
remote sensing

Article

GPU-Based Lossless Compression of Aurora Spectral
Data using Online DPCM

Jiaojiao Li 1 , Jiaji Wu 1,* and Gwanggil Jeon 1,2

1 School of Electronic Engineering, Xidian University, Xi’an 710071, China
2 Department of Embedded Systems Engineering, Incheon National University, Incheon 22012, Korea
* Correspondence: wujj@mail.xidian.edu.cn

Received: 25 May 2019; Accepted: 7 July 2019; Published: 10 July 2019
����������
�������

Abstract: It is well known that aurorae have very high research value, but the data volume of
aurora spectral data is very large, which brings great challenges to storage and transmission. To
alleviate this problem, compression of aurora spectral data is indispensable. This paper presents
a parallel Compute Unified Device Architecture (CUDA) implementation of the prediction-based
online Differential Pulse Code Modulation (DPCM) method for the lossless compression of the aurora
spectral data. Two improvements are proposed to improve the compression performance of the
online DPCM method. One is on the computing of the prediction coefficients, and the other is on
the encoding of the residual. In the CUDA implementation, we proposed a decomposition method
for the matrix multiplication to avoid redundant data accesses and calculations. In addition, the
CUDA implementation is optimized with a multi-stream technique and multi-graphics processing
unit (GPU) technique, respectively. Finally, the average compression time of an aurora spectral image
reaches about 0.06 s, which is much less than the 15 s aurora spectral data acquisition time interval
and can save a lot of time for transmission and other subsequent tasks.

Keywords: aurora spectral data; online DPCM; CUDA; shared memory and registers; multi-stream
technique; multi-GPU technique

1. Introduction

Aurorae are considered some of the most beautiful wonders in nature, which are colorful and
constantly changing. When the high-energy charged particles in space are carried by the solar wind
to the earth, they are attracted by geomagnetic fields to the poles of the earth, colliding with the
molecules and atoms in the upper atmosphere, and finally resulting in an aurora [1]. Aurorae have
very significant research value. They are helpful for the research of solar activities and their effects on
the earth. Moreover, studying aurorae can provide a reference for studying other planets, which is
because aurorae are a common phenomenon on planets with magnetic fields in the solar system.

Aurora spectral data is captured by the spectrometers mounted in the polar regions. As the exact
occurrence time of an aurora is unknown, a spectrometer is required to capture aurora spectral data
continuously at a very high frequency [2]. As a result, the amount of aurora spectral data is very large,
which brings a huge challenge to storage and transmission. To address this problem, compression
of aurora spectral data is indispensable, and lossless compression is preferred to lossy compression.
There are two main reasons for this: one is that aurora spectral images have very high scientific value
and their acquisition is quite expensive, so aurora spectral images have long-term preservation value;
the other is that minor information loss may cause large errors in some applications [2], therefore, no
information loss is allowed in aurora spectral image compression.

In this paper, the test dataset is the aurora spectral data collected at the Zhongshan Station in
Antarctica in 2014. The temporal resolution of the camera is 15 s, i.e., an aurora spectral image is

Remote Sens. 2019, 11, 1635; doi:10.3390/rs11141635 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8477-6652
https://orcid.org/0000-0002-0651-4278
http://dx.doi.org/10.3390/rs11141635
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/14/1635?type=check_update&version=2

Remote Sens. 2019, 11, 1635 2 of 26

produced every 15 s. Each aurora spectral image is stored in Flexible Image Transport System (FITS)
format [3] and is 1024 × 1024 in size. Each pixel is stored as a 16-bit unsigned integer. Figure 1a is an
aurora spectral image captured at the Zhongshan Station on July 15, 2014, at 13:29:40, and is named as
20140715_132940. Figure 1b is an aurora spectral image captured on September 23, 2014, at 14:43:20,
and is named as 20140923_144320. All the aurora spectral images referred to in the following contents
will adopt this naming method. Since an aurora spectral image is produced every 15 s, the compression
time must be within 15 s. Our scheme compresses the aurora spectral data using the online Differential
Pulse Code Modulation (DPCM) method, and accelerate the algorithm on graphics processing units
(GPUs) using Compute Unified Device Architecture (CUDA).

Remote Sens. 2018, 10, x FOR PEER REVIEW 2 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

information loss may cause large errors in some applications [2], therefore, no information loss
is allowed in aurora spectral image compression.

In this paper, the test dataset is the aurora spectral data collected at the Zhongshan Station
in Antarctica in 2014. The temporal resolution of the camera is 15 s, i.e., an aurora spectral image
is produced every 15 s. Each aurora spectral image is stored in Flexible Image Transport System
(FITS) format [3] and is 1024 × 1024 in size. Each pixel is stored as a 16-bit unsigned integer.
Figure 1a is an aurora spectral image captured at the Zhongshan Station on July 15, 2014, at
13:29:40, and is named as 20140715_132940. Figure 1b is an aurora spectral image captured on
September 23, 2014, at 14:43:20, and is named as 20140923_144320. All the aurora spectral
images referred to in the following contents will adopt this naming method. Since an aurora
spectral image is produced every 15 s, the compression time must be within 15 s. Our scheme
compresses the aurora spectral data using the online Differential Pulse Code Modulation
(DPCM) method, and accelerate the algorithm on graphics processing units (GPUs) using
Compute Unified Device Architecture (CUDA).

(a) (b)

Figure 1. Two aurora spectral images captured at the Zhongshan Station. Each aurora spectral
image has 1024 spectral bands and 1024 spatial sampling points. The color bar on the right is
used to indicate the value of each color.

The idea of DPCM is to decorrelate data with linear regression prediction. Aiazzi et al.
proposed two different linear regression prediction-based near-lossless and lossless still image
compression algorithms. One is denoted as Relaxation-Labelled Prediction (RLP) [4], which
partitions an image into small blocks and then calculates a linear predictor for each block. The
other is named Fuzzy logic-based Matching Pursuit (FMP) [5], which computes the linear
regression predictor through fuzzy-logic techniques. In addition, Aiazzi et al. proposed a
context-based near-lossless or lossless coding method [6] for any causal DPCM scheme, which
partitions prediction errors into homogeneous classes before arithmetic coding. Then,
Mielikainen and Toivanen proposed a method named Clustered DPCM (C-DPCM) [7] for the
lossless compression of hyperspectral images. The C-DPCM algorithm first clusters all of the
spectral lines in a hyperspectral image into several classes, then computes the prediction
coefficients of each spectral band of each class using the least square method (LSM), then
calculates the residuals, and finally encodes the prediction coefficients and the residuals using
the range coder [8]. The range coder is similar to the arithmetic coder, but is almost twice as
fast as arithmetic coder.

Since both hyperspectral and aurora spectral images are spectral data, we apply the idea
of DPCM to the lossless compression of aurora spectral images as well. However, an aurora
spectral image has 1024 spectral bands, which is much more than the 220 or 224 spectral bands
of the hyperspectral images introduced in a previous study [7], thus the total bitrate will be
very large if the prediction coefficients of each band are encoded. To tackle this problem, the

Figure 1. Two aurora spectral images captured at the Zhongshan Station. Each aurora spectral image
has 1024 spectral bands and 1024 spatial sampling points. The color bar on the right is used to indicate
the value of each color.

The idea of DPCM is to decorrelate data with linear regression prediction. Aiazzi et al. proposed
two different linear regression prediction-based near-lossless and lossless still image compression
algorithms. One is denoted as Relaxation-Labelled Prediction (RLP) [4], which partitions an image
into small blocks and then calculates a linear predictor for each block. The other is named Fuzzy
logic-based Matching Pursuit (FMP) [5], which computes the linear regression predictor through
fuzzy-logic techniques. In addition, Aiazzi et al. proposed a context-based near-lossless or lossless
coding method [6] for any causal DPCM scheme, which partitions prediction errors into homogeneous
classes before arithmetic coding. Then, Mielikainen and Toivanen proposed a method named Clustered
DPCM (C-DPCM) [7] for the lossless compression of hyperspectral images. The C-DPCM algorithm
first clusters all of the spectral lines in a hyperspectral image into several classes, then computes
the prediction coefficients of each spectral band of each class using the least square method (LSM),
then calculates the residuals, and finally encodes the prediction coefficients and the residuals using
the range coder [8]. The range coder is similar to the arithmetic coder, but is almost twice as fast as
arithmetic coder.

Since both hyperspectral and aurora spectral images are spectral data, we apply the idea of DPCM
to the lossless compression of aurora spectral images as well. However, an aurora spectral image
has 1024 spectral bands, which is much more than the 220 or 224 spectral bands of the hyperspectral
images introduced in a previous study [7], thus the total bitrate will be very large if the prediction
coefficients of each band are encoded. To tackle this problem, the idea of online compression [9]
is adopted in this paper. The main idea of online compression is to predict the current pixel using
the already coded pixels, so that the decoder can calculate the prediction coefficients of the current
pixel using the already decoded pixels, and there is no need to encode the prediction coefficients and
transmit them to the decoder. Consequently, when using the online DPCM for the compression of
the aurora spectral data, the only data that needs to be encoded and transmitted to the decoder is the

Remote Sens. 2019, 11, 1635 3 of 26

residual. In addition, we proposed two improvements to improve the compression performance of the
original online DPCM method [9]: one is on the establishment of the linear system of equations when
computing the prediction coefficients, and the other is on the encoding of the residual.

In addition to DPCM, there are many other lossless compression algorithms, such as JPEG-LS
(JPEG is the acronym for Joint Photographic Experts Group, and the JPEG-LS is the new standard
for lossless and near-lossless compression of continuous-tone images), JPEG2000 (JPEG2000 is the
successor of the JPEG with superior compression performance), and CALIC (Context-based, Adaptive,
Lossless Image Codec). The core algorithm of JPEG-LS is LOw COmplexity LOssless COmpression
for Images (LOCO-I) [10,11], in which a fixed predictor is used to detect vertical or horizontal edges,
and the predicted value of a pixel can be seen as the median of the three candidate predicted values.
JPEG2000 [12] is a wavelet-based still image compression standard, which can achieve both lossy and
lossless compression within a common framework. The CALIC [13] uses a large number of modeling
contexts to condition a nonlinear predictor, and the nonlinear predictor can adapt itself by learning
from its past errors in a given context. However, JPEG-LS, JPEG2000, and CALIC were developed for
common images, rather than spectral data.

Besides the two-dimensional (2-D) compression methods introduced above, there are also some
three-dimensional (3-D) methods. Kim and Pearlman proposed the 3D-SPIHT (Three-Dimensional Set
Partitioning In Hierarchical Trees) [14] for lossy video coding. Lucas et al. [15] proposed a method
called 3D-MRP (Three-Dimensional Minimum Rate Predictors) for the lossless compression of medical
images. Xiaolin and Memon extended the original CALIC to 3-D [16] for the lossless compression of
multispectral images. Since hyperspectral images are usually very large and have high application
value, many researchers have devoted their efforts to the compression of hyperspectral images using
3-D methods [17–20]. In fact, aurora spectral images can also be considered as 3-D images if the time
dimension is added, and the 3-D methods can also be applied to the compression of aurora spectral
images. However, the Antarctic Zhongshan Station is far from our country China and the transmission
link is very limited [9], and larger files are more likely to cause transmission errors, therefore, aurora
spectral images are usually compressed and transmitted frame by frame [2].

To speed up the online DPCM algorithm, this paper will take advantage of the powerful computing
capability of the GPU. Traditionally, the GPU is only responsible for graphic rendering, and most
of the processing is done by the central processing unit (CPU). Driven by the demand of the video
game market and military scene simulation, GPU performance has rapidly improved, and now GPUs
have developed into General Purpose GPUs (GPGPU). This also benefited from the development of
CUDA, which is a general-purpose parallel computing platform and programming model, and allows
programmers to program with the high-level programming language C. GPUs play a significant role
in the fields of finance, petroleum, astronomy, signal processing, image processing, video compression,
and others.

GPUs are specialized for high arithmetic intensity, high parallelism tasks. In our online DPCM
aurora spectral data compression scheme, the computing of the predicted value of each pixel is
independent, so that they can be calculated in parallel using GPUs. Furthermore, the prediction
coefficients for each pixel are calculated using the least square method (LSM), and the main operations
of LSM are matrix multiplication and matrix inversion, both of which are well-suited for acceleration
with GPUs. Therefore, it is reasonable and suitable to accelerate the online DPCM algorithm in parallel
with GPUs. Many researchers have utilized GPUs to speed up their algorithms. Simek and Asn [21]
and Tenllado et al. [22] introduced parallel implementations of the 2-D Discrete Wavelet Transform
(2D-DWT) on GPUs. The wavelet-based still image compression standard JPEG2000 was implemented
on GPUs in a previous study [23]. Santos et al. [24] and Keymeulen et al. [25] used GPUs to speed
up lossy and a lossless hyperspectral image compression algorithms, respectively. Wu et al. [26]
implemented a GPU-based spatially adaptive hyperspectral image classification method.

The rest of the paper is structured as follows. Section 2 introduces the online DPCM method
for aurora spectral data compression. Section 3 presents the detailed CUDA implementation of the

Remote Sens. 2019, 11, 1635 4 of 26

online DPCM method. Section 4 analyzes the performance of the serial and the CUDA parallel
implementations of the online DPCM algorithm, and optimizes the CUDA implementation using
multi-stream and multi-GPU techniques, respectively. Finally, Section 5 summarizes this paper.

2. The Improved Online DPCM Method for Aurora Spectral Data Compression

2.1. Overview of the Online DPCM Method

The main steps of the online DPCM algorithm for aurora spectral image compression are as follows:

• Compute the prediction coefficients for each pixel;
• Calculate the prediction image and its difference from the original image, i.e., the residual;
• Encode the residual.

The prediction coefficients are calculated using the least square method (LSM). Figure 2
shows a pixel xm,n and the area used to predict it, and Equation (1) is the linear system of
equations built to compute the prediction coefficients for xm,n. N is the prediction order, which
defines how many previous columns were used to compute the prediction coefficients. The
xi, j (i = 0, 1, · · · , m− 1, j = n −N, n−N + 1, · · · , n) is the pixel at the ith row and the jth column,

and
[
α0 α1 · · · αN

]T
is the prediction coefficient vector. It can be seen that the linear system of

the equations involves all the pixels in area A1(xm,n), but does not involve the xm,n itself. Therefore, the
decoder can also compute the prediction coefficients of xm,n using the pixels in A1(xm,n), and there is no
need to transmit the prediction coefficients to the decoder. This is the idea of online compression.

x0,n−N

x1,n−N
...

xm−1,n−N

x0,n−N+1

x1,n−N+1
...

xm−1,n−N+1

· · ·

· · ·

· · ·

· · ·

x0,n−1

x1,n−1
...

xm−1,n−1



α1

α2
...
αN

 =


x0,n

x1,n
...

xm−1,n

 (1)

Remote Sens. 2018, 10, x FOR PEER REVIEW 4 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

up their algorithms. Simek and Asn [21] and Tenllado et al. [22] introduced parallel
implementations of the 2-D Discrete Wavelet Transform (2D-DWT) on GPUs. The wavelet-
based still image compression standard JPEG2000 was implemented on GPUs in a previous
study [23]. Santos et al. [24] and Keymeulen et al. [25] used GPUs to speed up lossy and a
lossless hyperspectral image compression algorithms, respectively. Wu et al. [26] implemented
a GPU-based spatially adaptive hyperspectral image classification method.

The rest of the paper is structured as follows. Section 2 introduces the online DPCM
method for aurora spectral data compression. Section 3 presents the detailed CUDA
implementation of the online DPCM method. Section 4 analyzes the performance of the serial
and the CUDA parallel implementations of the online DPCM algorithm, and optimizes the
CUDA implementation using multi-stream and multi-GPU techniques, respectively. Finally,
Section 5 summarizes this paper.

2. The Improved Online DPCM Method for Aurora Spectral Data Compression

2.1. Overview of the Online DPCM Method

The main steps of the online DPCM algorithm for aurora spectral image compression are
as follows:
• Compute the prediction coefficients for each pixel;
• Calculate the prediction image and its difference from the original image, i.e., the residual;
• Encode the residual.

The prediction coefficients are calculated using the least square method (LSM). Figure 2
shows a pixel xm,n and the area used to predict it, and Equation (1) is the linear system of
equations built to compute the prediction coefficients for xm,n. N is the prediction order, which
defines how many previous columns were used to compute the prediction coefficients. The
xi,j (i = 0, 1, ⋯, m-1, j = n -N, n-N + 1, ⋯, n) is the pixel at the ith row and the jth column, and ሾα0 α1 ⋯ αNሿT is the prediction coefficient vector. It can be seen that the linear system of
the equations involves all the pixels in area A1(xm,n), but does not involve the xm,n itself.
Therefore, the decoder can also compute the prediction coefficients of xm,n using the pixels in
A1(xm,n), and there is no need to transmit the prediction coefficients to the decoder. This is the
idea of online compression.

Col

Row

xm,nm

m-1

0

1

...

nn-1

...

n-N

A1(xm,n)

A2(xm,n)

Figure 2．A small part of an aurora image that is used for the prediction of a certain pixel xm,n.

൦ x0,n-N
x1,n-N⋮

xm-1,n-N

x0,n-N+1
x1,n-N+1⋮

xm-1,n-N+1

⋯⋯⋯⋯

x0,n-1
x1,n-1⋮

xm-1,n-1

൪ ൦α1
α2⋮
αN

൪ = ൦ x0,n
x1,n⋮

xm-1,n

൪ (1)

Then, if we denote the first matrix in Equation (1) as C, denote the vector ሾα0 α1 ⋯ αNሿT as αሬሬ⃗ , and denote the vector on the right of the equal sign as b⃗, we get the
condensed format of Equation (1), that is, Cαሬሬ⃗ = b⃗, and finally the coefficient vector αሬሬ⃗ can be
computed using Equation (2) [2].

αሬሬ⃗ = (CTC)
-1

CTb⃗ (2)

Figure 2. A small part of an aurora image that is used for the prediction of a certain pixel xm,n.

Then, if we denote the first matrix in Equation (1) as C, denote the vector
[
α0 α1 · · · αN

]T
as

→
α , and denote the vector on the right of the equal sign as

→

b , we get the condensed format of Equation

(1), that is, C
→
α =

→

b , and finally the coefficient vector
→
α can be computed using Equation (2) [2].

→
α = (CTC)

−1
CT
→

b (2)

From Equation (2), the calculation of the prediction coefficients requires one matrix multiplication,

one matrix inversion, and two matrix-vector multiplications ((CTC)−1
(CT

→

b)), and the calculation of
the prediction coefficients is actually the most time-consuming part in DPCM. The computation of the
predicted value of a pixel is much simpler, for example, the predicted value of the pixel xm,n in Figure 2

Remote Sens. 2019, 11, 1635 5 of 26

is the linear combination of the pixels in the area A2(xm,n). We use Equation (3) to describe this; x̂m,n is
the predicted value of xm,n.

x̂m,n =
N−1∑
i=0

αi+1xm,n−N+i (3)

However, we cannot compute the predicted values for some edge pixels of an aurora image using
Equation (3), such as the three regions A1, A2, and A3 shown in Figure 3, which is because we cannot
build a linear system of equations, such as Equation (1), to compute the prediction coefficients for these
edge pixels. In Figure 3, the H is the height of an aurora image, and W is the width, A1 is the row 0,
and A2 is the column 0. Since there is no row before row 0 and no column before column 0, A1 and A2

cannot be predicted using LSM. A3 is column 1, since there is only one column before column 1; in
other words, there is only one item on the left of the equal sign if we build a linear system of equations,
and we will not predict A3 using the LSM. Equation (4) shows the prediction method for each area.
The x̂m,n is the predicted value of xm,n. In A1 and A3, the predicted value of each pixel is the value of
the adjacent pixel in the column direction, except the pixel x0,0. In A2, the predicted value of each pixel
is the value of the adjacent pixel in the row direction.

A1 : x̂0,0 = x0,0, x̂0,n = x0,n−1, n ≥ 1

A2 : x̂m,0 = xm−1,0, m ≥ 1

A3 : x̂m,1 = xm,0, m ≥ 1

(4)

Remote Sens. 2018, 10, x FOR PEER REVIEW 5 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

From Equation (2), the calculation of the prediction coefficients requires one matrix
multiplication, one matrix inversion, and two matrix-vector multiplications (൫CTC൯-1

(CTb⃗)), and
the calculation of the prediction coefficients is actually the most time-consuming part in DPCM.
The computation of the predicted value of a pixel is much simpler, for example, the predicted
value of the pixel xm,n in Figure 2 is the linear combination of the pixels in the area A2(xm,n). We
use Equation (3) to describe this; xොm,n is the predicted value of xm,n.

xොm,n = ෍αi+1xm,n-N+i

N-1

i = 0

 (3)

However, we cannot compute the predicted values for some edge pixels of an aurora
image using Equation (3), such as the three regions A1, A2, and A3 shown in Figure 3, which is
because we cannot build a linear system of equations, such as Equation (1), to compute the
prediction coefficients for these edge pixels. In Figure 3, the H is the height of an aurora image,
and W is the width, A1 is the row 0, and A2 is the column 0. Since there is no row before row 0
and no column before column 0, A1 and A2 cannot be predicted using LSM. A3 is column 1, since
there is only one column before column 1; in other words, there is only one item on the left of
the equal sign if we build a linear system of equations, and we will not predict A3 using the
LSM. Equation (4) shows the prediction method for each area. The xොm,n is the predicted value
of xm,n. In A1 and A3, the predicted value of each pixel is the value of the adjacent pixel in the
column direction, except the pixel x0,0. In A2, the predicted value of each pixel is the value of the
adjacent pixel in the row direction.

0

1

H-1

0 1

Row

Col

...

A1

A2 A3

Figure 3. The three areas A1, A2, and A3 cannot be predicted using the least square method.

A1: xො0,0 = x0,0, xො0,n = x0,n-1, n ≥ 1

A2: xොm,0 = xm-1,0, m ≥ 1 (4)

A3: xොm,1 = xm,0, m ≥ 1
The residual is the difference between the original value and the predicted value. The

encode method is the range coder [8]. Since we are using the online DPCM method, the only
data that needs to be encoded and transmitted to the decoder is the residual.

2.2. Our Improvement to the Original Online DPCM Method

Through experiments we found that the compression performance of the online DPCM
algorithm can be improved by two improvements. One is on the establishment of the linear
system of equations when computing the prediction coefficients, and the other is on the
encoding of the residual.

2.2.1. The Improvement on the Establishment of the Linear System of Equations

From Equation (1), only one equation is built with each of the previous rows of pixel xm,n,
but through experiments we found that the compression performance can be improved when
building multiple equations with each of the previous rows. We use the example shown in
Figure 4 to illustrate how to build multiple equations with each row of an aurora image; xm,n is

Figure 3. The three areas A1, A2, and A3 cannot be predicted using the least square method.

The residual is the difference between the original value and the predicted value. The encode
method is the range coder [8]. Since we are using the online DPCM method, the only data that needs
to be encoded and transmitted to the decoder is the residual.

2.2. Our Improvement to the Original Online DPCM Method

Through experiments we found that the compression performance of the online DPCM algorithm
can be improved by two improvements. One is on the establishment of the linear system of equations
when computing the prediction coefficients, and the other is on the encoding of the residual.

2.2.1. The Improvement on the Establishment of the Linear System of Equations

From Equation (1), only one equation is built with each of the previous rows of pixel xm,n, but
through experiments we found that the compression performance can be improved when building
multiple equations with each of the previous rows. We use the example shown in Figure 4 to illustrate
how to build multiple equations with each row of an aurora image; xm,n is the pixel for which we are
to compute its prediction coefficients. M is the number of equations built with each of the previous
rows of xm,n. Suppose M = 3, the prediction order N = 4, and the column number n = 8, then the M
equations built with row i (i = 0, 1, . . . , m − 1) are (*), shown in Figure 4. It is worth noting that these
equations can be obtained when sliding a window of length N + 1 on a row.

Remote Sens. 2019, 11, 1635 6 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW 6 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

the pixel for which we are to compute its prediction coefficients. M is the number of equations
built with each of the previous rows of xm,n. Suppose M = 3, the prediction order N = 4, and the
column number n = 8, then the M equations built with row i (i = 0, 1, …, m - 1) are (*), shown in
Figure 4. It is worth noting that these equations can be obtained when sliding a window of
length N + 1 on a row.

xi,0 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 xi,7 xi,8

xi,2 xi,3 xi,4 xi,5

xi,3 xi,4 xi,5 xi,6
xi,4 xi,5 xi,6 xi,7

1

2

3

4

α
α
α
α

 
 
 
 
 
 
  

xi,6

xi,7

xi,8

=

//M defines how many equations to build with each row of an aurora image
Conditions: n = 8, N = 4, M = 3

The M equations built with row i:

A part of row i (i = 0, 1, …, m - 1) of an aurora image:

(*)

Figure 4. An example illustrating how to create multiple equations with a row of an aurora
image.

Combining the equations built with each of the rows before the pixel xm,n, we get the
complete linear system of equations used to compute the prediction coefficients of xm,n, and the
linear system of equations is shown in Equation (5). The M equations in the red dashed box are
built with one row of the aurora image. It can be seen that each red dashed box contains N + M
different elements of a row of the aurora image, in other words, continuous N + M elements in
each of the rows before row m will be used to compute the prediction coefficients of the xm,n.
Figure 5 is used to explain this more clearly. Compared with Figure 2, the improved method
requires more area, that is, A3(xm,n), whose number of columns is M – 1, and the total number
of columns of A1(xm,n) and A3(xm,n) is N + M. Since Equation (5) is the improvement to Equation
(1), we denote Equation (5) as Cαሬሬ⃗ = b⃗ as well, and C, αሬሬ⃗ and b⃗, which will be mentioned in the
following contents, are the C, αሬሬ⃗ , and b⃗ in Equation (5). Note that the number of columns of
matrix C is the prediction order N, and the number of rows of matrix C is M × m, which varies
with the row number m.

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

x0,n-N-M+1 x0,n-N-M+2 ⋯ x0,n-M
x0,n-N-M+2 x0,n-N-M+3 ⋯ x0,n-M+1⋮ ⋮ ⋯ ⋮

x0,n-N x0,n-N+1 ⋯ x0,n-1⋮ ⋮ ⋯ ⋮
xm-1,n-N-M+1 xm-1,n-N-M+2 ⋯ xm-1,n-M
xm-1,n-N-M+2 xm-1,n-N-M+3 ⋯ xm-1,n-M+1⋮ ⋮ ⋯ ⋮

xm-1,n-N xm-1,n-N+1 ⋯ xm-1,n-1 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ ൦α1
α2⋮
αN

൪ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

x0,n-M+1
x0,n-M+2⋮

x0,n⋮
xm-1,n-M+1
xm-1,n-M+2⋮

xm-1,n ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (5)

Col

Row

m

xm,n

xm,n

...

n

m-1

0

Row

Col

A(xm,n)

A1(xm,n)A3(xm,n)

1

0

m

nn-N-M+1

A2(xm,n)

Figure 5. A1(xm,n) is the area that will be used to compute the prediction coefficients of xm,n when
using the original online DPCM (Differential Pulse Code Modulation) method, and A1(xm,n) +
A3(xm,n) is the area that will be used when using the improved online DPCM method.

Figure 4. An example illustrating how to create multiple equations with a row of an aurora image.

Combining the equations built with each of the rows before the pixel xm,n, we get the complete
linear system of equations used to compute the prediction coefficients of xm,n, and the linear system of
equations is shown in Equation (5). The M equations in the red dashed box are built with one row of
the aurora image. It can be seen that each red dashed box contains N + M different elements of a row
of the aurora image, in other words, continuous N + M elements in each of the rows before row m will
be used to compute the prediction coefficients of the xm,n. Figure 5 is used to explain this more clearly.
Compared with Figure 2, the improved method requires more area, that is, A3(xm,n), whose number of
columns is M − 1, and the total number of columns of A1(xm,n) and A3(xm,n) is N + M. Since Equation

(5) is the improvement to Equation (1), we denote Equation (5) as C
→
α =

→

b as well, and C,
→
α and

→

b ,

which will be mentioned in the following contents, are the C,
→
α , and

→

b in Equation (5). Note that the
number of columns of matrix C is the prediction order N, and the number of rows of matrix C is M × m,
which varies with the row number m.

1. The red dashed box that used to mark Formula (5) is missing, and the correct formula
is as follows:

,n-N-M+ ,n-N-M+ ,n-M

,n-N-M+ ,n-N-M+ ,n-M+

,n-N ,n-N+ ,n-

m- ,n-N-M+ m- ,n-N-M+ m- ,n-M

m- ,n-N-M+ m- ,n-N-M+ m- ,n-M+

m- ,n-N m- ,n-N+ m- ,n-

x x x
x x x

x x x

x x x
x x x

x x x

 
 
 







 

0 1 0 2 0

0 2 0 3 0 1

0 0 1 0 1

1 1 1 2 1

1 2 1 3 1 1

1 1 1 1 1




   


   




   



,n-M+

,n-M+

,n

m- ,n-M+

m- ,n-M+2

m- ,n

x
x

α x
α

xα
x

x

N

 
 
 

   
   

=   
   
   
  
  
   

0 1

0 2

1
0

2

1 1

1

1







Row 0

Row m-1

(5)

2. The sentences selected should be removed.

Remote Sens. 2018, 10, x FOR PEER REVIEW 6 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

the pixel for which we are to compute its prediction coefficients. M is the number of equations
built with each of the previous rows of xm,n. Suppose M = 3, the prediction order N = 4, and the
column number n = 8, then the M equations built with row i (i = 0, 1, …, m - 1) are (*), shown in
Figure 4. It is worth noting that these equations can be obtained when sliding a window of
length N + 1 on a row.

xi,0 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 xi,7 xi,8

xi,2 xi,3 xi,4 xi,5

xi,3 xi,4 xi,5 xi,6
xi,4 xi,5 xi,6 xi,7

1

2

3

4

α
α
α
α

 
 
 
 
 
 
  

xi,6

xi,7

xi,8

=

//M defines how many equations to build with each row of an aurora image
Conditions: n = 8, N = 4, M = 3

The M equations built with row i:

A part of row i (i = 0, 1, …, m - 1) of an aurora image:

(*)

Figure 4. An example illustrating how to create multiple equations with a row of an aurora
image.

Combining the equations built with each of the rows before the pixel xm,n, we get the
complete linear system of equations used to compute the prediction coefficients of xm,n, and the
linear system of equations is shown in Equation (5). The M equations in the red dashed box are
built with one row of the aurora image. It can be seen that each red dashed box contains N + M
different elements of a row of the aurora image, in other words, continuous N + M elements in
each of the rows before row m will be used to compute the prediction coefficients of the xm,n.
Figure 5 is used to explain this more clearly. Compared with Figure 2, the improved method
requires more area, that is, A3(xm,n), whose number of columns is M – 1, and the total number
of columns of A1(xm,n) and A3(xm,n) is N + M. Since Equation (5) is the improvement to Equation
(1), we denote Equation (5) as Cαሬሬ⃗ = b⃗ as well, and C, αሬሬ⃗ and b⃗, which will be mentioned in the
following contents, are the C, αሬሬ⃗ , and b⃗ in Equation (5). Note that the number of columns of
matrix C is the prediction order N, and the number of rows of matrix C is M × m, which varies
with the row number m.

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

x0,n-N-M+1 x0,n-N-M+2 ⋯ x0,n-M
x0,n-N-M+2 x0,n-N-M+3 ⋯ x0,n-M+1⋮ ⋮ ⋯ ⋮

x0,n-N x0,n-N+1 ⋯ x0,n-1⋮ ⋮ ⋯ ⋮
xm-1,n-N-M+1 xm-1,n-N-M+2 ⋯ xm-1,n-M
xm-1,n-N-M+2 xm-1,n-N-M+3 ⋯ xm-1,n-M+1⋮ ⋮ ⋯ ⋮

xm-1,n-N xm-1,n-N+1 ⋯ xm-1,n-1 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ ൦α1
α2⋮
αN

൪ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

x0,n-M+1
x0,n-M+2⋮

x0,n⋮
xm-1,n-M+1
xm-1,n-M+2⋮

xm-1,n ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (5)

Col

Row

m

xm,n

xm,n

...

n

m-1

0

Row

Col

A(xm,n)

A1(xm,n)A3(xm,n)

1

0

m

nn-N-M+1

A2(xm,n)

Figure 5. A1(xm,n) is the area that will be used to compute the prediction coefficients of xm,n when
using the original online DPCM (Differential Pulse Code Modulation) method, and A1(xm,n) +
A3(xm,n) is the area that will be used when using the improved online DPCM method.

Figure 5. A1(xm,n) is the area that will be used to compute the prediction coefficients of xm,n when using
the original online DPCM (Differential Pulse Code Modulation) method, and A1(xm,n) + A3(xm,n) is the
area that will be used when using the improved online DPCM method.

Remote Sens. 2019, 11, 1635 7 of 26

2.2.2. The Improvement on the Encoding of the Residual

In this paper, the data to be compressed is the aurora spectral data captured at the Zhongshan
Station in 2014, but we found that it had a shortcoming that would adversely affect the compression.
Each aurora spectral image had some outliers that were much larger than other pixels, but only appear
several times, as shown in Figure 6. These outliers are difficult to predict, consequently introducing
very large residuals that have detrimental effects on compression. To handle this problem, we propose
a dual threshold method that sets a threshold for positive and negative residuals, respectively. Only
the residuals between the two thresholds will be encoded using the range coder, and other residuals
will be stored intact in the compressed file.

Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

2.2.2. The Improvement on the Encoding of the Residual

In this paper, the data to be compressed is the aurora spectral data captured at the
Zhongshan Station in 2014, but we found that it had a shortcoming that would adversely affect
the compression. Each aurora spectral image had some outliers that were much larger than
other pixels, but only appear several times, as shown in Figure 6. These outliers are difficult to
predict, consequently introducing very large residuals that have detrimental effects on
compression. To handle this problem, we propose a dual threshold method that sets a threshold
for positive and negative residuals, respectively. Only the residuals between the two thresholds
will be encoded using the range coder, and other residuals will be stored intact in the
compressed file.

Figure 7 shows the details of the dual threshold method. The T is a threshold for the
occurrence number of the residuals. T- is the first residual whose occurrence number is larger
than or equal to T when searching from left to right, and T+ is the first residual whose occurrence
number is larger than or equal to T when searching from right to left. Only the residuals
between T- and T+ will be encoded using the range coder, and the remaining residuals will be
stored intact in the compressed file.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

4,100

8,200

12,300

Histogram of an aurora spectral image

2000 3000 4000 5000 6000 7000 8000
-1
0
1
2
3
4
5

Pixel value

O
cc

ur
re

nc
e

nu
m

be
r

Magnified view of the shaded part

Figure 6. The upper part is the histogram of the aurora spectral image captured on October 17,
2014, at 17:41:20, and the lower part is the magnified view of the shaded part. It can be seen
that the maximum pixel value is near 9000, but most of the pixels are within 500. The large
majority of the pixel values do not appear in the shaded part, and the maximum number of
occurrences is only 4.

-5000 0 5000 10000 15000 20000 25000 30000 35000

0

4,400

8,800

13,200

Shade1

Shade2

-300 -200 -100 0 100 200 300
0

4,000

8,000

12,000

Pixel value

O
cc

ur
re

nc
e

nu
m

be
r

Magnified view of shade1

-5000 0 5000 10000 15000 20000 25000 30000 35000

0

4,400

8,800

13,200

Shade1

Shade2

Magnified view of shade2

10000 20000 30000
-1

0

1

2

Pixel value

O
cc

ur
re

nc
e

nu
m

be
r

T- T+
T

Histogram of the residual image of
the aurora spectral image in Figure 6

Figure 7. The upper part is the histogram of the residual image of the aurora spectral image in
Figure 6; the lower left part is the magnified view of shade1. We can see that most of the
residuals are around 0. The lower right part is the magnified view of shade2, where it can be

Figure 6. The upper part is the histogram of the aurora spectral image captured on October 17, 2014, at
17:41:20, and the lower part is the magnified view of the shaded part. It can be seen that the maximum
pixel value is near 9000, but most of the pixels are within 500. The large majority of the pixel values do
not appear in the shaded part, and the maximum number of occurrences is only 4.

Figure 7 shows the details of the dual threshold method. The T is a threshold for the occurrence
number of the residuals. T− is the first residual whose occurrence number is larger than or equal to T
when searching from left to right, and T+ is the first residual whose occurrence number is larger than
or equal to T when searching from right to left. Only the residuals between T− and T+ will be encoded
using the range coder, and the remaining residuals will be stored intact in the compressed file.

Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

2.2.2. The Improvement on the Encoding of the Residual

In this paper, the data to be compressed is the aurora spectral data captured at the
Zhongshan Station in 2014, but we found that it had a shortcoming that would adversely affect
the compression. Each aurora spectral image had some outliers that were much larger than
other pixels, but only appear several times, as shown in Figure 6. These outliers are difficult to
predict, consequently introducing very large residuals that have detrimental effects on
compression. To handle this problem, we propose a dual threshold method that sets a threshold
for positive and negative residuals, respectively. Only the residuals between the two thresholds
will be encoded using the range coder, and other residuals will be stored intact in the
compressed file.

Figure 7 shows the details of the dual threshold method. The T is a threshold for the
occurrence number of the residuals. T- is the first residual whose occurrence number is larger
than or equal to T when searching from left to right, and T+ is the first residual whose occurrence
number is larger than or equal to T when searching from right to left. Only the residuals
between T- and T+ will be encoded using the range coder, and the remaining residuals will be
stored intact in the compressed file.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

4,100

8,200

12,300

Histogram of an aurora spectral image

2000 3000 4000 5000 6000 7000 8000
-1
0
1
2
3
4
5

Pixel value

O
cc

ur
re

nc
e

nu
m

be
r

Magnified view of the shaded part

Figure 6. The upper part is the histogram of the aurora spectral image captured on October 17,
2014, at 17:41:20, and the lower part is the magnified view of the shaded part. It can be seen
that the maximum pixel value is near 9000, but most of the pixels are within 500. The large
majority of the pixel values do not appear in the shaded part, and the maximum number of
occurrences is only 4.

-5000 0 5000 10000 15000 20000 25000 30000 35000

0

4,400

8,800

13,200

Shade1

Shade2

-300 -200 -100 0 100 200 300
0

4,000

8,000

12,000

Pixel value

O
cc

ur
re

nc
e

nu
m

be
r

Magnified view of shade1

-5000 0 5000 10000 15000 20000 25000 30000 35000

0

4,400

8,800

13,200

Shade1

Shade2

Magnified view of shade2

10000 20000 30000
-1

0

1

2

Pixel value

O
cc

ur
re

nc
e

nu
m

be
r

T- T+
T

Histogram of the residual image of
the aurora spectral image in Figure 6

Figure 7. The upper part is the histogram of the residual image of the aurora spectral image in
Figure 6; the lower left part is the magnified view of shade1. We can see that most of the
residuals are around 0. The lower right part is the magnified view of shade2, where it can be

Figure 7. The upper part is the histogram of the residual image of the aurora spectral image in Figure 6;
the lower left part is the magnified view of shade1. We can see that most of the residuals are around 0.
The lower right part is the magnified view of shade2, where it can be seen that the largest residual
is greater than 30,000, but most of the residual values do not appear in shade2, and the remaining
residuals only appear once.

Remote Sens. 2019, 11, 1635 8 of 26

2.3. Optimization of the Parameters N, M, and T

The parameter N determines how many columns to use to predict the current pixel and M defines
how many equations to build with each row of an aurora spectral image. Both of these parameters have
important impacts on the accuracy of the prediction. The threshold T determines the two thresholds
T− and T+, which will affect the encoding. In order to get the best compression performance, we must
optimize these parameters N, M, and T through experiments. The experimental data set is the 2014
aurora spectral data set. Since aurora does not appear every day, the 2014 aurora spectral data set has
more than 20 days of data, and each day has hundreds of images. In order to reduce the amount of
calculations, we evenly take 100 samples from the images of each day for experiments.

Figure 8a presents the variation of the bitrate with the prediction order N. The bitrate is the
average bitrate of 100 samples evenly selected from the data of each day and is measured in bpp (bits
per pixel). The four values on the horizontal ordinate, 9, 10, 11, and 12, are determined by preliminary
experiments. The five-pointed star symbol on each line indicates the optimal N that minimizes the
average bitrate of each day, and the number near the five-pointed star symbol is the minimum bitrate.
It can be seen that the optimal N for four days is 11, and for one day is 10. In order to determine the
final N that minimizes the average bitrate of each day, we averaged the bitrate of the five days, and
the result is the third line from top to bottom in Figure 8a. We can see that N = 11 minimizes the
average bitrate of the five days, and therefore, we take N = 11 as the prediction order for the 2014
aurora spectral data compression.Remote Sens. 2018, 10, x FOR PEER REVIEW 9 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

9 10 11 12
5.8

6.0

6.2

6.4
6.80
6.85
6.90
6.95
7.00

6.12819

6.00292

5.84234

6.78087
6.98785

6.34862

bi
tr

at
e

(b
pp

)

N

 20140328
 20140404
 20140705
 20140827
 20140916
 Average bitrate

 of the five days

0 2 4 6 8 10
5.8

6.0

6.2
6.4
6.6
6.8
7.0
7.2

6.24072
6.10486

7.19884
7.05144

6.04142
5.83785

6.16073
5.96426

7.30424 7.12946

6.58919
6.42026

bi
tr

at
e

(b
pp

)

M

 20140401
 20140514
 20140629
 20140715
 20140923
 Average bitrate

 of the five days

(a) (b)

 20140401
 20140421
 20140730
 20140824
 20140930
 Average bitrate

 of the five days

0 5 6 7 8 9 10 11 12 13 14 15
5.8

6.0

6.8

7.0

7.2

5.93936 5.87871
6.10367 6.0454

6.96347 6.87259
6.8244

6.74611

7.13847 7.11595

6.7575 6.69511

bi
tr

at
e

(b
pp

)

T
(c)

Figure 8. The variation of the bitrate with the three parameters N, M, and T. The bitrate is the
average bitrate of each day, and the five days in each subfigure are randomly selected from the
2014 aurora spectral data set.

In addition, it can be seen that the average bitrate of each day can vary significantly, from
about 5.8 bpp to about 7.2 bpp. This is because the aurora is constantly changing, including in
its intensity. It can be seen that Figure 1a and Figure 1b are very different.

3. The GPU Implementation of the Calculation of the Prediction Coefficients using the
Improved Online DPCM Algorithm

The most time-consuming part of the online DPCM algorithm is the calculation of the
prediction coefficients, which is because the prediction coefficients for each pixel are obtained
by solving a linear system of equations. In addition, since this is an online method, the decoder
also needs to compute the prediction coefficients for each pixel. Therefore, the calculation of
the prediction coefficients must be accelerated, and this paper takes advantage of the powerful
computing capability of GPUs.

From Equation (2), the main operations in the calculation of the prediction coefficients are
matrix multiplication and matrix inversion. Hence, the rest of this section will focus on these
two steps, but before that, we will introduce some basic concepts of GPU programming to
facilitate the following descriptions.

3.1. Some Basic Concepts of GPU Programming

GPU is specialized for computation-intensive tasks. The programming model of GPU is
CUDA, and the programming language is CUDA C. The kernel functions, which are much like
the C functions but run on GPU, are labelled by hundreds of thousands of CUDA threads in
parallel to handle the massive computations, and NVIDIA (a GPU corporation) denotes this
architecture as Single Instruction Multiple Thread (SIMT).

All the threads assigned to a kernel function are organized into a two-hierarchical grid
structure. A number of threads form a thread block, and a number of thread blocks form a
thread grid. The size of all the thread blocks in a thread grid is the same. Both a thread block

Figure 8. The variation of the bitrate with the three parameters N, M, and T. The bitrate is the average
bitrate of each day, and the five days in each subfigure are randomly selected from the 2014 aurora
spectral data set.

Figure 8b is similar to Figure 8a, but shows the variation of the bitrate with M, which defines how
many equations to build with each row of an aurora spectral image. There are 10 values for M, 1, 2,
. . . , 10. It can be seen that the optimal M that minimizes the bitrate of each day is different, but the M
that minimizes the average bitrate of the five days is 7. Therefore, we take M = 7 for the compression
of the 2014 aurora spectral data.

Remote Sens. 2019, 11, 1635 9 of 26

Note that the bitrate of each day when M = 1 is also presented near the first diamond node on
each line in Figure 8b. The difference between the minimum bitrate and the bitrate when M = 1 ranges
from more than 0.1 bpp to more than 0.2 bpp, and the average bitrate of the five days when M = 1
is about 0.17 bpp more than the minimum average bitrate of the five days. Consequently, we can
conclude that the improvement to build multiple equations on each row of an aurora spectral image is
beneficial to compression.

Figure 8c shows the variation of the bitrate with T, which determines the two encoding thresholds
T− and T+. There are 12 values on the horizontal ordinate, 0, 5, 6, . . . , 15. T = 0 represents that there
are no thresholds and all the residuals will be encoded using the range coder. It can be seen that the
optimal T that minimizes the bitrate of each day is different, but the minimum of the average bitrate of
the five days is achieved when T is 13. Therefore, we will choose T = 13 for the compression of the
2014 aurora spectral data. In addition, the bitrate of each day at T = 0 is shown near the first diamond
node on each line. We can see that the bitrate at T = 0 is larger than the minimum bitrate on each line,
and the average bitrate of the five days when T = 0 is about 0.06 bpp more than the minimum average
bitrate of the five days. Therefore, the dual threshold method for encoding is effective.

In addition, it can be seen that the average bitrate of each day can vary significantly, from about
5.8 bpp to about 7.2 bpp. This is because the aurora is constantly changing, including in its intensity. It
can be seen that Figures 1a and 1b are very different.

3. The GPU Implementation of the Calculation of the Prediction Coefficients using the Improved
Online DPCM Algorithm

The most time-consuming part of the online DPCM algorithm is the calculation of the prediction
coefficients, which is because the prediction coefficients for each pixel are obtained by solving a linear
system of equations. In addition, since this is an online method, the decoder also needs to compute the
prediction coefficients for each pixel. Therefore, the calculation of the prediction coefficients must be
accelerated, and this paper takes advantage of the powerful computing capability of GPUs.

From Equation (2), the main operations in the calculation of the prediction coefficients are
matrix multiplication and matrix inversion. Hence, the rest of this section will focus on these two
steps, but before that, we will introduce some basic concepts of GPU programming to facilitate the
following descriptions.

3.1. Some Basic Concepts of GPU Programming

GPU is specialized for computation-intensive tasks. The programming model of GPU is CUDA,
and the programming language is CUDA C. The kernel functions, which are much like the C functions
but run on GPU, are labelled by hundreds of thousands of CUDA threads in parallel to handle the
massive computations, and NVIDIA (a GPU corporation) denotes this architecture as Single Instruction
Multiple Thread (SIMT).

All the threads assigned to a kernel function are organized into a two-hierarchical grid structure.
A number of threads form a thread block, and a number of thread blocks form a thread grid. The
size of all the thread blocks in a thread grid is the same. Both a thread block and a thread grid can be
one-dimensional, two-dimensional, or three-dimensional. Figure 9 presents an example describing the
thread structure. The size of the thread grid is 3 × 2, and the size of each thread block is 4 × 3. The
ordered pair in parentheses is the index of a thread or a thread block.

Remote Sens. 2019, 11, 1635 10 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW 10 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

and a thread grid can be one-dimensional, two-dimensional, or three-dimensional. Figure 9
presents an example describing the thread structure. The size of the thread grid is 3 × 2, and the
size of each thread block is 4 × 3. The ordered pair in parentheses is the index of a thread or a
thread block.

thread grid

block
(0,0)

block
(1,0)

block
(2,0)

block
(2,1)

block
(1,1)

block
(0,1)

block(0,2)

thread
(0,1)

thread
(1,1)

thread
(2,1)

thread
(3,1)

thread
(0,2)

thread
(1,2)

thread
(2,2)

thread
(3,2)

thread
(0,0)

thread
(1,0)

thread
(2,0)

thread
(3,0)

Figure 9. An example illustrating the thread structure of a kernel function.

The typical processing flow of a CUDA program is: (1) copy the data to be processed from
host (the CPU memory) to device (the GPU memory); (2) launch the kernel function to process
the data on the GPU; (3) copy the result from device to host. In addition, there is a type of
memory that is very critical to the performance of a CUDA program—shared memory. Shared
memory is on-chip memory, and its access latency is only a few clock cycles, which is much
less than the access latency of the hundreds of clock cycles of global memory. Furthermore,
shared memory provides a means of communication for all of the threads in a thread block.

3.2. CUDA Implementation of the Multiplication of Matrices CT and C using a Decomposition Method

Matrix multiplication is a common operation in CUDA programming, and has been
optimized very well. The Basic Linear Algebra Subprogram (cuBLAS) [27] is a linear algebra
acceleration library for CUDA, which can process not only the matrix multiplication but also
the matrix multiplication of a batch of matrices. In our case, the multiplication of matrices CT
and C in Equation (2) is required to predict each pixel, and there are 1024 × 1024 pixels in each
aurora spectral image. However, the multiplication of matrices CT and C cannot be batch
processed using the cuBLAS library, which is because the size of matrix C is not fixed; it is
determined by the row number of the pixel to be predicted, as shown in Equation (5), and the
cuBLAS library can only process a batch of matrices with the same dimensions. In addition, if
the multiplication of matrices CT and C for each pixel is performed individually using the
cuBLAS matrix multiplication function, the launch overhead is too heavy. Therefore, the
cuBLAS library is not adopted for the multiplication of matrices CT and C, and we must propose
a scheme that is suitable for the situation in this paper.

From Equation (5), when predicting a pixel xm,n at the mth row and the nth column, all the
rows before row m will be involved in its matrix C; let us label the matrix C as C(xm,n) for the
simplicity of description. Similarly, all of the rows before row m + 1 will be involved in matrix
C(xm+1,n) when predicting xm+1,n. Furthermore, the first m × M row in matrix C(xm+1,n) is exactly the
matrix C(xm,n), so if the multiplication of matrix CT(xm,n) (the transposed matrices of C(xm,n)) and
C(xm,n) and the multiplication of matrices CT(xm+1,n) and C(xm+1,n) are performed directly and
individually, many repeated data access instances and calculations will be introduced, which
will seriously affect the computational efficiency. Therefore, we proposed a decomposition
method for the multiplication of matrix CT and C to handle this problem.

Figure 9. An example illustrating the thread structure of a kernel function.

The typical processing flow of a CUDA program is: (1) copy the data to be processed from host
(the CPU memory) to device (the GPU memory); (2) launch the kernel function to process the data
on the GPU; (3) copy the result from device to host. In addition, there is a type of memory that is
very critical to the performance of a CUDA program—shared memory. Shared memory is on-chip
memory, and its access latency is only a few clock cycles, which is much less than the access latency of
the hundreds of clock cycles of global memory. Furthermore, shared memory provides a means of
communication for all of the threads in a thread block.

3.2. CUDA Implementation of the Multiplication of Matrices CT and C using a Decomposition Method

Matrix multiplication is a common operation in CUDA programming, and has been optimized
very well. The Basic Linear Algebra Subprogram (cuBLAS) [27] is a linear algebra acceleration library
for CUDA, which can process not only the matrix multiplication but also the matrix multiplication of
a batch of matrices. In our case, the multiplication of matrices CT and C in Equation (2) is required
to predict each pixel, and there are 1024 × 1024 pixels in each aurora spectral image. However, the
multiplication of matrices CT and C cannot be batch processed using the cuBLAS library, which
is because the size of matrix C is not fixed; it is determined by the row number of the pixel to be
predicted, as shown in Equation (5), and the cuBLAS library can only process a batch of matrices
with the same dimensions. In addition, if the multiplication of matrices CT and C for each pixel is
performed individually using the cuBLAS matrix multiplication function, the launch overhead is too
heavy. Therefore, the cuBLAS library is not adopted for the multiplication of matrices CT and C, and
we must propose a scheme that is suitable for the situation in this paper.

From Equation (5), when predicting a pixel xm,n at the mth row and the nth column, all the rows
before row m will be involved in its matrix C; let us label the matrix C as C(xm,n) for the simplicity of
description. Similarly, all of the rows before row m + 1 will be involved in matrix C(xm+1,n) when
predicting xm+1,n. Furthermore, the first m ×M row in matrix C(xm+1,n) is exactly the matrix C(xm,n),
so if the multiplication of matrix CT(xm,n) (the transposed matrices of C(xm,n)) and C(xm,n) and the
multiplication of matrices CT(xm+1,n) and C(xm+1,n) are performed directly and individually, many
repeated data access instances and calculations will be introduced, which will seriously affect the
computational efficiency. Therefore, we proposed a decomposition method for the multiplication of
matrix CT and C to handle this problem.

Figure 10 shows an example illustrating the decomposition method for the multiplication of
matrices CT and C. A small part of the upper left corner of an aurora spectral image is shown in the
upper right corner of Figure 10. For simplicity, we assume that N = 3 and M = 2, and that we are
to predict three pixels, x1,8, x2,8, and x3,8. C(x1,8), C(x2,8), and C(x3,8) represent matrix C for the three
pixels x1,8, x2,8, and x3,8, respectively, and CT(x1,8), CT(x2,8), and CT(x3,8) are the transposed matrices
for C(x1,8), C(x2,8), and C(x3,8), respectively. The two rows of matrix C(x1,8) are grouped together and
denoted as C0,8. The subscript “0” of C0,8 represents that the two rows are built with row 0 of the
aurora image, and the subscript “8” represents that the pixel to be predicted is located in column
8. Similarly, C(x2,8) is partitioned into two submatrices C0,8 and C1,8, and C(x3,8) is partitioned into

Remote Sens. 2019, 11, 1635 11 of 26

three submatrices C0,8, C1,8, and C2,8. Therefore, the product of the matrices CT(x1,8) and C(x1,8) is
CT

0,8C0,8; the product of CT(x2,8) and C(x2,8) is CT
0,8C0,8 + CT

1,8C1,8, which can also be considered as
CT(x1,8)C(x1,8) + CT

1,8C1,8; the product of CT(x3,8) and C(x3,8) is CT
0,8C0,8 + CT

1,8C1,8 + CT
2,8C2,8, which

can also be considered as CT(x2,8)C(x2,8) + CT
2,8C2,8. It can be seen that the multiplication of matrices

CT(xm,n) and C(xm,n) is transformed into the addition of many small matrices, and CT(xm,n)C(xm,n) is the
sum of CT(xm−1,n)C(xm−1,n) and CT

m−1,nCm−1,n. In this way, all the matrices CT(xi,n)C(xi,n) (i = 1, 2, . . . ,
m) can be obtained when the prefix sums an array of matrices, CT

0,nC0,n, CT
1,nC1,n, . . . , CT

m−1,nCm−1,n.
The idea of this method is intuitively presented in Figure 11.Remote Sens. 2018, 10, x FOR PEER REVIEW 11 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

A samll part of an aurora spectral image:

Suppose the prediction
order N = 3, and the M
= 2.

() x x xC x Cx x x
, , ,

, ,
, , ,

   = =    
0 4 0 5 0 6

1 8 0 8
0 5 0 6 0 7

()
x x x
x x x CC x x x x C
x x x

, , ,

, , , ,
,

, , , ,

, , ,

 
   
 = =  
   
  

0 4 0 5 0 6

0 5 0 6 0 7 0 8
2 8

1 4 1 5 1 6 1 8

1 5 1 6 1 7

()

x x x
x x x Cx x xC x Cx x x Cx x x
x x x

, , ,

, , ,
,

, , ,
, ,

, , ,
,

, , ,

, , ,

 
 

  
  = =   
    

 
  

0 4 0 5 0 6

0 5 0 6 0 7
0 8

1 4 1 5 1 6
3 8 1 8

1 5 1 6 1 7
2 8

2 4 2 5 2 6

2 5 2 6 2 7

()
() ()

T T

T T

C x C
C x C x C C

, ,

, , , ,

 =  
=

1 8 0 8

1 8 1 8 0 8 0 8

()
() ()

() ()

T T T

T T T

T T

C x C C

C x C x C C C C
C x C x C C

, , ,

, , , , , ,

, , , ,

 =  
= +
= +

2 8 0 8 1 8

2 8 2 8 0 8 0 8 1 8 1 8

1 8 1 8 1 8 1 8

()
() ()

() ()

T T T T

T T T T

T T

C x C C C
C x C x C C C C C C

C x C x C C

, , , ,

, , , , , , , ,

, , , ,

 =  
= + +
= +

3 8 0 8 1 8 2 8

3 8 3 8 0 8 0 8 1 8 1 8 2 8 2 8

2 8 2 8 2 8 2 8

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

Figure 10．An example illustrating the decomposition method for the multiplication of
matrices CT and C.

Figure 10 shows an example illustrating the decomposition method for the multiplication
of matrices CT and C. A small part of the upper left corner of an aurora spectral image is shown
in the upper right corner of Figure 10. For simplicity, we assume that N = 3 and M = 2, and that
we are to predict three pixels, x1,8, x2,8, and x3,8. C(x1,8), C(x2,8), and C(x3,8) represent matrix C for
the three pixels x1,8, x2,8, and x3,8, respectively, and CT(x1,8), CT(x2,8), and CT(x3,8) are the transposed
matrices for C(x1,8), C(x2,8), and C(x3,8), respectively. The two rows of matrix C(x1,8) are grouped
together and denoted as C0,8. The subscript “0” of C0,8 represents that the two rows are built
with row 0 of the aurora image, and the subscript “8” represents that the pixel to be predicted
is located in column 8. Similarly, C(x2,8) is partitioned into two submatrices C0,8 and C1,8, and
C(x3,8) is partitioned into three submatrices C0,8, C1,8, and C2,8. Therefore, the product of the
matrices CT(x1,8) and C(x1,8) is CT0,8C0,8; the product of CT(x2,8) and C(x2,8) is CT0,8C0,8 + CT1,8C1,8,
which can also be considered as CT(x1,8)C(x1,8) + CT1,8C1,8; the product of CT(x3,8) and C(x3,8) is
CT0,8C0,8 + CT1,8C1,8 + CT2,8C2,8, which can also be considered as CT(x2,8)C(x2,8) + CT2,8C2,8. It can be
seen that the multiplication of matrices CT(xm,n) and C(xm,n) is transformed into the addition of
many small matrices, and CT(xm,n)C(xm,n) is the sum of CT(xm-1,n)C(xm-1,n) and CTm-1,nCm-1,n. In this
way, all the matrices CT(xi,n)C(xi,n) (i = 1, 2, …, m) can be obtained when the prefix sums an array
of matrices, CT0,nC0,n, CT1,nC1,n, …, CTm-1,nCm-1,n. The idea of this method is intuitively presented in
Figure 11.

In order to accelerate the method introduced in Figure 11, a parallel scheme shown in
Figure 12 is utilized in this paper. It is noteworthy that the purpose of the summation of two
matrices is to add the elements in the same position. Similarly, the purpose of the prefix
summing of a series of matrices is to prefix sum arrays composed of all the elements at the same
position in the matrices. Therefore, the method introduced in Figure 12 is actually a parallel
method for prefix summing of arrays. The upper part of Figure 12 is an example that depicts
how to compute the prefix sum of an array with 8 elements. The i~j (i < j) represents the sum of
the ith element to the jth element. It can be seen that the prefix summing of 8 elements is
completed through 3 iterations.

Figure 10. An example illustrating the decomposition method for the multiplication of matrices CT

and C.
Remote Sens. 2018, 10, x FOR PEER REVIEW 12 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

CT൫x1,n൯C൫x1,n൯ CT൫x2,n൯C൫x2,n൯ CT൫x3,n൯C൫x3,n൯ CT൫x4,n൯C൫x4,n൯ CT൫x5,n൯C൫x5,n൯ CT൫x6,n൯C൫x6,n൯ CT൫xm,n൯C൫xm,n൯

...
0 0
T

,n ,nC C 1 1
T
,n ,nC C 2 2

T
,n ,nC C 3 3

T
,n ,nC C 4 4

T
,n ,nC C 5 5

T
,n ,nC C -1 -1

T
m ,n m ,nC C

Figure 11．The method for computing a series of matrices, CT(x1,n)C(x1,n), CT(x2,n)C(x2,n), …,
CT(xm,n)C(xm,n). Ci,n (i = 0, 1, …, m - 1) is the matrix built with row i of an aurora image when
predicting the pixels in column n. The symbol “⊕” represents addition.

0 1 2 3 4 5 6 7

0~1 1~2 2~3 3~4 4~5 5~6 6~70

0~2 0~3 1~4 2~5 3~6 4~70 0~1

0~4 0~5 0~6 0~7

Iteration
0

Iteration
1

Iteration
2

int idx = threadIdx.x + blockIdx.x * blockDim.x; //the index of the thread in the thread grid
if (idx < N) { //N is the total number of elements

int value = data[idx]; //read data from the global memory data[idx]
//width is the size of the thread group that the shuffle instruction is performed on
int width = warpSize; //warpSize is a built-in variable, which defines the size of a warp
int lane_id = threadIdx.x % width; //the index of the thread in the thread group
unsigned int mask = 0xffffffff; //indicating the threads participating in the shuffle instruction
for (int i = 1; i < width; i *= 2){

//__shfl_up_sync() returns the value of the value held by the thread lane_id - i
int n = __shfl_up_sync(mask, value, i, width);
if (lane_id >= i) value += n;

}
data[idx] = value; //write the result to the global memory data[idx]

}

0, 1, …, 7 is the
index of each

element of an array

Figure 12. The upper part shows an example illustrating the idea of computing the prefix sum
of an array in parallel, and the lower part presents the CUDA (Compute Unified Device
Architecture) codes. The symbol “⊕” represents addition.

The lower part of Figure 12 shows the CUDA codes for prefix summing of elements in a
warp. The __shfl_up_sync() [28] is a CUDA shuffle instruction, which allows threads in the
same warp to exchange data directly without consuming extra memory, and has lower latency
than shared memory. This is why we use __shfl_up_sync(). The maximum range of action of
__shfl_up_sync() is an entire warp, but in fact a warp can be evenly divided into a few thread
groups, and __shfl_up_sync() is executed on each thread group individually. The width in the
CUDA codes in Figure 12 is exactly the size of each thread group, and it is set to warpSize,
which is 32. The function of __shfl_up_sync (mask, value, i, width) is to get the value of the value
of the thread lane_id – i. It can be seen that the main body of the CUDA codes is a for loop. In
the ith iteration, all the threads except the first i threads call __shfl_up_sync() to get the value
of value held by the thread lane_id - i, and then add the obtained value to its own value. After
five iterations, the prefix summing of a warp with 32 threads is completed. However, this only
achieves the prefix summing in a warp; to compute the prefix sum of 1023 matrices (each aurora
image has 1024 rows), we also need to compute the prefix sum inside each thread block, and
finally the prefix sum across the entire thread grid.

Figure 11. The method for computing a series of matrices, CT(x1,n)C(x1,n), CT(x2,n)C(x2,n), . . . ,
CT(xm,n)C(xm,n). Ci,n (i = 0, 1, . . . , m − 1) is the matrix built with row i of an aurora image when
predicting the pixels in column n. The symbol “⊕” represents addition.

In order to accelerate the method introduced in Figure 11, a parallel scheme shown in Figure 12 is
utilized in this paper. It is noteworthy that the purpose of the summation of two matrices is to add the
elements in the same position. Similarly, the purpose of the prefix summing of a series of matrices is to
prefix sum arrays composed of all the elements at the same position in the matrices. Therefore, the
method introduced in Figure 12 is actually a parallel method for prefix summing of arrays. The upper
part of Figure 12 is an example that depicts how to compute the prefix sum of an array with 8 elements.
The i~j (i < j) represents the sum of the ith element to the jth element. It can be seen that the prefix
summing of 8 elements is completed through 3 iterations.

The lower part of Figure 12 shows the CUDA codes for prefix summing of elements in a warp.
The __shfl_up_sync() [28] is a CUDA shuffle instruction, which allows threads in the same warp to

Remote Sens. 2019, 11, 1635 12 of 26

exchange data directly without consuming extra memory, and has lower latency than shared memory.
This is why we use __shfl_up_sync(). The maximum range of action of __shfl_up_sync() is an entire
warp, but in fact a warp can be evenly divided into a few thread groups, and __shfl_up_sync() is
executed on each thread group individually. The width in the CUDA codes in Figure 12 is exactly the
size of each thread group, and it is set to warpSize, which is 32. The function of __shfl_up_sync (mask,
value, i, width) is to get the value of the value of the thread lane_id − i. It can be seen that the main
body of the CUDA codes is a for loop. In the ith iteration, all the threads except the first i threads call
__shfl_up_sync() to get the value of value held by the thread lane_id − i, and then add the obtained
value to its own value. After five iterations, the prefix summing of a warp with 32 threads is completed.
However, this only achieves the prefix summing in a warp; to compute the prefix sum of 1023 matrices
(each aurora image has 1024 rows), we also need to compute the prefix sum inside each thread block,
and finally the prefix sum across the entire thread grid.

Remote Sens. 2018, 10, x FOR PEER REVIEW 12 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

CT൫x1,n൯C൫x1,n൯ CT൫x2,n൯C൫x2,n൯ CT൫x3,n൯C൫x3,n൯ CT൫x4,n൯C൫x4,n൯ CT൫x5,n൯C൫x5,n൯ CT൫x6,n൯C൫x6,n൯ CT൫xm,n൯C൫xm,n൯

...
0 0
T

,n ,nC C 1 1
T
,n ,nC C 2 2

T
,n ,nC C 3 3

T
,n ,nC C 4 4

T
,n ,nC C 5 5

T
,n ,nC C -1 -1

T
m ,n m ,nC C

Figure 11．The method for computing a series of matrices, CT(x1,n)C(x1,n), CT(x2,n)C(x2,n), …,
CT(xm,n)C(xm,n). Ci,n (i = 0, 1, …, m - 1) is the matrix built with row i of an aurora image when
predicting the pixels in column n. The symbol “⊕” represents addition.

0 1 2 3 4 5 6 7

0~1 1~2 2~3 3~4 4~5 5~6 6~70

0~2 0~3 1~4 2~5 3~6 4~70 0~1

0~4 0~5 0~6 0~7

Iteration
0

Iteration
1

Iteration
2

int idx = threadIdx.x + blockIdx.x * blockDim.x; //the index of the thread in the thread grid
if (idx < N) { //N is the total number of elements

int value = data[idx]; //read data from the global memory data[idx]
//width is the size of the thread group that the shuffle instruction is performed on
int width = warpSize; //warpSize is a built-in variable, which defines the size of a warp
int lane_id = threadIdx.x % width; //the index of the thread in the thread group
unsigned int mask = 0xffffffff; //indicating the threads participating in the shuffle instruction
for (int i = 1; i < width; i *= 2){

//__shfl_up_sync() returns the value of the value held by the thread lane_id - i
int n = __shfl_up_sync(mask, value, i, width);
if (lane_id >= i) value += n;

}
data[idx] = value; //write the result to the global memory data[idx]

}

0, 1, …, 7 is the
index of each

element of an array

Figure 12. The upper part shows an example illustrating the idea of computing the prefix sum
of an array in parallel, and the lower part presents the CUDA (Compute Unified Device
Architecture) codes. The symbol “⊕” represents addition.

The lower part of Figure 12 shows the CUDA codes for prefix summing of elements in a
warp. The __shfl_up_sync() [28] is a CUDA shuffle instruction, which allows threads in the
same warp to exchange data directly without consuming extra memory, and has lower latency
than shared memory. This is why we use __shfl_up_sync(). The maximum range of action of
__shfl_up_sync() is an entire warp, but in fact a warp can be evenly divided into a few thread
groups, and __shfl_up_sync() is executed on each thread group individually. The width in the
CUDA codes in Figure 12 is exactly the size of each thread group, and it is set to warpSize,
which is 32. The function of __shfl_up_sync (mask, value, i, width) is to get the value of the value
of the thread lane_id – i. It can be seen that the main body of the CUDA codes is a for loop. In
the ith iteration, all the threads except the first i threads call __shfl_up_sync() to get the value
of value held by the thread lane_id - i, and then add the obtained value to its own value. After
five iterations, the prefix summing of a warp with 32 threads is completed. However, this only
achieves the prefix summing in a warp; to compute the prefix sum of 1023 matrices (each aurora
image has 1024 rows), we also need to compute the prefix sum inside each thread block, and
finally the prefix sum across the entire thread grid.

Figure 12. The upper part shows an example illustrating the idea of computing the prefix sum of an
array in parallel, and the lower part presents the CUDA (Compute Unified Device Architecture) codes.
The symbol “⊕” represents addition.

Figure 13 shows the second half of the thread block prefix summing, that is, prefix summing of
the last element of all the warps in a thread block and adding each element of the resulting array to the
corresponding warp. The upper part of Figure 13 depicts the general idea, and the lower part gives
the CUDA codes. The codes can be divided into three parts. The first part is to copy the value, which
stores the last element of each warp after the operations in Figure 12, to the shared memory sdata. The
second part is to prefix sum the elements in sdata. Since there are nwarps warps in each thread block,
and the last parameter width of __shfl_up_sync() is set to nwarps. The last part is to add each element
of sdata to the corresponding warp. Since there is no warp before warp 0, 0 is added to warp 0.

Combining the codes in Figures 12 and 13, we get the CUDA kernel function for computing
the prefix sum within each thread block, and denote the kernel as CTCBlockPrefixKernel. The thread
structure of CTCBlockPrefixKernel is presented in Figure 14. Each page of the thread grid processes a
column of an aurora image, and there are WIDTH − 2 pages in total, which is because the first two

Remote Sens. 2019, 11, 1635 13 of 26

columns are predicted in advance, as illustrated in Figure 3. Suppose each thread block has nthreads
threads. Since the first row of an aurora image is also predicted in advance, there are HEIGHT − 1 CTC
matrices in each column of the aurora image, and the y dimension of the thread grid is (HEIGHT − 1
+ block.x − 1)/block.x. Each CTC matrix has N × N (N is the prediction order) elements, so there are
N × N arrays to prefix summing, and the x dimension of the thread grid is N × N.

The scheme for computing the prefix sum across a column of thread blocks of Figure 14 is similar
to the method described in Figure 13. First compute the prefix sum of the last elements of each thread
block, and then add each element of the resulting array to the corresponding thread block. After this
procedure, we can get the matrices CT(xm,n)C(xm,n) (m = 1, 2, . . . , 1023, n = 2, 3, . . . , 1023) (the first row
and the first two columns of an aurora image are predicted in advance, as illustrated in Figure 3).

Remote Sens. 2018, 10, x FOR PEER REVIEW 13 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

Figure 13 shows the second half of the thread block prefix summing, that is, prefix
summing of the last element of all the warps in a thread block and adding each element of the
resulting array to the corresponding warp. The upper part of Figure 13 depicts the general idea,
and the lower part gives the CUDA codes. The codes can be divided into three parts. The first
part is to copy the value, which stores the last element of each warp after the operations in
Figure 12, to the shared memory sdata. The second part is to prefix sum the elements in sdata.
Since there are nwarps warps in each thread block, and the last parameter width of
__shfl_up_sync() is set to nwarps. The last part is to add each element of sdata to the
corresponding warp. Since there is no warp before warp 0, 0 is added to warp 0.

...

Copy to

Prefix Summing

Shared memory of
the thread block

...

Add to

A thread block after prefix
summing inside each warp The last

element in
the warp

A warp

extern __shared__ int sdata[]; //dynamic shared memory
int warp_id = threadIdx.x / warpSize; //the index of the warp
//store the last element of each warp to the shared memory sdata
if(threadIdx.x % warpSize == warpSize-1) sdata[warp_id] = value;
__syncthreads();
int nwarps = blockDim.x / warpSize; //the number of warps in a thread block
//use the first nwarps threads in warp 0 to compute the prefix sum
if(warp_id == 0 && lane_id < nwarps) {

mask = (1 << nwarps) - 1;
width = nwarps;
int warpSum = sdata[lane_id];
for(int i = 1; i < width; i *= 2) {

//__shfl_up_sync returns the value of warpSum held by the thread lane_id - i
int n = __shfl_up_sync(mask, warpSum, i, width);
if(lane_id >= i) warpSum += n;

}
sdata[lane_id] = warpSum; //write the result to sdata

}
__syncthreads();
int blockSum = 0; //the value to be added to each warp
if(warp_id > 0) blockSum = sdata[warp_id - 1]; //warp 0 does not need to be changed
value += blockSum; //add blockSum to each warp

Copy to

Prefix Summing

Add to

Figure 13. parallel implementation of prefix summing of an array of the last element of all the
warps in a thread block. The prefix sum of each warp has been calculated using the method in
Figure 12. Combining Figure 12 with Figure 13, we get the prefix sum of each thread block in
a thread grid.

Combining the codes in Figure 12 and Figure 13, we get the CUDA kernel function for
computing the prefix sum within each thread block, and denote the kernel as
CTCBlockPrefixKernel. The thread structure of CTCBlockPrefixKernel is presented in Figure 14.
Each page of the thread grid processes a column of an aurora image, and there are WIDTH - 2
pages in total, which is because the first two columns are predicted in advance, as illustrated
in Figure 3. Suppose each thread block has nthreads threads. Since the first row of an aurora
image is also predicted in advance, there are HEIGHT - 1 CTC matrices in each column of the
aurora image, and the y dimension of the thread grid is (HEIGHT – 1 + block.x - 1) / block.x.
Each CTC matrix has N × N (N is the prediction order) elements, so there are N × N arrays to
prefix summing, and the x dimension of the thread grid is N × N.

The scheme for computing the prefix sum across a column of thread blocks of Figure 14 is
similar to the method described in Figure 13. First compute the prefix sum of the last elements

Figure 13. Parallel implementation of prefix summing of an array of the last element of all the warps
in a thread block. The prefix sum of each warp has been calculated using the method in Figure 12.
Combining Figure 12 with Figure 13, we get the prefix sum of each thread block in a thread grid.

Remote Sens. 2019, 11, 1635 14 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW 14 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

of each thread block, and then add each element of the resulting array to the corresponding
thread block. After this procedure, we can get the matrices CT(xm,n)C(xm,n) (m = 1, 2, …, 1023, n =
2, 3, …, 1023) (the first row and the first two columns of an aurora image are predicted in
advance, as illustrated in Figure 3).

grid.x

...

//each block has nthreads threads
dim3 block(nthreads);
//N is the prediction order
//HEIGHT is the height of an aurora image
//WIDTH is the width of an aurora image
dim3 grid(NxN, (HEIGHT-1+block.x-1)/block.x, WIDTH-2);

grid.y

thread
block

...

grid.z

... ...

...
...

Figure 14. The thread structure for CTCBlockPrefixKernel.

The preceding contents have talked about how to decompose the CT(xm,n) × C(xm,n) into the
addition of many small matrices CTi,nCi,n (i = 0, 1, …, m - 1), but the multiplication of the matrices
CTi,n and Ci,n still remains a problem. From Figure 10, the size of Ci,n is M × N, M determines how
many equations to build with each row of an aurora image and N is the prediction order.
Therefore, the dimension of the matrix CTi,nCi,n is N × N. Furthermore, the optimal N is 11 for
the 2014 aurora data set, as described in the subsection 2.3, so there are 11 × 11 = 121 elements
in each CTi,nCi,n, which is much less than the maximum number of threads (1024) supported by
each thread block of the recent GPU cards. Consequently, a thread block is enough for the
multiplication of CTi,n and Ci,n, and each thread is responsible for an element of the product
matrix CTi,nCi,n. Of course, if the dimension of the matrix CTi,nCi,n is larger than the maximum
number of threads supported by each thread block, the product matrix CTi,nCi,n can be divided
into small submatrices and each thread block processes one submatrix, as presented in the
matrix multiplication sample in a previous study [28].

Figure 15 gives the CUDA implementation of the multiplication of matrices CTi,n and Ci,n.
The size of the thread block is N × N, which is the same as the size of the product matrix CTi,nCi,n.
Each thread is responsible for one element of CTi,nCi,n, in other words, each thread is responsible
for the multiplication of a row of CTi,n and a column of Ci,n. The size of the thread grid is
(HEIGHT - 1) × (WIDTH - 2), which is because the first row and the first two columns of an
aurora image are predicted in advance. Since the first several columns of an aurora image
cannot establish a matrix Ci,n with M rows and N columns, cols and rows are used to represent
the actual width and height of Ci,n, respectively. If col (the index of the current column of the
aurora image) is less than or equal to N, cols is col, and rows is 1, otherwise, cols is N, and rows
is col – N + 1, which is the maximum number of equations can be built with each row of the
aurora image, but if rows is larger than M, rows is set to M. Since all the elements of Ci,n are from
a consecutive segment of row i of the aurora image, as shown in Figure 10, the segment is
copied to the shared memory sdata to reduce the accesses of the global memory d_data and take
advantage of the low latency of the shared memory. It is noteworthy that in this way, we do
not need to prepare the matrix Ci,n in advance and copy it from host to device, and the only data
that needs to be transferred from host to device is the aurora data, so a lot of time is saved.

Figure 14. The thread structure for CTCBlockPrefixKernel.

The preceding contents have talked about how to decompose the CT(xm,n) × C(xm,n) into the
addition of many small matrices CT

i,nCi,n (i = 0, 1, . . . , m − 1), but the multiplication of the matrices
CT

i,n and Ci,n still remains a problem. From Figure 10, the size of Ci,n is M × N, M determines how
many equations to build with each row of an aurora image and N is the prediction order. Therefore,
the dimension of the matrix CT

i,nCi,n is N × N. Furthermore, the optimal N is 11 for the 2014 aurora
data set, as described in the Section 2.3, so there are 11 × 11 = 121 elements in each CT

i,nCi,n, which is
much less than the maximum number of threads (1024) supported by each thread block of the recent
GPU cards. Consequently, a thread block is enough for the multiplication of CT

i,n and Ci,n, and each
thread is responsible for an element of the product matrix CT

i,nCi,n. Of course, if the dimension of the
matrix CT

i,nCi,n is larger than the maximum number of threads supported by each thread block, the
product matrix CT

i,nCi,n can be divided into small submatrices and each thread block processes one
submatrix, as presented in the matrix multiplication sample in a previous study [28].

Figure 15 gives the CUDA implementation of the multiplication of matrices CT
i,n and Ci,n. The

size of the thread block is N × N, which is the same as the size of the product matrix CT
i,nCi,n. Each

thread is responsible for one element of CT
i,nCi,n, in other words, each thread is responsible for the

multiplication of a row of CT
i,n and a column of Ci,n. The size of the thread grid is (HEIGHT − 1)

× (WIDTH − 2), which is because the first row and the first two columns of an aurora image are
predicted in advance. Since the first several columns of an aurora image cannot establish a matrix Ci,n
with M rows and N columns, cols and rows are used to represent the actual width and height of Ci,n,
respectively. If col (the index of the current column of the aurora image) is less than or equal to N, cols
is col, and rows is 1, otherwise, cols is N, and rows is col − N + 1, which is the maximum number of
equations can be built with each row of the aurora image, but if rows is larger than M, rows is set to M.
Since all the elements of Ci,n are from a consecutive segment of row i of the aurora image, as shown
in Figure 10, the segment is copied to the shared memory sdata to reduce the accesses of the global
memory d_data and take advantage of the low latency of the shared memory. It is noteworthy that in
this way, we do not need to prepare the matrix Ci,n in advance and copy it from host to device, and the
only data that needs to be transferred from host to device is the aurora data, so a lot of time is saved.

Remote Sens. 2019, 11, 1635 15 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW 15 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

dim3 block(N, N); //N is the prediction order, that is, dimension of each matrix CTi,nCi,n

dim3 grid(WIDTH - 2, HEIGHT - 1);//WIDTH is the width of an aurora image, and HEIGHT is the height
//d_data is the aurora image on the device, d_CTC is the device memory to store the matrices CTi,nCi,n

__global__ void matrixMulKernel(unsigned short *d_data, double *d_CTC) {
int col = blockIdx.x + 2; //which column of the aurora image this thread block processes
int row = blockIdx.y; //by which row of the aurora image the matrix Ci,n is created
int cols = col; //cols is the actual number of columns of Ci,n

/* rows is the actual number of rows of Ci,n, that is, how many equations can be built with row row
of the aurora image */
int rows = 1;
if(col > N) {

cols = N;
rows = col – N + 1;
if(rows > M) //the maximum rows is M

rows = M;
}
int idx = threadIdx.x + threadIdx.y * blockDim.x; //the index of this thread in the thread block
extern __shared__ unsigned short sdata[];
/* all the elements of Ci,n are from a consecutive segment of row i of the aurora image. The
segment starts from column col-rows+1-cols, ends in column col-1, and the length is cols+rows–1. */
//copy this segment to the shared memory sdata
if(idx < cols + rows - 1) sdata[idx] = d_data[row * WIDTH + col – rows + 1 – cols + idx];
__syncthreads();
//the offset of the current CTi,nCi,n in d_CTC
int offset = N * N * (HEIGHT - 1) * blockIdx.x + cols * cols * blockIdx.y;
if(threadIdx.x < cols && threadIdx.y < cols) { //the actual size of CTi,nCi,n is cols*cols

double sum = 0.0;
/* each thread is responsible for one element of CTi,nCi,n, that is, the multiplication of a row
of CTi,n and a column of Ci,n */
for(int i = 0; i < rows; i++) sum += sdata[threadIdx.y + i] * sdata[threadIdx.x + i];
d_CTC[offset + threadIdx.y * cols + threadIdx.x] = sum;

}
}

Figure 15. The CUDA kernel function for the multiplication of matrices CTi,n and Ci,n.

So far, the introduction of the matrix multiplication is complete, but this decomposition
idea can also be applied to the multiplication of CT and b⃗ in Equation (2). This is because C(xi-

1,n) is the prefix of C(xi,n), as shown in Figure 10, and b⃗(xi-1,n) (the right-hand-side vector
corresponding to C(xi-1,n)) is also the prefix of b⃗(xi,n).

3.3. CUDA Implementation of the Inversion of Matrix CTC using the Gaussian Jordan Elimination
Method

As shown in Equation (2), the inversion of matrix CTC is one of the most important
procedures when computing the prediction coefficients of a pixel of an aurora image. The
method for the inversion of CTC used in this paper is the Gaussian Jordan Elimination method
[29,30], and this subsection mainly talks about how to accelerate it in parallel using CUDA. The
main step of the Gaussian Jordan Elimination method is to extend an identity matrix of the
same dimension to the right of CTC, and then sequentially change each column of CTC into a
unit vector through elimination. When matrix CTC finally becomes an identity matrix, the right

half matrix is the inverse matrix. That is, ൣCTC ⋮ E൧ eliminationሱ⎯⎯⎯⎯⎯ሮ ቂE ⋮ (CTC)
-1ቃ, E is an N-dimensional

unit matrix. In addition, it is necessary to select the main element before elimination to control
the rounding error and avoid division by zero, and for convenience, the range we adopted for
selecting the main element is a column.

The reason why we choose the Gaussian Jordan Elimination method is that the dimension
of the matrix CTC is N, and the optimal N is 11 for the 2014 aurora spectral data set, so CTC is a
medium and small-sized matrix. If we use the adjoint matrix method to compute the inverse

Figure 15. The CUDA kernel function for the multiplication of matrices CT
i,n and Ci,n.

So far, the introduction of the matrix multiplication is complete, but this decomposition idea can

also be applied to the multiplication of CT and
→

b in Equation (2). This is because C(xi−1,n) is the prefix

of C(xi,n), as shown in Figure 10, and
→

b (xi−1,n) (the right-hand-side vector corresponding to C(xi−1,n))

is also the prefix of
→

b (xi,n).

3.3. CUDA Implementation of the Inversion of Matrix CTC using the Gaussian Jordan Elimination Method

As shown in Equation (2), the inversion of matrix CTC is one of the most important procedures
when computing the prediction coefficients of a pixel of an aurora image. The method for the inversion
of CTC used in this paper is the Gaussian Jordan Elimination method [29,30], and this subsection
mainly talks about how to accelerate it in parallel using CUDA. The main step of the Gaussian
Jordan Elimination method is to extend an identity matrix of the same dimension to the right of CTC,
and then sequentially change each column of CTC into a unit vector through elimination. When
matrix CTC finally becomes an identity matrix, the right half matrix is the inverse matrix. That is,

[CTC
... E] elimination

→ [E
... (C T C)−1], E is an N-dimensional unit matrix. In addition, it is necessary to select

the main element before elimination to control the rounding error and avoid division by zero, and for
convenience, the range we adopted for selecting the main element is a column.

The reason why we choose the Gaussian Jordan Elimination method is that the dimension of the
matrix CTC is N, and the optimal N is 11 for the 2014 aurora spectral data set, so CTC is a medium and
small-sized matrix. If we use the adjoint matrix method to compute the inverse matrix of CTC, we
need to compute N × N algebraic cofactors and the determinant of CTC, which is a large amount of

Remote Sens. 2019, 11, 1635 16 of 26

calculations. If we use the decomposition methods, such as LU decomposition (which decomposes
a matrix into a unit Lower triangular matrix and an Upper triangular matrix) or QR decomposition
(which decomposes a matrix into an orthogonal matrix and an upper triangular matrix), we first need
to decompose CTC into several submatrices, then compute the inverse matrix of each submatrix, and
finally compute the product of these inverse matrices. Each step of the decomposition method requires
at least one call of a kernel function. Therefore, the decomposition method is very complicated and
its processing time may be less than that of the Gaussian Jordan method for large matrices, but for
the medium and small-sized matrix CTC, the launch overhead of the kernel functions may offset the
advantage of the decomposition method.

The CUDA implementation of the Gaussian Jordan method for the calculation of the inverse
matrix of CTC is presented in Figure 16. Each thread block calculates the inverse matrix of a matrix
CTC, and the size of the thread block is (N × 2) × N, which is the same as the size of the augmented
matrix invCTC; cols is the actual dimension of the matrix CTC. First, the matrix CTC is copied to the left
half of invCTC, and the right half of invCTC is set to a unit matrix. Then, each iteration of the for loop
turns one column of invCTC into a unit vector through Gaussian Jordan Elimination. Since the actual
number of columns of CTC is cols, there are cols iterations in the for loop. The first step in each iteration
is to search the main element of a column. As there are only N = 11 elements in a column, and the
search range of the main element in the kth iteration is from row k to the last row, which means that the
search range of the main element is decreasing, thread 0 is assigned to search the main element in a
column serially. Note that if the main element equals zero, there will be a division by zero error, and
the matrix CTC is considered to be singular. The shared memory kk is used to store the main element,
and the pivot is the row index of the main element. Now that the column main element has been
calculated, we need to normalize the row pivot and exchange it with row k. Since the row pivot will be
used several times during elimination, our scheme is to copy the row pivot to the shared memory srow
to reduce the accesses of the global memory. In this way, the normalization is performed on the srow,
and the row pivot and row k can be exchanged with the help of srow. The last step is elimination. Each
row of the matrix invCTC, except row k, minus a certain ratio of the row pivot to turn the kth element of
this row into zero. Actually, the ratio is the ratio of the kth element of each row to the kth element of
row pivot. Since the row pivot has been normalized and the kth element has turned into 1, the ratio
becomes the kth element of each row. It can be seen that the column k will be accessed many times
during the elimination, therefore, it is copied to the shared memory scol to avoid the severe access
latency of the global memory. After cols iterations, the left half of invCTC is turned into a unit matrix,
and the right half is exactly the inverse matrix of CTC.

Remote Sens. 2019, 11, 1635 17 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW 17 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

//N is the dimension of matrix CTC, N*2 is the number of columns of the augmented matrix
dim3 block(N * 2, N);
//WIDTH is the width of the aurora image, and HEIGHT is the height
dim3 grid(WIDTH - 2, HEIGHT - 1);
//d_invCTC is used to store the augmented matrix of d_invCTC, d_info records the singularity of each CTC
__global__ void gaussianJordanKernel(double *d_CTC, double *d_invCTC, int *d_info) {

int col = blockIdx.x + 2; //the index of the current column of the aurora image
int cols = col <= N ? col : N; //the actual dimension of the current CTC
//invCTCPtr is the pointer to the current matrix invCTC
double *invCTCPtr = d_invCTC + N * N * 2 * (HEIGHT - 1) * blockIdx.x + cols * cols * 2 * blockIdx.y;
//copy CTC to the left half of invCTC, and set the right half of invCTC to a unit matrix
/* … code … */
extern __shared__ double sdata[];
//scol has N elements, and is used to store one column of invCTC
double *scol = sdata;
//srow has N * 2 elements, and is used to store one row of invCTC
double *srow = sdata + N;
int idx = threadIdx.y * blockDim.x + threadIdx.x; //the index of the thread in the thread block
__shared__ double kk; //the value of the main element
__shared__ int pivot; //the row index of the main element
//each iteration turns one column of CTC into a unit vector
for(int k = 0; k < cols; k++) {

//copy column k of CTC into the shared memory scol
if(idx >= 0 && idx < cols) scol[idx] = invCTCPtr[idx * cols * 2 + k];
__syncthreads();
if(idx == 0) {

//search the main element
double max = scol[k]; pivot = k;
for(int i = k + 1; i < cols; i++) {

double tmp = scol[i];
if(fabs(tmp) > fabs(max)){ max = tmp; pivot = i; }

}
//if the main element equals to zero, the matrix is considered to be singular
if(fabs(max) < 1e-6) {

d_info[(HEIGHT - 1) * blockIdx.x + blockIdx.y] = 1; //1 indicates singularity
break;

}
kk = invCTCPtr[pivot * cols * 2 + k];

}
__syncthreads();
//normalize row pivot and exchange row pivot and row k
if(idx >= k && idx < cols * 2) {

srow[idx] = invCTCPtr[pivot * cols * 2 + idx]; //copy row pivot to srow
srow[idx] /= kk; //normalize row pivot
invCTCPtr[pivot * cols * 2 + idx] = invCTCPtr[k * cols * 2 + idx];
invCTCPtr[k * cols * 2 + idx] = srow[idx];

}
//exchange scol[pivot] and scol[k]
if(idx == 0){ double tmp = scol[pivot]; scol[pivot] = scol[k]; scol[k] = tmp; }
__syncthreads();
//all rows in invCTC except row k perform the elimination
if(threadIdx.y < cols && threadIdx.y != k && threadIdx.x > k && threadIdx.x < cols * 2)

invCTCPtr[threadIdx.y * cols * 2 + threadIdx.x] -= scol[threadIdx.y] * srow[threadIdx.x];
__syncthreads();

}
}

Figure 16. The CUDA kernel function for the computation of the inverse matrix of CTC.

4. Experimental Results

The previous two sections have detailed the online DPCM algorithm and its CUDA
implementation, and this section will focus on the verification of the performance of the CUDA
implementation through experiments. The test data set is the aurora spectral data set captured

Figure 16. The CUDA kernel function for the computation of the inverse matrix of CTC.

4. Experimental Results

The previous two sections have detailed the online DPCM algorithm and its CUDA implementation,
and this section will focus on the verification of the performance of the CUDA implementation through
experiments. The test data set is the aurora spectral data set captured at the Zhongshan Station in 2014,

Remote Sens. 2019, 11, 1635 18 of 26

which is introduced in Section 1. The CPU that runs the serial program is the Intel Xeon E3-1240 v3
CPU, whose dominant frequency is 3.4 GHz. The GPU is the NVIDIA TITAN X GPU, which has 3584
CUDA cores and 12 GB GDDR5X memory, and the memory bandwidth is 480 GB/s.

4.1. The Compression Performance of the Improved online DPCM Algorithm Compared with Several Other
Lossless Compression Algorithms

The details of the improved online DPCM algorithm are introduced in Section 2, and the three
parameters N, M, and T are set to their respective optimal values, that is, N = 11, M = 7, and T = 13.
Figure 17 presents the compression performance of the online DPCM algorithm and a few other
lossless compression algorithms. The Bzip2 and PPMD (the Prediction by Partial Matching algorithm
implemented by Dmitry)are implemented in the 7-Zip software [31]. The Bzip2 is based on the
Burrows–Wheeler transform (BWT) [32] lossless data compression algorithm. The PPMD is the
implementation of the PPM (Prediction by Partial Matching) with Information Inheritance (PPMII)
algorithm [33] with small changes, and the PPMII is a modification of the PPM [34] algorithm to reduce
its high computational complexity. The JPEG-LS [11] and the CALIC [13] are briefly introduced in
Section 1. The bitrate for each day is the average bitrate of 100 aurora spectral images evenly selected
from the data of each day, and the smaller the bitrate, the better the compression performance. It can
be seen that the bitrate of the online DPCM is the lowest for 6 days of the 9 days, and the average
bitrate of the online DPCM on these 9 days is also lower than that of all the other algorithms. Therefore,
we can conclude that the online DPCM outperforms all the other algorithms shown in Figure 17.

Remote Sens. 2018, 10, x FOR PEER REVIEW 18 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

at the Zhongshan Station in 2014, which is introduced in Section 1. The CPU that runs the serial
program is the Intel Xeon E3-1240 v3 CPU, whose dominant frequency is 3.4 GHz. The GPU is
the NVIDIA TITAN X GPU, which has 3584 CUDA cores and 12 GB GDDR5X memory, and
the memory bandwidth is 480 GB/s.

4.1. The Compression Performance of the Improved online DPCM Algorithm Compared with Several
Other Lossless Compression Algorithms

20140328
20140421

20140514
20140629

20140705
20140718

20140930
20141015

20141017
Average

0.00

6

7

8

bi
tr

at
e

(b
pp

)

 BZIP2
 JPEG-LS
 CALIC
 PPMD
 online DPCM

Figure 17. Average bitrate of the online DPCM (Differential Pulse Code Modulation) algorithm
and several other lossless compression algorithms on the aurora spectral data of 9 days. The
average represents the average bitrate of each algorithm on these 9 days.

The details of the improved online DPCM algorithm are introduced in Section 2, and the
three parameters N, M, and T are set to their respective optimal values, that is, N = 11, M = 7,
and T = 13. Figure 17 presents the compression performance of the online DPCM algorithm and
a few other lossless compression algorithms. The Bzip2 and PPMD (the Prediction by Partial
Matching algorithm implemented by Dmitry)are implemented in the 7-Zip software [31]. The
Bzip2 is based on the Burrows–Wheeler transform (BWT) [32] lossless data compression
algorithm. The PPMD is the implementation of the PPM (Prediction by Partial Matching) with
Information Inheritance (PPMII) algorithm [33] with small changes, and the PPMII is a
modification of the PPM [34] algorithm to reduce its high computational complexity. The JPEG-
LS [11] and the CALIC [13] are briefly introduced in Section 1. The bitrate for each day is the
average bitrate of 100 aurora spectral images evenly selected from the data of each day, and the
smaller the bitrate, the better the compression performance. It can be seen that the bitrate of the
online DPCM is the lowest for 6 days of the 9 days, and the average bitrate of the online DPCM
on these 9 days is also lower than that of all the other algorithms. Therefore, we can conclude
that the online DPCM outperforms all the other algorithms shown in Figure 17.

4.2. The Performance of the Parallel Implementation of the Online DPCM Algorithm

For a CUDA program, what we are most concerned about is the speed comparison
between it and its corresponding serial program. Table 1 shows the execution time for the
parallel implementation and two serial implementations of the online DPCM algorithm. The
time for each day is actually the average time for 100 aurora spectral images evenly selected
from the data of each day. The purpose of the “serial decomposed” implementation is to apply
the idea of decomposition introduced in Section 3 to the matrix multiplication CT × C and the
matrix-vector multiplication CT × b⃗ (as shown in Equation (2), and the purpose of the “serial
direct” implementation is to directly calculate the matrix multiplication and the matrix-vector

Figure 17. Average bitrate of the online DPCM (Differential Pulse Code Modulation) algorithm and
several other lossless compression algorithms on the aurora spectral data of 9 days. The average
represents the average bitrate of each algorithm on these 9 days.

4.2. The Performance of the Parallel Implementation of the Online DPCM Algorithm

For a CUDA program, what we are most concerned about is the speed comparison between it and
its corresponding serial program. Table 1 shows the execution time for the parallel implementation and
two serial implementations of the online DPCM algorithm. The time for each day is actually the average
time for 100 aurora spectral images evenly selected from the data of each day. The purpose of the
“serial decomposed” implementation is to apply the idea of decomposition introduced in Section 3 to

the matrix multiplication CT
× C and the matrix-vector multiplication CT

×

→

b (as shown in Equation (2),
and the purpose of the “serial direct” implementation is to directly calculate the matrix multiplication
and the matrix-vector multiplication without considering the redundant computations. Both of these
serial implementations are tested on the Intel Xeon E3-1240 v3 CPU. It can be seen that the execution
time of the serial direct implementation is about 870 s, which is much larger than the execution time of

Remote Sens. 2019, 11, 1635 19 of 26

3.74 s of the serial decomposed implementation. Therefore, the decomposition method introduced in
Section 3 is very effective, which can avoid redundant calculations and save a lot of time. The parallel
implementation is the method described in detail in Section 3 and is tested on the TITAN X GPU. From
Table 1, the execution time of the parallel implementation is about 0.21 s, which is much less than the
15 s aurora data acquisition time interval, and therefore can save a lot of time for other operations on
each aurora spectral image.

Table 1. The execution time for three different implementations of the online DPCM algorithm. The
speedup is the ratio of the serial decomposed time to the parallel time.

Data
Implementation Serial Direct

Time (s)
Serial Decomposed

Time (s)
Parallel Time

(s)
Speedup

20140328 869.16 3.75 0.19 19.7
20140404 872.56 3.74 0.21 17.8
20140425 872.28 3.74 0.21 17.8
20140629 872.24 3.74 0.21 17.8
20140705 872.12 3.74 0.21 17.8
20140718 869.67 3.74 0.21 17.8
20140730 870.48 3.73 0.21 17.8
20140827 872.68 3.74 0.21 17.8

The parallel time presented in Table 1 is the total execution time of the parallel application,
including the execution time of all the kernel functions and the time of the data transfers between host
and device. Furthermore, Table 2 shows the time and ratio of three CUDA kernel functions and two
data transfers. CTCMulKernel is the kernel function shown in Figure 15, CTCBlockPrefixKernel (shown
in Figures 12 and 13) is the kernel function for computing the prefix sum of an array in a thread block,
and matrixInverseKernel (shown in Figure 16) is the kernel function for computing the inverse matrix
of matrix CTC; memcpyHtoD is the data transfer from host to device, and the only data that needs to
be transferred from host to device is the aurora spectral data. Additionally, memcpyDtoH is the data
transfer from device to host, that is, the transfer of the residual from device to host. It can be seen
that the matrixInverseKernel takes the most time, the total time spent by these three kernel functions
is more than 84%, and the data transfer between host and device only takes about 0.2% of the total
time. Therefore, we can say that the execution of the kernel functions takes almost all the time of
the application.

Table 2. The time and ratio of three CUDA kernel functions and two data transfers on two aurora
images 20140514_133241 and 20140923_155500.

20140514_133241 20140923_155500

Time Ratio (%) Time Ratio (%)

CTCMulKernel 10.820 ms 5.71 10.759 ms 5.71
CTCBlockPrefixKernel 11.920 ms 6.29 11.857 ms 6.29
matrixInverseKernel 137.29 ms 72.41 136.42 ms 72.36

memcpyHtoD 191.24 us 0.10 194.25 us 0.10
memcpyDtoH 161.32 us 0.09 161.32 us 0.09

In addition to speed, there are also some other metrics to measure the performance of a CUDA
program, such as the achieved_occupancy and gld_throughput, both of which are provided by the CUDA
command line profiler, called nvprof. The achieved_occupancy is used to measure the occupancy of
Streaming Multiprocessors (SMs), and the gld_throughput is the global memory load throughput.
Table 3 shows the performance of the three kernel functions CTCMulKernel, CTCBlockPrefixKernel, and
matrixInverseKernel on these two metrics. It can be seen that the achieved_occupancy of these three
kernel functions is very high, and the achieved_occupancy of matrixInverseKernel is 99.63%. As for the

Remote Sens. 2019, 11, 1635 20 of 26

gld_throughput, the throughput of the CTCBlockPrefixKernel is more than 300 GB/s, the throughput
of matrixInverseKernel is more than 180 GB/s, and the throughput of CTCMulKernel is about 5 GB/s.
This is because in the CTCMulKernel (shown in Figure 15), each thread block is responsible for the
multiplication of CT

i,n and Ci,n, and the consecutive N + M − 1 elements (shown in Figure 5) that make
up the Ci,n are copied to shared memory. As a result, the access of the global memory is greatly reduced.

Table 3. The achieved_occupancy and gld_throughput of the three kernel functions on two aurora images
20140514_133241 and 20140923_155500.

20140514_133241 20140923_155500

achieved_occupancy gld_throughput achieved_occupancy gld_throughput

CTCMulKernel 87.06% 5.43 GB/s 87.24% 4.61 GB/s
CTCBlockPrefixKernel 94.88% 321.91 GB/s 94.88% 310.63 GB/s
matrixInverseKernel 99.63% 183.53 GB/s 99.63% 183.21 GB/s

4.3. The Parallel Implementation of the Online DPCM Algorithm using the Multi-Stream Technique

A CUDA stream is a series of CUDA operations that run on the device in the order in which
they are launched by the host code. By default, there is only one CUDA stream, and all the data
is processed in this stream. If we want to use multiple streams, we must explicitly create multiple
streams, divide all the data to be processed into several small parts, and distribute each part to a stream.
The advantage of using multiple streams is that the execution order of CUDA operations in different
streams is arbitrary, which makes it possible to overlap the execution of CUDA operations in different
streams, and therefore, reduce the execution time of the entire application. Figure 18 is an example that
more clearly describes the overlap of CUDA operations in different streams. There are 4 streams, and
each stream has only one kernel function. The HtoD represents the data transfer from host to device,
and DtoH represents the data transfer from device to host. It can be seen that there are three types of
overlaps: the overlapping of data transfer and kernel execution, the overlapping of kernel executions,
and the overlapping of data transfers in different directions.

Remote Sens. 2018, 10, x FOR PEER REVIEW 20 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

the occupancy of Streaming Multiprocessors (SMs), and the gld_throughput is the global
memory load throughput. Table 3 shows the performance of the three kernel functions
CTCMulKernel, CTCBlockPrefixKernel, and matrixInverseKernel on these two metrics. It can be seen
that the achieved_occupancy of these three kernel functions is very high, and the
achieved_occupancy of matrixInverseKernel is 99.63%. As for the gld_throughput, the throughput
of the CTCBlockPrefixKernel is more than 300 GB/s, the throughput of matrixInverseKernel is more
than 180 GB/s, and the throughput of CTCMulKernel is about 5 GB/s. This is because in the
CTCMulKernel (shown in Figure 15), each thread block is responsible for the multiplication of
CTi,n and Ci,n, and the consecutive N + M – 1 elements (shown in Figure 5) that make up the Ci,n
are copied to shared memory. As a result, the access of the global memory is greatly reduced.

Table 3. The achieved_occupancy and gld_throughput of the three kernel functions on two aurora
images 20140514_133241 and 20140923_155500.

 20140514_133241 20140923_155500

achieved_
occupancy

gld_
throughput

achieved_
occupancy

gld_
throughput

CTCMulKernel 87.06% 5.43 GB/s 87.24% 4.61 GB/s
CTCBlockPrefixKernel 94.88% 321.91 GB/s 94.88% 310.63 GB/s
matrixInverseKernel 99.63% 183.53 GB/s 99.63% 183.21 GB/s

4.3. The Parallel Implementation of the Online DPCM Algorithm using the Multi-stream Technique

A CUDA stream is a series of CUDA operations that run on the device in the order in
which they are launched by the host code. By default, there is only one CUDA stream, and all
the data is processed in this stream. If we want to use multiple streams, we must explicitly
create multiple streams, divide all the data to be processed into several small parts, and
distribute each part to a stream. The advantage of using multiple streams is that the execution
order of CUDA operations in different streams is arbitrary, which makes it possible to overlap
the execution of CUDA operations in different streams, and therefore, reduce the execution
time of the entire application. Figure 18 is an example that more clearly describes the overlap
of CUDA operations in different streams. There are 4 streams, and each stream has only one
kernel function. The HtoD represents the data transfer from host to device, and DtoH
represents the data transfer from device to host. It can be seen that there are three types of
overlaps: the overlapping of data transfer and kernel execution, the overlapping of kernel
executions, and the overlapping of data transfers in different directions.

Stream 0

Stream 1

Stream 2

Stream 3

Time

Kernel

Kernel

Kernel

Kernel

HtoD DtoH

HtoD DtoH

HtoD DtoH

HtoD DtoH

Figure 18. An example timeline of a CUDA application with 4 streams.

For the optimization of the online DPCM algorithm using the multi-stream technique, the
purpose of our scheme is to evenly divide an aurora image by columns and assign each part to
a stream, which is because the prediction of a pixel in an aurora image involves all the rows in
front of it, as shown in Figure 5. The method for dividing an aurora image into 4 streams is
shown in Figure 19, and if there are 2 streams, the division method is similar. Figure 20 shows
the CUDA codes of the multi-stream technique. All of the CUDA kernels, including the

Figure 18. An example timeline of a CUDA application with 4 streams.

For the optimization of the online DPCM algorithm using the multi-stream technique, the purpose
of our scheme is to evenly divide an aurora image by columns and assign each part to a stream, which
is because the prediction of a pixel in an aurora image involves all the rows in front of it, as shown in
Figure 5. The method for dividing an aurora image into 4 streams is shown in Figure 19, and if there
are 2 streams, the division method is similar. Figure 20 shows the CUDA codes of the multi-stream
technique. All of the CUDA kernels, including the CTCMulKernel, the CTCBlockPrefixKernel, the
matrixInverseKernel, and so on, are equivalent to one kernel, whose input is the aurora data and
output is the residual. Note that the aurora data is copied to the device using the synchronous
function cudaMemcpy(), which will block the host until the data transfer is finished, rather than the
asynchronous function cudaMemcpyAsync(), which allows each stream to copy the data assigned to it
from host to device asynchronously. This is because the aurora data is stored by rows but assigned to
each stream by columns, so each stream cannot copy the aurora data assigned to the device by calling

Remote Sens. 2019, 11, 1635 21 of 26

cudaMemcpyAsync() once, unless the aurora data assigned to each stream is prepared in advance
on the host, but this requires extra time. The reason for copying the residual using cudaMemcpy()
is similar.

Remote Sens. 2018, 10, x FOR PEER REVIEW 21 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

CTCMulKernel, the CTCBlockPrefixKernel, the matrixInverseKernel, and so on, are equivalent to
one kernel, whose input is the aurora data and output is the residual. Note that the aurora data
is copied to the device using the synchronous function cudaMemcpy(), which will block the
host until the data transfer is finished, rather than the asynchronous function
cudaMemcpyAsync(), which allows each stream to copy the data assigned to it from host to
device asynchronously. This is because the aurora data is stored by rows but assigned to each
stream by columns, so each stream cannot copy the aurora data assigned to the device by
calling cudaMemcpyAsync() once, unless the aurora data assigned to each stream is prepared
in advance on the host, but this requires extra time. The reason for copying the residual using
cudaMemcpy() is similar.

Stream 0 Stream 1 Stream 2 Stream 3

An aurora image

Figure 19. The method for dividing an aurora image to four streams.

//NSTREAMS is the number of CUDA streams
cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t)*NSTREAMS);
//create multiple streams
for (int i = 0; i < NSTREAMS; i++)

cudaStreamCreate(&streams[i]);
unsigned short *d_auroraData; //DATASIZE is the number of pixels in an aurora image
cudaMalloc((void**)&d_auroraData, sizeof(unsigned short)*DATASIZE);
short *d_residual; //the device memory to store the residuals
cudaMalloc((void**)&d_residual, sizeof(short)*DATASIZE);
//auroraData is the host memory that stores the aurora data
cudaMemcpy(d_auroraData, auroraData, sizeof(unsigned short)*DATASIZE, cudaMemcpyHostToDevice);
for (int i = 0; i < NSTREAMS; i++){

//the equivalent kernel of all the kernel functions to compute the residuals
kernel <<<grid, block, size of dynamic shared memory in bytes, streams[i] >>>(d_auroraData, d_residual);

}
//copy the residuals from device to host
cudaMemcpy(residual, d_residual, sizeof(short)*DATASIZE, cudaMemcpyDeviceToHost);

Figure 20. The CUDA codes of the online DPCM algorithm using multi-stream technique.

Figure 21 shows the execution time of the parallel implementation of the online DPCM
algorithm using two streams and four streams. The time for each day is the average time for
100 aurora spectral images evenly selected from the data of each day. The speed of using the
default stream has been shown in Table 1, and here the aim is to make a comparison with the
speed using multiple streams. It can be seen that the speed of these three implementations is
basically the same, which is because the occupancy of the SM of the three kernels CTCMulKernel,
CTCBlockPrefixKernel, and matrixInverseKernel, which accounts for more than 84% of the total
time (Table 2), is very high (Table 3), and the occupancy of the SM of other kernels is actually
also very high. In a multi-stream program, if a kernel function in one stream has been started,
the kernel function in another stream can be started only when there are enough available SMs,
otherwise, there will be no overlap of kernel functions, and thus cannot contribute to reducing
the total execution time.

Figure 19. The method for dividing an aurora image to four streams.

Remote Sens. 2018, 10, x FOR PEER REVIEW 21 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

CTCMulKernel, the CTCBlockPrefixKernel, the matrixInverseKernel, and so on, are equivalent to
one kernel, whose input is the aurora data and output is the residual. Note that the aurora data
is copied to the device using the synchronous function cudaMemcpy(), which will block the
host until the data transfer is finished, rather than the asynchronous function
cudaMemcpyAsync(), which allows each stream to copy the data assigned to it from host to
device asynchronously. This is because the aurora data is stored by rows but assigned to each
stream by columns, so each stream cannot copy the aurora data assigned to the device by
calling cudaMemcpyAsync() once, unless the aurora data assigned to each stream is prepared
in advance on the host, but this requires extra time. The reason for copying the residual using
cudaMemcpy() is similar.

Stream 0 Stream 1 Stream 2 Stream 3

An aurora image

Figure 19. The method for dividing an aurora image to four streams.

//NSTREAMS is the number of CUDA streams
cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t)*NSTREAMS);
//create multiple streams
for (int i = 0; i < NSTREAMS; i++)

cudaStreamCreate(&streams[i]);
unsigned short *d_auroraData; //DATASIZE is the number of pixels in an aurora image
cudaMalloc((void**)&d_auroraData, sizeof(unsigned short)*DATASIZE);
short *d_residual; //the device memory to store the residuals
cudaMalloc((void**)&d_residual, sizeof(short)*DATASIZE);
//auroraData is the host memory that stores the aurora data
cudaMemcpy(d_auroraData, auroraData, sizeof(unsigned short)*DATASIZE, cudaMemcpyHostToDevice);
for (int i = 0; i < NSTREAMS; i++){

//the equivalent kernel of all the kernel functions to compute the residuals
kernel <<<grid, block, size of dynamic shared memory in bytes, streams[i] >>>(d_auroraData, d_residual);

}
//copy the residuals from device to host
cudaMemcpy(residual, d_residual, sizeof(short)*DATASIZE, cudaMemcpyDeviceToHost);

Figure 20. The CUDA codes of the online DPCM algorithm using multi-stream technique.

Figure 21 shows the execution time of the parallel implementation of the online DPCM
algorithm using two streams and four streams. The time for each day is the average time for
100 aurora spectral images evenly selected from the data of each day. The speed of using the
default stream has been shown in Table 1, and here the aim is to make a comparison with the
speed using multiple streams. It can be seen that the speed of these three implementations is
basically the same, which is because the occupancy of the SM of the three kernels CTCMulKernel,
CTCBlockPrefixKernel, and matrixInverseKernel, which accounts for more than 84% of the total
time (Table 2), is very high (Table 3), and the occupancy of the SM of other kernels is actually
also very high. In a multi-stream program, if a kernel function in one stream has been started,
the kernel function in another stream can be started only when there are enough available SMs,
otherwise, there will be no overlap of kernel functions, and thus cannot contribute to reducing
the total execution time.

Figure 20. The CUDA codes of the online DPCM algorithm using multi-stream technique.

Figure 21 shows the execution time of the parallel implementation of the online DPCM algorithm
using two streams and four streams. The time for each day is the average time for 100 aurora spectral
images evenly selected from the data of each day. The speed of using the default stream has been
shown in Table 1, and here the aim is to make a comparison with the speed using multiple streams. It
can be seen that the speed of these three implementations is basically the same, which is because the
occupancy of the SM of the three kernels CTCMulKernel, CTCBlockPrefixKernel, and matrixInverseKernel,
which accounts for more than 84% of the total time (Table 2), is very high (Table 3), and the occupancy
of the SM of other kernels is actually also very high. In a multi-stream program, if a kernel function
in one stream has been started, the kernel function in another stream can be started only when there
are enough available SMs, otherwise, there will be no overlap of kernel functions, and thus cannot
contribute to reducing the total execution time.

Remote Sens. 2019, 11, 1635 22 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW 22 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

20140404
20140421

20140629
20140718

20140730
20141015

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

 only the default stream
 2 streams
 4 streams

Figure 21. The comparison in speed between the parallel implementation of the online DPCM
algorithm using two streams, four streams, and the default stream.

4.4. The Parallel Implementation of the Online DPCM Algorithm using Multi-GPU Technique

To calculate with multiple GPUs, a programmer needs to subdivide a large calculation
problem into several small subproblems and distribute each subproblem to a GPU. All of the
GPUs run concurrently, and as a result, the total execution time is reduced. When
implementing the online DPCM algorithm using multiple GPUs, the method for subdividing
the calculation task is the same as that when using multiple streams, that is, evenly divide the
aurora image by columns and distribute each part to a GPU. However, each GPU has its own
memory, unlike in multi-stream programming, where all the streams use the same GPU’s
memory. Therefore, the aurora data cannot be transmitted to the device by calling the
cudaMemcpy() once, as in Figure 20; we must transmit the aurora data assigned to each GPU
to the memory of each GPU using the cudaMemcpyAsync(), and the purpose of the preparation
before the transmission is to prepare the data for each GPU in advance on the host, though this
requires extra time. In addition, the residual computed by each GPU is stored on the memory
of each GPU, so we must transfer it to the host using cudaMemcpyAsync() as well, rather than
cudaMemcpy(). Some core CUDA codes of the multi-GPU implementation are presented in
Figure 22.

The first part in Figure 22 is to prepare the data for each GPU. The nColsPerGPU is the
number of columns that are assigned to each GPU. The dataCols is the number of columns that
each GPU needs to predict the nColsPerGPU columns of pixels, and this is nColsPerGPU + N +
M – 1, except for GPU 0. This is because each pixel requires N + M – 1 previous columns to
predict it, as shown in Figure 5, but there is no data before the data assigned to GPU 0, and the
initial several columns of data of GPU 0 are predicted using the actual available data. The
cudaMallocHost() is a CUDA function to allocate pinned host memory, and the reason for
allocating pinned host memory for h_auroraData[i] is that cudaMemcpyAsync() requires the
host memory to be pinned memory. The second part is to allocate device memory to store the
aurora data and residual for each GPU, and create a stream for each GPU. In the third part,
first, the aurora data required by each GPU is asynchronously transmitted from the pinned
host memory h_auroraData[i] to each device. Then, the kernel function is launched to calculate
the residual, which is actually the equivalent of all the kernels, including the CTCMulKernel, the
CTCBlockPrefixKernel, the matrixInverseKernel, and so on. Finally, the residual is copied
asynchronously from each device to the pinned host memory h_residual.

Figure 21. The comparison in speed between the parallel implementation of the online DPCM algorithm
using two streams, four streams, and the default stream.

4.4. The Parallel Implementation of the Online DPCM Algorithm using Multi-GPU Technique

To calculate with multiple GPUs, a programmer needs to subdivide a large calculation problem
into several small subproblems and distribute each subproblem to a GPU. All of the GPUs run
concurrently, and as a result, the total execution time is reduced. When implementing the online
DPCM algorithm using multiple GPUs, the method for subdividing the calculation task is the same as
that when using multiple streams, that is, evenly divide the aurora image by columns and distribute
each part to a GPU. However, each GPU has its own memory, unlike in multi-stream programming,
where all the streams use the same GPU’s memory. Therefore, the aurora data cannot be transmitted
to the device by calling the cudaMemcpy() once, as in Figure 20; we must transmit the aurora data
assigned to each GPU to the memory of each GPU using the cudaMemcpyAsync(), and the purpose of
the preparation before the transmission is to prepare the data for each GPU in advance on the host,
though this requires extra time. In addition, the residual computed by each GPU is stored on the
memory of each GPU, so we must transfer it to the host using cudaMemcpyAsync() as well, rather than
cudaMemcpy(). Some core CUDA codes of the multi-GPU implementation are presented in Figure 22.

The first part in Figure 22 is to prepare the data for each GPU. The nColsPerGPU is the number of
columns that are assigned to each GPU. The dataCols is the number of columns that each GPU needs to
predict the nColsPerGPU columns of pixels, and this is nColsPerGPU + N + M − 1, except for GPU 0.
This is because each pixel requires N + M − 1 previous columns to predict it, as shown in Figure 5, but
there is no data before the data assigned to GPU 0, and the initial several columns of data of GPU 0
are predicted using the actual available data. The cudaMallocHost() is a CUDA function to allocate
pinned host memory, and the reason for allocating pinned host memory for h_auroraData[i] is that
cudaMemcpyAsync() requires the host memory to be pinned memory. The second part is to allocate
device memory to store the aurora data and residual for each GPU, and create a stream for each GPU.
In the third part, first, the aurora data required by each GPU is asynchronously transmitted from the
pinned host memory h_auroraData[i] to each device. Then, the kernel function is launched to calculate
the residual, which is actually the equivalent of all the kernels, including the CTCMulKernel, the
CTCBlockPrefixKernel, the matrixInverseKernel, and so on. Finally, the residual is copied asynchronously
from each device to the pinned host memory h_residual.

The speed of the multi-GPU implementation using 2 GPUs and 4 GPUs is shown in Table 4. The
time for each day is the average time for 100 aurora spectral images evenly selected from the data of
each day. It can be seen that the execution time is about 0.12 s when using 2 GPUs, and when the
number of GPUs increases to 4, the execution time is between 0.06 s and 0.07 s, which is much less than
the 15 s aurora data acquisition time interval. The speedup is the ratio of the serial time to the 2 GPUs
time and the 4 GPUs time, respectively.

Remote Sens. 2019, 11, 1635 23 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW 23 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

// 1. prepare the aurora data needed by each GPU on the host
//NGPUS is the number of available GPUs
unsigned short**h_auroraData = (unsigned short**)malloc(sizeof(unsigned short*)*NGPUS);
//nColsPerGPU is the number of columns that assigned to each GPU to compute the residual
int nColsPerGPU = WIDTH / NGPUS; //WIDTH is the number of columns of an aurora image
for (int i = 0; i < NGPUS; i++){

//all the GPUs except GPU 0 need extra N+M-1 columns of data to process the first column assigned to it
int dataCols = (i == 0) ? nColsPerGPU : nColsPerGPU + N + M - 1;
//allocate pinned host memory to store the data for each GPU
//HEIGHT is the number of rows of an aurora image
cudaMallocHost((void**)&h_auroraData[i], sizeof(unsigned short)*dataCols*HEIGHT);
//copy the corresponding aurora data to h_auroraData[i]
/*......*/

}
// 2. allocate device memory and create CUDA streams
unsigned short**d_auroraData = (unsigned short**)malloc(sizeof(unsigned short*)*NGPUS);
short**d_residual = (short**)malloc(sizeof(short*)*NGPUS);
cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t)*NGPUS);
for (int i = 0; i < NGPUS; i++){

cudaSetDevice(i); //set current device
int dataCols = (i == 0) ? nColsPerGPU : nColsPerGPU + N + M - 1;
cudaMalloc((void**)&d_auroraData[i], sizeof(unsigned short)*dataCols*HEIGHT);
cudaMalloc((void**)&d_residual[i], sizeof(short)*nColsPerGPU*HEIGHT);
cudaStreamCreate(&streams[i]); //create multiple streams

}
short *h_residual; //allocate a pinned memory for asynchronous transfer of residual
cudaMallocHost((void**)&h_residual, sizeof(short)*WIDTH*HEIGHT);
// 3. launch the kernels and asynchronous data transfer
for (int i = 0; i < NGPUS; i++){

cudaSetDevice(i);
int dataCols = (i == 0) ? nColsPerGPU : nColsPerGPU + N + M - 1;
//asynchronous transfer of aurora data from the pinned host memory to each device
cudaMemcpyAsync(d_auroraData[i], h_auroraData[i], sizeof(unsigned short)*dataCols*HEIGHT,

cudaMemcpyHostToDevice, streams[i]);
//all the kernel functions are equivalent to this one kernel function
kernel <<<grid, block, size of dynamic shared memory in bytes, streams[i] >>>(d_auroraData[i], d_residual[i]);
//asynchronous transfer of residual from each device to the pinned host memory
cudaMemcpyAsync(h_residual + i*nColsPerGPU*HEIGHT, d_residual[i], sizeof(short)*nColsPerGPU*HEIGHT,

cudaMemcpyDeviceToHost, streams[i]);
}
// 4. synchronize streams
for (int i = 0; i < NGPUS; i++){

cudaSetDevice(i);
cudaStreamSynchronize(streams[i]);

}

Figure 22. The core CUDA codes for the multi-GPU implementation of the online DPCM
algorithm.

The speed of the multi-GPU implementation using 2 GPUs and 4 GPUs is shown in Table
4. The time for each day is the average time for 100 aurora spectral images evenly selected from
the data of each day. It can be seen that the execution time is about 0.12 s when using 2 GPUs,
and when the number of GPUs increases to 4, the execution time is between 0.06 s and 0.07 s,
which is much less than the 15 s aurora data acquisition time interval. The speedup is the ratio
of the serial time to the 2 GPUs time and the 4 GPUs time, respectively.

Furthermore, the speed comparison between using one GPU, 2 GPUs, and 4 GPUs is
depicted in Figure 23. The performance of using one GPU has been shown in subsection 4.2
and here it is compared with using multiple GPUs. It can be seen that when the number of
GPUs is doubled, the time is reduced by about half. This is because when the number of GPUs
is doubled, the amount of data processed by each GPU is reduced by half. Note that the time is
not exactly cut in half, but always slightly more than a half. This is because as the number of
GPUs increases, the overheads increase too, such as the device startup overhead and the kernel
launch overhead.

Figure 22. The core CUDA codes for the multi-GPU implementation of the online DPCM algorithm.

Table 4. The execution time for the serial and two multi-GPU (Graphics Processing Unit)
implementations of the online DPCM algorithm.

20140514 20140705 20140827 20140916 20140930 20141017

Serial time(s) 3.74 3.74 3.74 3.74 3.74 3.74

2 GPUs
Time(s) 0.12 0.12 0.12 0.12 0.12 0.12

Speedup 31.2 31.2 31.2 31.2 31.2 31.2

4 GPUs
Time(s) 0.06 0.06 0.07 0.07 0.07 0.07

Speedup 62.3 62.3 53.4 53.4 53.4 53.4

Furthermore, the speed comparison between using one GPU, 2 GPUs, and 4 GPUs is depicted in
Figure 23. The performance of using one GPU has been shown in Section 4.2 and here it is compared
with using multiple GPUs. It can be seen that when the number of GPUs is doubled, the time is
reduced by about half. This is because when the number of GPUs is doubled, the amount of data
processed by each GPU is reduced by half. Note that the time is not exactly cut in half, but always

Remote Sens. 2019, 11, 1635 24 of 26

slightly more than a half. This is because as the number of GPUs increases, the overheads increase too,
such as the device startup overhead and the kernel launch overhead.

Remote Sens. 2018, 10, x FOR PEER REVIEW 24 of 27

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing

Table 4. The execution time for the serial and two multi-GPU (Graphics Processing Unit)
implementations of the online DPCM algorithm.

 20140514 20140705 20140827 20140916 20140930 20141017
Serial time(s) 3.74 3.74 3.74 3.74 3.74 3.74

2 GPUs
Time(s) 0.12 0.12 0.12 0.12 0.12 0.12

Speedup 31.2 31.2 31.2 31.2 31.2 31.2

4 GPUs
Time(s) 0.06 0.06 0.07 0.07 0.07 0.07

Speedup 62.3 62.3 53.4 53.4 53.4 53.4

20140514
20140705

20140827
20140916

20140930
20141017

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

 one GPU
 2 GPUs
 4 GPUs

Figure 23. The comparison in speed between the parallel implementation of the online DPCM
algorithm using 2 GPUs, 4 GPUs, and only one GPU.

5. Conclusions

This paper introduces the parallel CUDA implementation of the prediction-based online
DPCM algorithm for the lossless compression of the aurora spectral data. The first step of the
online DPCM method is to compute the prediction coefficients using the least square method,
then use the prediction coefficients to compute the predicted value of each pixel, subtract the
predicted value from the original value to get the residual, and finally, encode the residual. In
order to improve the compression performance of the online DPCM algorithm, we proposed
two improvements. The first is to build multiple equations using each of the rows before the
current pixel when computing the prediction coefficients, and the other is to apply a dual-
threshold method to the encoding of the residual. In the CUDA implementation of the online
DPCM, we focus on the multiplication of matrices CT and C and the inversion of the matrix
CTC. A decomposition method, which decompose the multiplication of CT and C into the
addition of many small matrices, is proposed to remove redundant data access and
calculations. In addition, the multi-stream technique and the multi-GPU technique are used to
optimize the CUDA implementation. Finally, the average compression time for an aurora
spectral image is about 0.06 s when using 4 GPUs.

Since aurorae have the characteristic of instantaneous change and are captured
continuously, several consecutive aurora spectral images in time direction should have some
correlation. Therefore, in the future work, we plan to apply 3-D methods to aurora spectral
image compression to utilize the correlations in time direction, which is impossible for 2-D
methods. Although the 3-D methods are more likely to cause transmission errors than 2-D
methods, as illustrated in Section 1, we can decorrelate these by grouping only a few aurora
spectral images, such as 3–6 frames, to minimize transmission errors. We believe that the
improved compression gains justify the increased transmission errors.

Author Contributions: Conceptualization, J.W. and J.L.; Methodology, J.L.; Software, J.L.; Validation, J.L.,
J.W. and G.J.; Formal Analysis, J.L.; Investigation, J.L.; Resources, J.W.; Data Curation, J.W.; Writing-

Figure 23. The comparison in speed between the parallel implementation of the online DPCM algorithm
using 2 GPUs, 4 GPUs, and only one GPU.

5. Conclusions

This paper introduces the parallel CUDA implementation of the prediction-based online DPCM
algorithm for the lossless compression of the aurora spectral data. The first step of the online DPCM
method is to compute the prediction coefficients using the least square method, then use the prediction
coefficients to compute the predicted value of each pixel, subtract the predicted value from the original
value to get the residual, and finally, encode the residual. In order to improve the compression
performance of the online DPCM algorithm, we proposed two improvements. The first is to build
multiple equations using each of the rows before the current pixel when computing the prediction
coefficients, and the other is to apply a dual-threshold method to the encoding of the residual. In the
CUDA implementation of the online DPCM, we focus on the multiplication of matrices CT and C
and the inversion of the matrix CTC. A decomposition method, which decompose the multiplication
of CT and C into the addition of many small matrices, is proposed to remove redundant data access
and calculations. In addition, the multi-stream technique and the multi-GPU technique are used to
optimize the CUDA implementation. Finally, the average compression time for an aurora spectral
image is about 0.06 s when using 4 GPUs.

Since aurorae have the characteristic of instantaneous change and are captured continuously,
several consecutive aurora spectral images in time direction should have some correlation. Therefore,
in the future work, we plan to apply 3-D methods to aurora spectral image compression to utilize the
correlations in time direction, which is impossible for 2-D methods. Although the 3-D methods are
more likely to cause transmission errors than 2-D methods, as illustrated in Section 1, we can decorrelate
these by grouping only a few aurora spectral images, such as 3–6 frames, to minimize transmission
errors. We believe that the improved compression gains justify the increased transmission errors.

Author Contributions: Conceptualization, J.W. and J.L.; Methodology, J.L.; Software, J.L.; Validation, J.L., J.W.
and G.J.; Formal Analysis, J.L.; Investigation, J.L.; Resources, J.W.; Data Curation, J.W.; Writing-Original Draft
Preparation, J.L.; Writing-Review & Editing, J.W.; Visualization, G.J.; Supervision, J.W.; Project Administration,
J.W.; Funding Acquisition, J.W.

Funding: This research was funded by National Natural Science Foundation of China, numbers 61775175
and 61771378.

Acknowledgments: We thank all the editors and reviewers for their valuable comments that greatly improved the
presentation of this paper. We thank the Polar Research Institute of China for providing the aurora spectral data.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2019, 11, 1635 25 of 26

References

1. Kong, W.; Wu, J. Fast DPCM scheme for lossless compression of aurora spectral images. In Proceedings of
the High-Performance Computing in Geoscience and Remote Sensing VI, Edinburgh, UK, 26 September 2016;
p. 100070M. [CrossRef]

2. Kong, W.; Wu, J.; Hu, Z.; Anisetti, M.; Damiani, E.; Jeon, G. Lossless compression for aurora spectral images
using fast online bi-dimensional decorrelation method. Inf. Sci. 2017, 381, 33–45. [CrossRef]

3. Wells, D.C.; Greisen, E.W.; Harten, R.H. FITS—A flexible image transport system. Astron. Astrophys. Suppl.
1981, 44, 363.

4. Aiazzi, B.; Alparone, L.; Baronti, S. Near-lossless image compression by relaxation-labelled prediction. Signal
Process. 2002, 82, 1619–1631. [CrossRef]

5. Aiazzi, B.; Alparone, L.; Baronti, S. Fuzzy logic-based matching pursuits for lossless predictive coding of still
images. IEEE Trans. Fuzzy Syst. 2002, 10, 473–483. [CrossRef]

6. Aiazzi, B.; Alparone, L.; Baronti, S. Context modeling for near-lossless image coding. IEEE Signal Process.
Lett. 2002, 9, 77–80. [CrossRef]

7. Mielikainen, J.; Toivanen, P. Clustered dpcm for the lossless compression of hyperspectral images. IEEE
Trans. Geosci. Remote Sens. 2003, 41, 2943–2946. [CrossRef]

8. Martin, G. Range encoding: An algorithm for removing redundancy from a digitised message. In Proceedings
of the Video and Data Recording Conference, Southampton, UK, 24–27 July 1979.

9. Kong, W.; Wu, J. A lossless compression algorithm for aurora spectral data using online regression
prediction. In Proceedings of the High-Performance Computing in Remote Sensing V, Toulouse, France,
21 September 2015; p. 964611. [CrossRef]

10. Weinberger, M.J.; Seroussi, G.; Sapiro, G. LOCO-I: A low complexity, context-based, lossless image
compression algorithm. In Proceedings of the Data Compression Conference-DCC 96, Snowbird, UT,
USA, 31 March–3 April 1996; pp. 140–149. [CrossRef]

11. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and
standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef]

12. Taubman, D.S.; Marcellin, M.W. JPEG2000: Standard for interactive imaging. Proc. IEEE 2002, 90, 1336–1357.
[CrossRef]

13. Wu, X.; Memon, N. Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 1997, 45, 437–444.
[CrossRef]

14. Kim, B.J.; Pearlman, W.A. An Embedded Wavelet Video Coder Using Three-Dimensional Set Partitioning in
Hierarchical Trees (SPIHT). In Proceedings of the Conference on Data Compression, Snowbird, UT, USA,
25–27 March 1997; p. 251. [CrossRef]

15. Lucas, L.F.R.; Rodrigues, N.M.M.; Cruz, L.A.d.S.; Faria, S.M.M.d. Lossless Compression of Medical Images
Using 3-D Predictors. IEEE Trans. Med Imaging 2017, 36, 2250–2260. [CrossRef]

16. Xiaolin, W.; Memon, N. Context-based lossless interband compression-extending CALIC. IEEE Trans. Image
Process. 2000, 9, 994–1001. [CrossRef]

17. Tang, X.; Pearlman, W.A. Three-dimensional wavelet-based compression of hyperspectral images. In
Hyperspectral Data Compression; Springer: Boston, MA, USA, 2006; pp. 273–308. [CrossRef]

18. Zhang, J.; Fowler, J.E.; Liu, G. Lossy-to-Lossless Compression of Hyperspectral Imagery Using
Three-Dimensional TCE and an Integer KLT. IEEE Geosci. Remote Sens. Lett. 2008, 5, 814–818. [CrossRef]

19. Karami, A.; Beheshti, S.; Yazdi, M. Hyperspectral image compression using 3D discrete cosine transform and
support vector machine learning. In Proceedings of the 2012 11th International Conference on Information
Science, Signal Processing and their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012; pp. 809–812.
[CrossRef]

20. Aiazzi, B.; Alparone, L.; Baronti, S.; Lastri, C. Crisp and Fuzzy Adaptive Spectral Predictions for Lossless
and Near-Lossless Compression of Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2007, 4, 532–536.
[CrossRef]

21. Simek, V.; Asn, R.R. GPU Acceleration of 2D-DWT Image Compression in MATLAB with CUDA. In
Proceedings of the 2008 Second UKSIM European Symposium on Computer Modeling and Simulation,
Liverpool, UK, 8–10 September 2008; pp. 274–277. [CrossRef]

http://dx.doi.org/10.1117/12.2241496
http://dx.doi.org/10.1016/j.ins.2016.11.008
http://dx.doi.org/10.1016/S0165-1684(02)00305-5
http://dx.doi.org/10.1109/TFUZZ.2002.800691
http://dx.doi.org/10.1109/97.995822
http://dx.doi.org/10.1109/TGRS.2003.820885
http://dx.doi.org/10.1117/12.2199209
http://dx.doi.org/10.1109/DCC.1996.488319
http://dx.doi.org/10.1109/83.855427
http://dx.doi.org/10.1109/JPROC.2002.800725
http://dx.doi.org/10.1109/26.585919
http://dx.doi.org/10.1109/DCC.1997.582048
http://dx.doi.org/10.1109/TMI.2017.2714640
http://dx.doi.org/10.1109/83.846242
http://dx.doi.org/10.1007/0-387-28600-4_10
http://dx.doi.org/10.1109/LGRS.2008.2006571
http://dx.doi.org/10.1109/ISSPA.2012.6310664
http://dx.doi.org/10.1109/LGRS.2007.900695
http://dx.doi.org/10.1109/EMS.2008.43

Remote Sens. 2019, 11, 1635 26 of 26

22. Tenllado, C.; Setoain, J.; Prieto, M.; Piñuel, L.; Tirado, F. Parallel Implementation of the 2D Discrete Wavelet
Transform on Graphics Processing Units: Filter Bank versus Lifting. IEEE Trans. Parallel Distrib. Syst. 2008,
19, 299–310. [CrossRef]

23. Jozef, Z.; Matus, C.; Michal, H. Graphics processing unit implementation of JPEG2000 for hyperspectral
image compression. J. Appl. Remote Sens. 2012, 6, 011507. [CrossRef]

24. Santos, L.; Magli, E.; Vitulli, R.; López, J.F.; Sarmiento, R. Highly-Parallel GPU Architecture for Lossy
Hyperspectral Image Compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 670–681.
[CrossRef]

25. Keymeulen, D.; Aranki, N.; Hopson, B.; Kiely, A.; Klimesh, M.; Benkrid, K. GPU lossless hyperspectral data
compression system for space applications. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky,
MT, USA, 3–10 March 2012; pp. 1–9. [CrossRef]

26. Wu, Z.; Shi, L.; Li, J.; Wang, Q.; Sun, L.; Wei, Z.; Plaza, J.; Plaza, A. GPU Parallel Implementation of Spatially
Adaptive Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11,
1131–1143. [CrossRef]

27. CUBLAS_Library. Available online: https://docs.nvidia.com/cuda/cublas/#axzz4h7431Tsi (accessed on
22 May 2019).

28. CUDA_C_Programming_Guide. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/#axzz4dQa7XYMd (accessed on 22 May 2019).

29. Juanjuan, B.; Ling, G.; Lidong, H. Constructing windows+gcc+mpi+omp and performance testing with
Gauss-Jordan elimination method in finding the inverse of a matrix. In Proceedings of the 2010 International
Conference On Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010. [CrossRef]

30. Nyokabi, G.J.; Salleh, M.; Mohamad, I. NTRU inverse polynomial algorithm based on circulant matrices
using gauss-jordan elimination. In Proceedings of the 2017 6th ICT International Student Project Conference
(ICT-ISPC), Skudai, Malaysia, 23–24 May 2017; pp. 1–5. [CrossRef]

31. 7-Zip. Available online: https://www.7-zip.org/ (accessed on 22 May 2019).
32. Burrows, M.; Wheeler, D.J. A Block-Sorting Lossless Data Compression Algorithm. SRC Res. Rep. 1994.
33. Shkarin, D. PPM: One step to practicality. In Proceedings of the DCC 2002, Data Compression Conference,

Snowbird, UT, USA, 2–4 April 2002; pp. 202–211. [CrossRef]
34. Cleary, J.; Witten, I. Data Compression Using Adaptive Coding and Partial String Matching. IEEE Trans.

Commun. 1984, 32, 396–402. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1117/1.JRS.6.011507
http://dx.doi.org/10.1109/JSTARS.2013.2247975
http://dx.doi.org/10.1109/AERO.2012.6187255
http://dx.doi.org/10.1109/JSTARS.2017.2755639
https://docs.nvidia.com/cuda/cublas/#axzz4h7431Tsi
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4dQa7XYMd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4dQa7XYMd
http://dx.doi.org/10.1109/ICCDA.2010.5541046
http://dx.doi.org/10.1109/ICT-ISPC.2017.8075326
https://www.7-zip.org/
http://dx.doi.org/10.1109/DCC.2002.999958
http://dx.doi.org/10.1109/TCOM.1984.1096090
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Improved Online DPCM Method for Aurora Spectral Data Compression
	Overview of the Online DPCM Method
	Our Improvement to the Original Online DPCM Method
	The Improvement on the Establishment of the Linear System of Equations
	The Improvement on the Encoding of the Residual

	Optimization of the Parameters N, M, and T

	The GPU Implementation of the Calculation of the Prediction Coefficients using the Improved Online DPCM Algorithm
	Some Basic Concepts of GPU Programming
	CUDA Implementation of the Multiplication of Matrices CT and C using a Decomposition Method
	CUDA Implementation of the Inversion of Matrix CTC using the Gaussian Jordan Elimination Method

	Experimental Results
	The Compression Performance of the Improved online DPCM Algorithm Compared with Several Other Lossless Compression Algorithms
	The Performance of the Parallel Implementation of the Online DPCM Algorithm
	The Parallel Implementation of the Online DPCM Algorithm using the Multi-Stream Technique
	The Parallel Implementation of the Online DPCM Algorithm using Multi-GPU Technique

	Conclusions
	References

