and

predicted observation vectors.

νi = x̂i − xi

xi + νi − F(∆Xgn, ∆Pk, ∆V k, ∆αj, ∆ᾱj) = 0,
(11)

where νi is the observation residual vector for observation i.
(f) Linearizing the function (Equation (11)) via a Taylor series expansion gives the

following observation equation:

xi + ν̂i − (x̂i + A1ikδk + A2ijδj + A3inδn) = 0

A1ikδk + A2ijδj + A3inδn = (xi − x̂i) + ν̂i,
(12)

where ν̂i represents the linearized observation residual vector, and A represents
the Jacobian matrix or matrices of partial derivatives with respect to the ephemeris
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corrections (A1ik), attitude corrections (A2ij), and ground point corrections (A3in) for
image point i, ground point n, in image j and pass k, as shown in Equation (13).

A1ik =

[
∂xi

∂Xok

∂xi
∂Yok

∂xi
∂Zok

∂xi
∂Vxok

∂xi
∂Vyok

∂xi
∂Vzok

∂yi
∂Xok

∂yi
∂Yok

∂yi
∂Zok

∂yi
∂Vxok

∂yi
∂Vyok

∂yi
∂Vzok

]

A2ij =

 ∂xi
∂rollj

∂xi
∂pitchj

∂xi
∂yawj

∂xi
∂rratej

∂xi
∂pratej

∂xi
∂yratej

∂yi
∂rollj

∂yi
∂pitchj

∂yi
∂yawj

∂yi
∂rratej

∂yi
∂pratej

∂yi
∂yratej


A3in =

[
∂xi

∂Xgn

∂xi
∂Ygn

∂xi
∂Zgn

∂yi
∂Xgn

∂yi
∂Ygn

∂yi
∂Zgn

]
(13)

These partial derivatives are computed numerically by perturbing the correction
parameters one at a time and computing the resulting effect on the predicted
observation vector, for example:

x̂i(∂Xo) = F(∆Xgn, ∆Pk +

∂Xo
0
0

 , ∆V k, ∆αj, ∆ᾱj),

∂xi
∂Xok

=
x̂i(∂Xo)− x̂i

∂Xo
.

(14)

(g) Construct the normal matrix: Assuming the normal equation Nδ = C, the normal
matrix N can be partitioned as shown in Equation (15), where δ1, δ2, and δ3

correspond to the ephemeris corrections, attitude corrections, and ground point
corrections, respectively. The structure of this matrix formulation is discussed in
Section 2.2.1.

N =

N1 M Q
MT N2 R
QT RT N3

 δ =

δ1

δ2

δ3

 C =

C1

C2

C3

 (15)

For the ground point n, image point i, in image j, and pass k, the contribution
of this observation to the normal equations can be estimated from the Jacobian
matrix (see Equation (13)) as shown below in Equation (16), where Σi is the
image–space covariance of the observation (see Equation (4)). The numbers in
the parentheses indicate the dimensions of the matrix. Note that this accounts
only for the contribution of the specific observation and does not include the a
priori contributions.

N1ik = AT
1ik Σ−1

i A1ik (6× 6)

Mikj = AT
1ik Σ−1

i A2ij (6× 6)

Qikn = AT
1ik Σ−1

i A3in (6× 3)

N2ij = AT
2ij Σ−1

i A2ij (6× 6)

Rijn = AT
2ij Σ−1

i A3in (6× 3)

N3in = AT
3in Σ−1

i A3in (3× 3)

C1ik = AT
1ik Σ−1

i (xi − x̂i) (6× 1)

C2ij = AT
2ij Σ−1

i (xi − x̂i) (6× 1)

C3in = AT
3in Σ−1

i (xi − x̂i) (3× 1)

(16)



Remote Sens. 2019, 11, 1640 11 of 25

The individual observation contributions to the normal matrix are combined with the a priori
contributions, which are discussed in Section 2.2.1. In the traditional least squares approach, the
entire normal matrix is inverted to estimate the parameter adjustments/correction in each iteration
until convergence is achieved. However, as discussed in the next section (Section 2.2.1), the size of
the N matrix can quickly become large, even for a small geographic region, and cannot be easily
inverted. We mitigated this issue by eliminating the ground points one at a time, the details of which
are discussed in Section 2.2.3.

2.2.1. Structure of the Normal Equations

If we have K passes, J images, and N ground points in the bundle adjustment solution, then there
will be a total of 6K + 6J + 3N unknowns, giving the matrices in the normal equation Nδ = C the
following dimensions:

N is (6K + 6J + 3N) by (6K + 6J + 3N),

δ is (6K + 6J + 3N) by 1,

C is (6K + 6J + 3N) by 1.

(17)

As there should be multiple ground points per image, a typical solution will have: N > J > K,
which tends to make the number of ground points drive the size of the normal equations to be solved.
Fortunately, as explained below, it is not necessary to solve the full (6K + 6J + 3N) by (6K + 6J + 3N)

problem simultaneously. The ground point unknowns can be added to and eliminated from the
solution sequentially, making it possible to reduce the dimension of the simultaneous solution to
(6K + 6J) by (6K + 6J). The ground point unknowns can be solved subsequently by back-substitution.
To see how this is done, consider the structure of the normal equations as shown in Equation (15).
The elements labeled “1” correspond to the ephemeris corrections (one set of 6 for each pass k), the
elements labeled “2” correspond to the attitude corrections (one set of 6 for each image j), and the
elements labeled “3” correspond to the ground point corrections (one set of 3 for each ground point n).
The diagonal elements of N, N1 and N3, are block diagonal, while N2 is block semi-diagonal, as shown
in Equation (18). N1 has one 6-by-6 non-zero diagonal component for each pass, and conceptually, N3

has one 3-by-3 diagonal component for each ground point, although we never form the complete N3

matrix. N2 has one 6-by-6 diagonal component for each image and a 6-by-6 off-diagonal block linking
each pair of images from the same pass.

N1 =


. . . 0 0
0 N1k 0

0 0
. . .

 N1k = N10 + ∑
i

N1ik

N3 =


. . . 0 0
0 N3n 0

0 0
. . .

 N3n = N30n + ∑
i

N3in

N2 =



. . . 0 0 0 0
0 N2j 0 N ′′2jm 0

0 0
. . . 0 0

0 N ′′
T

2jm 0 N2m 0

0 0 0 0
. . .


N2j = N20 + ∑

i
N2ij + N ′2j

(18)

The matrix structure above assumes that images j and m are from the same pass. The N1ik, N2ij,
and N3in terms are the contributions from image observation i as shown in Equation (16). The N10,
N20, and N30 terms are the contributions from the a priori weights applied to the ephemeris, attitude,
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and ground point corrections, respectively. As such, they are equal to the inverses of the a priori
correction term covariance matrices, as shown in Equation (19) below. Note that N10 and N20 are the
same for all passes and images, respectively, whereas N30n is indexed by ground point number (n),
allowing the ground points to be individually weighted. The N ′2j and N ′′2jm terms are used to link the
attitude corrections for images from the same pass by applying attitude correlation between two image
pairs, the details of which are discussed in Section 2.2.2.

N10 = Σ−1
10 =

[
Σ−1

P 0
0 Σ−1

V

]
, ΣP =

σ2
Xo 0 0
0 σ2

Yo 0
0 0 σ2

Zo

 , ΣV =

σ2
VXo 0 0
0 σ2

VYo 0
0 0 σ2

VZo

 ,

N20 = Σ−1
20 =

[
Σ−1

α 0
0 Σ−1

ᾱ

]
, Σα =

σ2
roll 0 0
0 σ2

pitch 0
0 0 σ2

yaw

 , Σᾱ =

σ2
rrate 0 0
0 σ2

prate 0
0 0 σ2

yrate

 ,

N30n = Σg−1
n .

(19)

The off-diagonal matrices of the normal matrix N in Equation (15) are all sparse matrices. The M
matrix with dimension 6K by 6J has 6 by 6 non-zero components along the row corresponding to
pass k, only in those columns that correspond to images j, that are part of pass k. The Q matrix with
dimension 6K by 3N has 6 by 3 non-zero components along the row corresponding to pass k, only in
those columns that correspond to ground points n, that are imaged in pass k. Similarly, the R matrix
with dimension 6J by 3N has 6 by 3 non-zero components along the row corresponding to image j,
only in those columns that correspond to ground points n, that are viewed in image j.

M =


. . . 0

...
. . . Mkj . . .

... 0
. . .

 Q =


. . . 0

...
. . . Qkn . . .

... 0
. . .

 R =


. . . 0

...
. . . Rjn . . .

... 0
. . .


Mkj = ∑

i
Mikj Qkn = ∑

i
Qikn Rjn = ∑

i
Rijn

(20)

The Mikj, Qikn, and Rijn terms are the contributions from image observation i, as shown in
Equation (16). The δ1 vector (6K by 1) contains the ephemeris corrections, the δ2 vector (6J by 1)
contains the attitude corrections, and the δ3 vector (3N by 1) contains the ground point corrections for
a given iteration. The C vectors contain the right-hand-side values for the ephemeris, attitude, and
ground point corrections. The C1, C2, and C3 matrices have the same dimensions as δ1, δ2, and δ3.

δ1 =


...

δk
...

 (6K× 1) δ2 =


...

δj
...

 (6J × 1) δ3 =


...

δn
...

 (3N × 1)

C1 =


...

C1k = C10k + ∑
i

C1ik

...

 C2 =


...

C2j = C20j + ∑
i

C2ij + C′2j

...

 C3 =


...

C3n = C30n + ∑
i

C3in

...


(21)

The C1ik, C2ij, and C3in terms in the above equations are the contributions from image observation
i as defined in Equation (16). The C10k, C20j, and C30n terms in Equation (22) correspond to the a
priori weights on the corrections (i.e., observations that the corrections are equal to zero). Note that
unlike the corresponding a priori contributions to N, the C terms are functions of the current (net)
correction values so they are indexed by pass, image, and ground point. The C′2j is the contribution for
the scene-to-scene correlation observations defined in Section 2.2.2.
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C10k = −Σ−1
10k

[
∆Pk
∆V k

]
C20j = −Σ−1

20j

[
∆αj
∆ᾱj

]
C30n = −Σ−1

30n∆Xgn (22)

2.2.2. Attitude Correction Correlation Observations

Landsat images separated by a short duration within a pass are highly correlated in their attitude
knowledge errors. Therefore, in the triangulation solution, although each image has separate attitude
correction parameters, the correlation between the attitude observations should be established. This is
achieved by building an attitude correlation model to estimate the image covariance for image pairs
from the same pass. Each image pair in the same pass yields a symmetric pair of observations: (a) the
correction for image j predicted from the correction for image m and (b) the correction for image m
predicted from the correction for image j. These correlation observations take the following form, as
shown in Equation (23), where I refers to the identity matrix.

B1δj + B2δm = −Djm Weight Wjm

B3δj + B1δm = −Dmj Weight Wmj

B1 = I

B2 =

[
−I −∆tI
0 −I

]
∆t = tj − tm

B3 =

[
−I ∆tI
0 −I

]

Djm =

[
∆αj − ∆αm − ∆ᾱm∆t

∆ᾱj − ∆ᾱm

]

Dmj =

[
∆αm − ∆αj + ∆ᾱj∆t

∆ᾱm − ∆ᾱj

]

(23)

Note that the signs on the terms containing ∆t in B2 and Djm are inverted as compared to the
corresponding terms in B3 and Dmj because we have maintained a consistent definition of ∆t in all of
these equations. The correlation observations are weighted based on the time difference between the
scene centers. The weight matrices (Wjm and Wmj) are estimated by assuming the attitude correction
parameters to be realizations of a random process, a(t), the attitude state vector, with zero mean
and a user-provided a priori covariance following a Gaussian distribution, i.e., a(t)∼Gaussian(0, Σ).
We further assume that a(t) is a Gauss–Markov process, which implies that the covariance of the two
realizations separated in time is given as shown in Equation (24).

E[a(t)aT(t + ∆t)] = e−|∆t|/τ Σ, where Σ =

[
Σα 0
0 Σᾱ

]
,

and τ is a user-provided correlation time constant parameter.

(24)

Based on the definition of the attitude correction model, a(t) evolves with time as

a(t + ∆t) = Φ(∆t)a(t) + w(t), where Φ(∆t) =

[
I ∆tI
0 I

]
, and w(t) is process noise. (25)

Our correlation observations link the states associated with each pair of images in a pass by
predicting a(t + ∆t) from a(t) using this propagation model. The covariance statistic of this prediction
is what we are interested in, and that is given in Equation (26).
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E[a(t + ∆t)−Φ(∆t)a(t)] = E[a(t + ∆t)]−Φ(∆t)E[a(t)] = 0

E[ (a(t + ∆t)−Φ(∆t)a(t)) (a(t + ∆t)−Φ(∆t)a(t))T ] = Σ∆t

Σ∆t = E[a(t + ∆t)aT(t + ∆t)] − Φ(∆t)E[a(t)aT(t + ∆t)]

− E[a(t + ∆t)aT(t)]ΦT(∆t) + Φ(∆t)E[a(t)aT(t)]ΦT(∆t)

Σ∆t = Σ−Φ(∆t)e−|∆t|/τ Σ− e−|∆t|/τ Σ ΦT(∆t) + Φ(∆t)ΣΦT(∆t)

Upon substitution,

Σ∆t = 2(1− e−|∆t|/τ)

[
Σα +

∆t2

2(1−e−|∆t|/τ)
Σᾱ

∆t
2 Σᾱ

∆t
2 Σᾱ Σᾱ

]
.

(26)

The weight matrix Wjm, shown in Equation (27), is the inverse of the above matrix (Σ∆t).

Σ−1
∆t = 1

2(1−e−|∆t|/τ)

[
Wα(∆t) −∆t

2 Wα(∆t)
−∆t

2 Wα(∆t) Σ−1
ᾱ + ∆t2

4 Wα(∆t)

]
,

where

Wα(∆t) =

(
Σα +

∆t2

4
(1+e−|∆t|/τ)

(1−e−|∆t|/τ)
Σᾱ

)−1
= Wα(−∆t),

Wjm = Σ−1
∆t where, ∆t = tj − tm,

Wmj = Wjm(−∆t).

(27)

Using the weight matrices, contributions of the correlation observations to the normal equations
are computed once for each iteration by analyzing the set of images, j = 1, ..., Jk, in each pass k. For
each image pair (j, m), the contributions to the normal equations are shown in Equation (28). Note that
each image pair (j, m) yields contributions to the diagonal blocks corresponding to images j and m,
and that the individual contributions from each image pair are summed, whereas each image pair (j,
m) also yields a unique off-diagonal block at row j, column m, in the block-structured N2 matrix (as
well as its transpose at row m, column j). The correlation observations also generate contributions to
the C2 vector, which are shown in Equation (29). As in the case for the contributions to the diagonal
blocks in the N2 matrix, the individual contributions to C2 from each image pair (j, m) are summed.

N′2j = N′2j + 2Wjm

N′2m = N′2m + 2Wmj

N′′2jm =
−1

(1− e−|∆t|/τ)

[
Wα(∆t) ∆t

2 Wα(∆t)
−∆t

2 Wα(∆t) Σ−1
ᾱ − ∆t2

4 Wα(∆t)

]
N′′2mj = N′′T2jm

(28)

C′2j+ =
1

(1− e−|∆t|/τ)

 Wα(∆t)
(

∆αm − ∆αj +
∆t
2 (∆ᾱm + ∆ᾱj)

)
Wα(∆t)

(
∆t
2 (∆αj − ∆αm)− ∆t2

4 (∆ᾱj + ∆ᾱm)
)
+ Σ−1

ᾱ (∆ᾱm − ᾱj)



C′2m+ =
1

(1− e−|∆t|/τ)

 Wα(∆t)
(

∆αj − ∆αm − ∆t
2 (∆ᾱj + ∆ᾱm)

)
Wα(∆t)

(
∆t
2 (∆αj − ∆αm)− ∆t2

4 (∆ᾱj + ∆ᾱm)
)
+ Σ−1

ᾱ (∆ᾱj − ∆ᾱm)


(29)
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2.2.3. Eliminating Ground Point Unknowns

As stated earlier, we process and eliminate one ground control point at a time to reduce the size
of the normal matrix. Once all of the image observations i corresponding to ground point n have been
added to the normal equations, point n can be eliminated from the solution as discussed below.

(1) First compute the inverse of the 3× 3 N3n matrix: N−1
3n .

(2) Compute and save (for future back-substitution): N−1
3n C3n.

(3) For each pass that viewed point n, k = 1, ..., Kn:

(a) Compute QknN−1
3n C3n.

(b) Subtract this term from the row k block of C1.
(c) Compute and save (for future back-substitution): N−1

3n QT
kn.

(d) For each pass that viewed point n, m = 1, ..., Kn:

(i) Compute QmnN−1
3n QT

kn.
(ii) Subtract this term from the row m, column k block of N1.

For example, if only two passes, k and m, view a point, the N1 and C1 matrices would be
adjusted as

N1 =



. . . 0 0 0 0
0 N1kk− = QknN−1

3n QT
kn 0 N1km− = QknN−1

3n QT
mn 0

0 0
. . . 0 0

0 N1mk− = QmnN−1
3n QT

kn 0 N1mm− = QmnN−1
3n QT

mn 0

0 0 0 0
. . .


,

C1 =



...
0

C1k− = QknN−1
3n C3n

0
C1m− = QmnN−1

3n C3n
0
...


.

(30)

(4) Similarly, for each image that viewed point n, j = 1, ..., Jn:

(a) Compute RjnN−1
3n C3n.

(b) Subtract this term from the row j block of C2.
(c) Compute and save (for future back substitution): N−1

3n RT
jn.

(d) For each image that viewed point n, m = 1, ..., Jn:

(i) Compute RmnN−1
3n RT

jn.
(ii) Subtract this term from the row m, column j block of N2.

(e) For each pass that viewed point n, k = 1, ..., Kn:

(i) Compute QknN−1
3n RT

jn.
(ii) Subtract this term from the off-diagonal block matrix Mkj.

(iii) Note that for passes k other than the one containing image j, the contents of
Mkj will initially be zero, but this will change as the process of ground point
elimination progresses.
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The computations as shown above eliminate ground point n from the solution. The ground points
are sequentially processed and immediately eliminated to create the reduced normal equations,
as shown below in Equation (31). The ground point corrections can be determined using the
back-substitution method as shown in Equation (32).

. . .
N1k Mkj

. . .
. . .

MT
kj N2j

. . .





...
δk
...
...

δj
...


=



...
C1k

...

...
C2j

...


(31)

δn = N−1
3n C3n −

Kn

∑
k=1

N−1
3n QT

knδk −
Jn

∑
j=1

N−1
3n RT

jnδj (32)

Having solved for all the unknowns for this iteration, the net corrections are updated as in
Equation (33). The iterations are continued until the incremental corrections are sufficiently small.

∆k ⇒ ∆k + δk ∆j ⇒ ∆j + δj ∆Xgn ⇒ ∆Xgn + δn

∆k =

[
∆Pk
∆V k

]
∆j =

[
∆αj
∆ᾱk

]
(33)

3. Results and Discussion

The USGS Landsat processing system uses the GLS2000 dataset as a geometric reference and
extracts ground control points (GCPs) in the form of image chips (64 × 64 pixels) centered at
well-defined points of interest [16]. These image chips, or GCPs, are used to register and generate
Landsat terrain-corrected products. In general, the GLS2000 dataset is accurate globally to within
a 25 m RMS error, but there are regions in certain parts of the globe where the absolute positional
error can exceed 40 m. This is especially true in places where accurate ground control positions were
unavailable when the GLS was created [3]. With the help of the satellite block triangulation technique
discussed in this work, we decided to improve the absolute accuracy of the GCPs derived from the
GLS2000 dataset using the improved pointing accuracy and performance of the Landsat 8 spacecraft.

In this work, we applied our triangulation method to perform a continental-level block
triangulation over Australia. The Australia block contains all path/row locations in Australia spanning
WRS paths 088 through 115 and rows 068 through 090, a total of 394 path/row scenes. Although none
of the GLS2000 scenes in this area exhibited geodetic offsets (absolute positional accuracy) of over 50
m, there were several places where offsets greater than 30 m were observed. Geoscience Australia
(GA) performed a comparison of the GLS dataset with their highly accurate Australian Geographic
Reference Image (AGRI) [5]. Their assessment also identified a few regions where the discrepancies
between the GLS and AGRI exceeded 30 m. To improve the consistency between the GLS and AGRI
framework, we performed a triangulation-based adjustment of the GLS GCPs.

We evaluated the performance of our triangulation-based bundle adjustment technique for
two cases: (a) unconstrained or free adjustment, and (b) AGRI-constrained adjustment. In the free
adjustment case, the absolute pointing information from the Landsat 8 Operational Land Imager
(OLI) scenes was used to improve the position of the GLS GCPs. This provides an unconstrained
triangulation solution in the sense that the Landsat 8 pointing accuracy is used to improve the GLS
GCPs without using any external source of ground control. The GLS control points were assumed to
have poor positional accuracy and were given very low weights. Table 2 shows the a priori standard
deviations (inversely related to the weights) used in the triangulation process. In the case of the
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AGRI-constrained adjustment, the GCPs extracted from the AGRI reference images were used as
control points (held fixed by using high weights), and the constrained bundle adjustment provided the
updated positions for the GLS GCPs, which, as in the free adjustment case, were given much lower a
priori weights. For both cases, the ground point measurements in the OLI images were performed
using the Image Assessment System (IAS) tool [18]. As shown in Table 2, the horizontal standard
deviations for the GLS ground points were set to 10,000 m for both cases. The GLS GCP network was
quite dense, with hundreds of points per Landsat WRS-2 scene. This dense GCP coverage is used
to ensure that even predominantly cloudy images can be registered. A typical scene will generate
about 1000+ observations (correlates 1000+ GCPs). As a result, the effective variation allowed by the
GCPs as a group is reduced by

√
n, i.e., the net a priori GLS GCP standard deviation for a typical

scene will be 10,000√
(1000)

≈ 300 m. Although 10,000 m does not reflect the accuracy of an individual GLS

GCP, it was necessary to use a very low a priori GCP weight to prevent the GCPs in aggregate from
overly influencing the solution, given how numerous they were. In the case of the AGRI-constrained
adjustments, the AGRI control points were allowed to vary by no more than 5 m, which was the
expected accuracy of the AGRI dataset [5]. Since the AGRI provides only horizontal positions, we
used Shuttle Radar Topographic Mission (SRTM) data as the elevation reference. These data were in
general accurate to better than 30 m, and so the standard deviation for the GLS ground point height
was set to 30 m [19,20]. The highly accurate GPS sensor onboard the Landsat 8 (L8) spacecraft enabled
us to provide a small standard deviation of 5 m for the ephemeris and 1 mm per sec for the velocity.
Similarly, the accurate attitude sensors on the L8 allowed us to use 10 micro-radians (1σ) as a measure
of allowable corrections to the attitude for each image. The standard deviation estimates for the AGRI
GCPs, ephemeris, and attitude were chosen to be small so that the corrections were predominantly in
the GLS GCPs, thereby transferring the accuracy of the OLI scenes (free adjustment) and the AGRI
control points (AGRI constrained) to the GLS. Furthermore, our 1σ estimates for the ephemeris and
attitude parameters were consistent with the established pointing accuracy of L8 based upon on-orbit
characterization, which indicated an absolute accuracy of 18 m CE90 [4]. The GCPs were identified
in the image using normalized grayscale correlation techniques. The expected uncertainty in this
image measurement was used as a measure of standard deviation for the observation point.Typically,
well-defined GCPs are located to better than quarter of a pixel, and therefore, we chose 5 m as the 1σ

estimate to account for correlation-related errors in the triangulation solution [4].

Table 2. Standard deviations used to determine the weights in the free adjustment and Australian
Geographic Reference Image (AGRI)-constrained triangulation solutions.

Items/Description Standard Deviation

Free Adjustment AGRI Constrained

GLS Ground point (X, Y) (m) 10,000 10,000
GLS Ground point (h) (m) 30 30

AGRI Ground point (X, Y) (m) 5
AGRI Ground point (h) (m) 5

Ephemeris (X, Y, Z) (m) 5 5
Velocity (X, Y, Z) (m/s) 0.001 0.001

Attitude (X, Y, Z) (micro-radians) 10 10
Attitude rate (X, Y, Z) (micro-radians/s) 0.01 0.01

Observation point (m) 5 5

GLS: Global Land Survey.

The AGRI data provided by GA consists of 2.5 m ground sample distance (GSD) panchromatic
images from the ALOS PRISM sensor. These images were downsampled to 15 m GSD and mosaicked
to generate reference images that cover the geographic extent of Landsat 8 (WRS-2) scenes. The
anchor sites were used as control sites in the development of the GLS2000 dataset and provide a
good distribution across Australia. The validation sites were chosen to include any regions that were
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identified by GA to have large errors, and additional sites were added for a more complete geographic
distribution. In this study, GCPs (image chips) extracted from the AGRI reference images over the
anchor sites were used as AGRI ground control points in the triangulation process. Triangulation of the
Australia block included 394 images (scenes) from 266 passes (intervals) to yield updated positions for
134,745 GLS GCPs. For the AGRI-constrained case, an additional 10,897 AGRI control points were also
part of the triangulation, but these points were held as a fixed control to constrain the triangulation
solution. Due to the large size of the Australia block, only a single scene from each path/row was
used in the triangulation. As mentioned in the methodology section, the Landsat images within a
pass were highly correlated in their attitude estimates over short duration and were linked using the
attitude correlation model described in Section 2.2.2. From our independent study using different
trials, we observed that the attitude errors typically decorrelate after 60 s, and therefore, the attitude
correlation time constant parameter (τ) was set to 60 s. Table 3 shows the number of observations,
ground control points, images, and passes in the triangulation solution for the two cases. In both cases,
the triangulation method converged to a solution in 2 iterations and reduced the overall observation
error by a factor of 10.

Table 3. Summary statistics on the number of observations, ground control points, images, and passes
used in the triangulation solution for the Australia block.

Description Free Adjustment AGRI Constrained

Number of observations 256,093 266,990
Number of passes 266 266
Number of images 394 394
Number of points 134,745 145,642 (adjusted 134,745)

Number of iterations to converge in the triangulation 2 2
Initial RMS observation error (microradians) 17.83 17.59
Final RMS observation error (microradians) 1.84 1.88

RMS: Root Mean Square.

Improvements to the GLS GCPs’ positions were assessed using two validation methods provided
by the IAS: (a) the geodetic accuracy assessment procedure, and (b) the image-to-image (I2I)
characterization procedure. In the first method, we estimated the geodetic offsets between the updated
GLS GCPs and the Landsat 8 scenes that were processed using only spacecraft pointing and relief
adjustments (systematic terrain-corrected product). Details of this IAS characterization procedure
can be found in the Landsat 8 documentation [18]. For this validation, we used the same Landsat
8 scenes that were used in the triangulation process to generate the GLS GCP observations. In the
second method, orthorectified Landsat 8 products generated using the updated GLS GCPs (as control
points) were compared directly against the AGRI reference images at the control and validation sites
using the I2I characterization procedure in IAS [18]. Unlike the first method, this comparison directly
provided an estimate on the absolute accuracy of the GLS GCPs in comparison with the AGRI dataset.

Geodetic offsets were measured for the original unadjusted GLS control, the control resulting
from the free adjustment, and the control from the AGRI-constrained adjustment. Summary statistics
for the geodetic offsets from these three cases are shown in Table 4. The geodetic offsets of the Landsat
8 systematic terrain-corrected products with respect to the GLS control prior to the triangulation
procedure are shown in Figure 2, where the anchor sites are shown in black outline. A smaller geodetic
offset indicates that the GLS GCPs were consistent with the Landsat 8 scenes’ positional accuracy,
whereas a larger number suggests inconsistencies between the two. The main advantage of this plot
is that it helped identify regions where the inconsistencies were larger than 1 multispectral pixel
(30 m). GCPs in these regions (shown as white ellipses) were highly likely to have poor positional
accuracy and should be improved after the triangulation procedure. The vector plot on the right
shows the magnitude and direction of the geodetic offsets (residuals) for each of the GCPs for a
particular path/row (90/82) whose net geodetic offset was greater than 30 m (red). The magnitude of
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the residuals was scaled by a factor of 300 for visual purposes. In this plot, the downward-pointing
arrow indicate a large systematic bias in the along-track direction. The mean geodetic offsets for the
scene (Landsat scene id: LC80900822013188LGN01) used in the triangulation procedure were found to
be –3.1 m and –31.9 m in the across- and along-track directions, respectively.

Figure 2. Plot of geodetic accuracy of Landsat 8 scenes prior to the triangulation procedure.
The geodetic offsets are shown for each of the 394 scenes in the Australia block (left). A small number
indicates that the Landsat 8 scene’s positional accuracy is consistent with the GLS ground control
points (GCPs), and a large number suggests inconsistencies between the scene’s pointing accuracy
and the GLS GCPs. The anchor sites are shown using black outline, and the regions where GLS
GCPs are expected to have poor positional accuracy are shown in white ellipses. The vector plot on
the right shows the magnitude and direction of the geodetic offsets (residuals) for each of the GCPs
for a particular path/row (90/82). The magnitude of the residuals is scaled by a factor of 300 for
visual purposes. The downward-pointing arrow denotes a large systematic bias in the along-track
direction. The mean geodetic offsets were−3.1 m and−31.9 m in the across- and along-track directions,
respectively, for the particular scene used in this procedure (LC80900822013188LGN01).

The geodetic offsets after the triangulation procedure are shown in Figures 3 and 4 for the free and
AGRI-constrained adjustment cases, respectively. Comparing the pre- and post-triangulation geodetic
results, it was observed that the regions identified with poor geometric accuracy (white ellipses) in the
original GLS had improved significantly in both the free and AGRI-constrained cases. Furthermore,
offsets for many of the scenes in the block were within 6 m for the free adjustment case. This was to be
expected as the free triangulation adjustment process essentially improves the entire block using the
pointing knowledge of these scenes. In the AGRI-constrained case, the offsets for most of the scenes
were between 6 m and 12 m, which was consistent with the expected accuracy of the Landsat 8 pointing
knowledge and AGRI reference. For one of the scenes in the block (near the center of the block), the
offset observed was larger than expected (24–30 m) for the free adjustment case, but the same scene
was also found to show large offsets in the AGRI-constrained case (see Figure 4). This suggests that the
error in this path/row was mainly due to poor pointing knowledge of the specific L8 scene, and not in
the improved GCPs. This clearly demonstrates that the triangulation procedure has the ability to make
an entire block consistent without introducing scene-dependent bias into the final adjustments.
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Figure 3. Plot of geodetic accuracy of Landsat 8 scenes after the free adjustment triangulation process.
A small number indicates that the GLS GCPs are consistent with the pointing knowledge of the scenes,
while a large number is likely to indicate an error in the scenes’ pointing knowledge, more so than any
error in the adjustments to the GCPs. The block triangulation method thus highlights images that are
not consistent with the block as a whole.

Figure 4. Plot of geodetic accuracy of Landsat 8 scenes after the AGRI-constrained triangulation
process. A small number indicates that the scene’s pointing knowledge is consistent with the AGRI
reference, while a large number is likely to indicate an error in the scene’s pointing knowledge, more
so than any error in the adjustments to the GCPs. This should highlight images with poorer absolute
pointing knowledge.

The second validation method used the I2I characterization procedure to assess the improvements
from the triangulation technique. Figures 5–7 show the geometric error between the AGRI reference and
the Landsat 8 orthorectified scenes (using GLS GCPs) prior to the triangulation, after free-adjustment
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triangulation, and after AGRI-constrained adjustment, respectively. The summary statistics of this
validation method for the original GLS control and for the two triangulation solutions are shown
in Table 4. In Figure 5, it was observed that the regions with large geometric offsets (>30 m) are
the regions where the geodetic characterization procedure also showed large offsets (see Figure 2).
Similar to the geodetic offsets, large offsets in I2I indicated regions where the GLS GCPs should be
improved. Unlike geodetic offsets, which are dependent on the pointing accuracy of L8 (18 m), the I2I
offsets can directly provide the absolute error of the GLS GCPs by comparing with the more accurate
AGRI reference (5 m). Comparing the pre-triangulation adjustment with the free adjustment results
(see Figures 5 and 6, Table 4), it was evident that the regions with large residuals were improved
significantly and that the majority of the sites were within 12 m, even without using any ground
controls in the block. The net RMS for the 37 anchor sites improved from 15.4 m in the original GLS
to under 9 m after free adjustment, and the largest residuals in the block reduced from 36.8 m to 13.1
m. The RMS and the maximum offset in the block for the anchor and validation sites were similar,
which indicated that the original GLS triangulation effectively distributed the control accuracy from
the anchor sites throughout the Australia block. In the validation for AGRI-constrained triangulation,
the RMS for the anchor sites improved from 15.4 m to 3.1 m, and the largest offset in the block reduced
from 36.8 m to 5.7 m. As in the free adjustment validation, the RMS was consistent for both the anchor
and validation sites, and the overall offsets for all the validation scenes except for one were under
6 m. A limited number of external ground control points (37 AGRI scenes versus 394 scenes in the
block) were enough to adjust the entire block without introducing any geometric artifacts in the block,
as evident in Figure 7. The validation results presented in this section have clearly demonstrated
that our triangulation method can adjust a continent-level block seamlessly and consistently both
with and without the need for additional ground control to improve the block. Although there was a
significant improvement with the use of ground control points, our triangulation method can make use
of the accurate pointing knowledge of the spacecraft alone to generate a consistent, global geometric
reference GCP set.

Figure 5. Residual offsets between Landsat-8 orthorectified products using GLS GCPs prior to the
triangulation and the AGRI reference data using the image-to-image (I2I) characterization procedure.
The anchor sites are indicated by black outline. Note that there are a few sites where the offsets are
larger than 30 m with respect to the AGRI, most of which are consistent with the geodetic offsets from
Figure 2.
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Figure 6. Residual offsets between Landsat 8 orthorectified products using GLS GCPs after free
triangulation adjustment and the AGRI reference data using the image-to-image (I2I) characterization
procedure. The anchor sites are indicated by black outline. Note that by using the free adjustment
triangulation, most of the sites are within 12 m with respect to the AGRI reference even without using
the AGRI control in the triangulation.

Figure 7. Residual offsets between Landsat 8 orthorectified products using GLS GCPs after
AGRI-constrained triangulation adjustment and the AGRI reference data using the image-to-image
(I2I) characterization procedure. The anchor sites are indicated by black outline. Note that using the
AGRI-constrained solution, almost all of the test sites are within 6 m with respect to the AGRI controls.



Remote Sens. 2019, 11, 1640 23 of 25

Table 4. Summary statistics from the I2I characterization for the anchor and independent
validation sites.

I2I Original GLS Free Adjustment AGRI Constrained

(GLS vs. AGRI) Anchor Valid All Anchor Valid All Anchor Valid All

Number of Scenes 37 82 119 37 82 119 37 82 119
Max 36.8 35.4 36.8 13.1 12.3 13.1 5.7 7.8 7.8
RMS 15.4 15.2 15.3 8.6 8.8 8.8 3.1 3.8 3.6

4. Conclusions

In this paper, we have described the space-triangulation-based bundle adjustment algorithm and
demonstrated how the algorithm can be used to improve the local and regional inconsistencies in
the GLS2000 reference dataset and create a refined, consistent, and accurate control base. In general,
the geometric improvements in the positional accuracy and consistency of the data are dependent
on the type of sources used in the triangulation. In this study, we leveraged the pointing knowledge
of the Landsat 8 spacecraft to transfer its accuracy to the GLS2000 ground control points. One of the
unique characteristics of this algorithm is the use of a correlation model linking the attitude corrections
between images of the same pass. This promoted consistency in the attitude corrections, which was
important especially when data were acquired over long orbital passes. For example, the L8 satellite
passing over Siberia will image the ocean for several minutes before it passes over Australia. The
attitude will be highly correlated over Siberia as the images are acquired within a short duration
from each other. However, the attitude estimates over Australia will be completely decorrelated with
the attitude estimates over Siberia. Therefore, it is important to model this correlation over shorter
durations to ensure consistency and to model the decorrelation over long durations to suppress the
propagation of attitude errors in the bundle adjustment. Our algorithm assigned a priori covariance for
all the parameters in the bundle adjustment, which helped to adjust the block without the requirement
of external ground controls. This was important, especially when improvements in the dataset were
needed over regions where accurate ground control points were unavailable.

The theoretical basis and methods explained in great detail in this paper were implemented
to demonstrate the capability to improving the GLS2000 dataset. In this regard, we processed and
analyzed the entire Australian continent both with and without the use of external ground controls
to evaluate the improvement and consistency of the entire block. We validated the performance of
our method using the AGRI reference data, which were accurate to within 5 m CE90. Comparison
of the improved GLS2000 using our bundle adjustment method with the AGRI reference for the free
solution (without control) indicated a significant improvement in the absolute positional accuracy
and internal consistency of the dataset. The relative horizontal accuracy improved from 15.4 m for
the block to 8.8 m without the use of external controls. Furthermore, most of the validation sites were
found to be within 12 m with respect to the AGRI dataset, which was in good agreement with the
expected pointing accuracy of the Landsat 8 data. When the block was adjusted by including the
AGRI control points, the horizontal accuracy improved from 15.4 m to 3.6 m. The residuals for all the
validation scenes, except one, were within 6 m, indicating block-level refinements both in accuracy
and consistency.

In the future, we plan to extend this work to cover all the continental blocks in an effort to
generate a global reference dataset that will be used to produce Landsat orthorectified products. To
improve the consistency of the Landsat terrain-corrected products with products from other sensors
such as Sentinel 2, we plan to tie our bundle adjustment to the Sentinel 2 Global Reference Image
(GRI) dataset. The GRI dataset is derived from orthorectified Sentinel 2 cloud-free images and is
planned to be used as reference in the Sentinel 2 product generation system [21]. We believe that the
Landsat 8 terrain-corrected data, when processed using the improved reference dataset, will align to
sub-pixel precision with the Sentinel 2 terrain-corrected data that are processed using GRI. Based on



Remote Sens. 2019, 11, 1640 24 of 25

the results from the Australian block using the AGRI controls, we anticipate the Landsat 8 to Sentinel 2
registration accuracy to be on the order of 10 m (2σ) or better once the archived Landsat 8 and Sentinel 2
data have been reprocessed using their respective reference datasets. The USGS has plans to reprocess
the entire Landsat archive using the improved Landsat global reference dataset as part of Landsat
collection processing (Collection 2). This reprocessing is expected to be complete in early 2020. The
schedule for reprocessing the Sentinel 2 archive using the GRI has not yet been released officially. The
harmonized global references will help in generating terrain-corrected products that are registered to a
common geometric reference. This will allow the remote sensing community to use the products from
either sensor without a need for registration or double resampling for their time-series analysis [22–24],
thereby bringing the scientific community one step closer to the realization of analysis-ready data.
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