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Abstract: Skills in reproducing monthly rainfall over Calabria (southern Italy) have been validated for
the Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) satellite data, the E-OBS
dataset and 13 Global Climate Model-Regional Climate Model (GCM-RCM) combinations, belonging
to the ENSEMBLES project output set. To this aim, 73 rainfall series for the period 1951–1980 and
79 series for the period 1981–2010 have been selected from the database managed by Multi-Risk
Functional Centre of the Regional Agency for Environmental Protection (Regione Calabria). The
relative mean and standard deviation errors, and the Pearson correlation coefficient have been used
as validation metrics. Results showed that CHIRPS satellite data (available only for the 1981–2010
validation period) and RCMs based on the ECHAM5 Global Climate performed better both in mean
error and standard deviation error compared to other datasets. Moreover, a slight appreciable
improvement in performance for all ECHAM5-based models and for the E-OBS dataset has been
observed in the 1981–2010 time-period. The whole validation-and-assessment procedure applied in
this work is general and easily applicable where ground data and gridded data are available. This
procedure might help scientists and policy makers to select among available datasets those best
suited for further applications, even in regions with complex orography and an inadequate amount
of representative stations.
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1. Introduction

Climate monitoring and analysis has received growing attention. Indeed, assessments have
evidenced that temperature change over the last 50 years of the 20th century to a great extent results
from anthropogenic forcings [1]. Observations are essential to climate monitoring since they are the
basis for: (i) assessing century-scale trends; (ii) the validation of climate models; iii) the detection and
attribution of changes in climate at regional scale. In particular, precipitation is a subject of special
concern: since it is the main component of the global water cycle, it is also a major contributor to
extreme events, and a crucial parameter in water resources management.

Precipitation observation is based primarily on ground rain gauges, then on weather radars and
satellite retrievals. While rain gauges generally produce the most reliable observational results, they
are often sparsely distributed; thus, they may not be fully representative of a region, especially for large
areas with few observations [2]. In regions with complex orography and scarce human settlements, rain
gauges are not enough to provide data to resolve precipitation processes in simulation studies. Satellite
retrievals and climate reanalysis have thus been used to create regular data grids, in order to fill-in on
lacking observations and to address the scarcity of stations in ungauged regions [3]. A climate reanalysis,
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combining model results with observations at regular grids, is often produced for every location on
Earth, and spans a long time period that can extend back to several decades. Examples of climate
reanalysis are: European Center Medium Weather Forecast’s (ECMWF) ERA-Interim [4], available at
an horizontal grid of 80 km resolution from 1979 (and set to be replaced by the new ERA5); European
Climate Assessment & Dataset project’s (ECAD) E-OBS, created by the ENSEMBLES (2004–2009, [5])
and further developed by the EUropean Reanalysis and Observations FOR Monitoring (EURO4M,
2010–2014, [6]) and Uncertainties in Ensembles of Regional ReAnalyses (UERRA, 2014–current, [7])
EU-funded projects, with European data from 1950 available on a 0.25◦ × 0.25◦ regular grid [8];
the various US National Centers for Environmental Prediction (NCEP) Climate Forecast System
(CFS) products [9], available on a global scale since 1979 in various configurations with 0.5◦ to 2.5◦

spatial resolution.
Moreover, past data reconstructions are produced by climate models in control runs, for past

periods that at least partly overlap with those with available observations and reanalysis. However,
the matching of simulated and observed precipitation is especially difficult for Global Climate Models
(GCMs), whose coarse grid cannot account for the horizontal variability detectable at small scales.
Thus, various dynamical downscaling methods have been developed to refine large scale information
by physical models. The most common approach to dynamical downscaling is the use of Regional
Climate Models (RCMs) [10,11]. Various studies have recommended the use of as many models
as possible when developing local climate change projections [12–14]. This approach has informed
several EU-funded projects whose goal was to produce and assess multi-model and multi-scale
datasets of climate change over Europe, i.e.: Prediction of Regional scenarios and Uncertainties for
Defining EuropeaN Climate change risks and Effects (PRUDENCE, 2001–2004, [15]); Development
of a European Multimodel Ensemble system for seasonal to inTERannual prediction (DEMETER,
2000-2003, [16]); the aforementioned ENSEMBLES [17]; Program for Climate Model Diagnosis and
Intercomparison/Coupled Model Intercomparison Project—phase 3 (PCMDI/CMIP3, [18]); STAtistical
and Regional dynamical Downscaling of EXtremes for European regions (STARDEX, [19]); and Climate
Change and Variability: Impact on Central and Eastern Europe (CLAVIER, [20,21]).

Whatever the investigation method used, validation of precipitation’s large spatial and temporal
variability is paramount and challenging at the same time [2]. Validation studies of control periods
are routinely performed to monitor the performance of climate models, in order to evaluate their
reliability in reproducing correctly the climatic properties of the studied area(s) [22,23]. For example,
ENSEMBLES results were evaluated through the use of the E-OBS reanalysis dataset and further
downscaled to a resolution of 1 km, as part of the activities of the EU FP-7 project CLimate Induced
changes on the hydrology of the Mediterranean Basins (CLIMB, [24,25]).

Several satellite-based precipitation products have been evaluated on multiple spatial and temporal
scales: for instance, Tropical Rainfall Measuring Mission’s Multi-satellite Precipitation Analysis
(TRMM-MPA or TMPA); Climate Prediction Center morphing technique (CMORPH) precipitation;
East Asian multi-satellite integrated precipitation (EMSIP); Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) [26–29]. The Climate Hazards
group InfraRed Precipitation with Station data (CHIRPS) was developed to incorporate 0.05◦ resolution
satellite imagery with in-situ station data to create gridded rainfall time series. CHIRPS is a quasi-global
dataset spanning 50◦S-50◦N (and all longitudes), available from 1981 to the near-present. It has been
evaluated in several countries, e.g., northern Italy [30], Cyprus [31], Brazil [32], Argentina [33], China [3],
Eastern Africa (Ethiopia, Kenya and Tanzania [34]) and Mozambique [35]. CHIRPS was also among
the best-performing datasets out of nine that were evaluated using hydrological modeling at 9053
catchments worldwide [36].

Metrics represent one of the most common tools in the assessment of data accuracy. Usually,
defining generalized metrics is not possible, but they must be tailored: (i) on the specific use of the
evaluated dataset; (ii) on the variable used; and (iii) on the regions of interest. To validate climate models
via global precipitation measurements, Tapiador et al. [2] suggested the use of annual and seasonal
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comparisons, the analyses of bias and correlations, and the use of probability distribution functions
as possible metrics. To evaluate skills in estimating and reproducing total monthly precipitation in
CHIRPS, Funk et al. [37,38] and Toté et al. [35] used mean absolute errors and correlation coefficients
for the Sahel, Afghanistan, south-western north America, Colombia, Mexico, Peru and Mozambique.
Dembele and Zwart [39] studied the performance of seven gridded satellite rainfall products comparing
them with data from nine weather stations in Burkina Faso. They used a point-to-pixel basis at various
time steps (from daily to annual), using Pearson correlation coefficient, mean errors, bias, Root Mean
Square Error (RMSE) and the Nash-Sutcliffe Efficiency coefficient.

Although rain gauges are most commonly used to validate datasets, the triple collocation (TC)
technique has been increasingly used to characterize uncertainties in precipitation products, thanks to
the availability of more and more datasets. This technique has been used to address problems arising
from the validation of gridded data with a too coarse or sparse rain gauge network [40–42].

The goal of this study is to evaluate the skills of several datasets in reproducing monthly
precipitation climatology. These sets include state-of-the-art reanalysis and satellite data, and well-tested
model results, validated through an established and reliable rain gauge network. The study area is
Calabria, a southern Italian region of about 15,000 km2. Calabria is a challenging area for rainfall
studies: it has a complex orography and a high vulnerability to climate change due to its position in
the center-south of the Mediterranean basin. At the same time, it is equipped with a robust rain gauge
network, available through the Multi-Risk Functional Centre of the Regional Agency for Environmental
Protection (Regione Calabria). For this study, CHIRPS has been used as the satellite dataset, E-OBS
as the reanalysis dataset and 13 GCM-RCM combinations, available as outputs of the ENSEMBLES
project, as the RC models. All these sets have been validated for the 1951–2010 time- period (CHIRPS
only for 1981–2010) against the 79 rain gauges through (i) a two-metrics set consisting of adimensional,
relative mean error and standard deviation error, and (ii) Pearson correlation.

2. Materials and Methods

2.1. Study Area

Located at the toe of the Italian peninsula, Calabria has a surface of 15,080 km2 and an average
altitude of 597 m above sea level (a.s.l., hereafter).

With its tallest relief at 2266 m a.s.l., Calabria does not present many high peaks, yet it is one of
the most mountainous areas in the country. Mountains (areas over 500 m a.s.l. high) occupy 42% of
the region, while hills between 50 and 500 m a.s.l. high cover 49% of the territory. Only 9% of the
region is under 50 m a.s.l. (Figure 1). Calabria’s climate is typically Mediterranean. It features sharp
contrasts due to both its position within the Mediterranean Sea and to its orography. Specifically,
warm air currents coming from Africa affect the Ionian side, leading to high temperatures, and to
short and heavy precipitations. The Tyrrhenian side, instead, is affected by western air currents, which
cause milder temperatures and more intense precipitations when compared to the Ionian side. Cold
and snowy winters, and fresh summers with some precipitation, are typical of the inner areas of the
region [43].

2.2. Data Sources

The following data sets have been validated:

1. The February 2019 update of CHIRPS (Climate Hazards group InfraRed Precipitation with Station
data), version 2.0, with a 0.05◦ resolution and available from January 1981 until January 2019 [37];

2. The 18.0e version (released in November 2018) of E-OBS, a gridded version of the European
Climate Assessment Dataset, with a 0.25◦ resolution and which provides data from January 1950
until June 2018 [8];

3. ENSEMBLES, funded by the European Commission’s 6th Framework Programme through
contract GOCE-CT-2003-505539, consists of several GCM-RCM combinations, furnished at the
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E-OBS 0.25◦ grid [17]. These GCM-RCM combinations use a Global Climate Model (Table 1)
to drive a Regional Climate Model (Table 2). As an example, the HCH-RCA acronym refers to
the Sveriges Meteorologiska och Hydrologiska Institute (SMHI) regional RCA Model driven by
the global Hadley Climate Model 3 (HCH) with high sensitivity. See Table 3 for a full list of
GCM-RCM combinations and acronyms.
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Figure 1. Digital Elevation Model (DEM) map of Calabria with the location of the 79-stations rain gauge,
labeled with the code number (see Appendix A Table A1 for details on rain gauge codes and names).

Several reasons determined the choice of the datasets:

• CHIRPS and E-OBS are up-to-date, state-of-the-art products: they are regularly maintained and
updated and they are the subject of several validation studies [44];

• E-OBS has been used in previous studies as a validation tool for model outputs, and in particular
to validate precipitation of the ENSEMBLES project GCM-RCM combinations [45–47];

• the E-OBS fields are available on a grid consistent with that used by ENSEMBLES RCMs; in
fact, they were technically built with the goal of direct comparison with ENSEMBLES RCM
outputs [25,48];

• ENSEMBLES models have already been selected and studied in previous projects; they are easily
comparable with E-OBS, as they share the same spatial resolution and the same space grid;
furthermore, they have data available for the 1951-2010 time-period.
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Table 1. ENSEMBLES Global Climate Models (GCMs) used in the CLimate Induced changes on the
hydrology of the Mediterranean Basins (CLIMB) validation.

Acronym Global Climate Model

HCH Hadley Climate Model 3 (HadCM3) (high sensitivity)
HCS HadCM3 (standard sensitivity)
HCL HadCM3 (low sensitivity)
ARP Climate Model 3 Arpege
ECH Max Planck Institute (MPI) European Centre HAMburg model 5 (ECHAM 5)
BCM Bjerknes Centre for Climate Research Bergen Climate Model 2.0

Table 2. ENSEMBLES Regional Climate Models (RCMs) used in the CLIMB validation.

Acronym Regional Climate Model

RCA Swedish Meteorological and Hydrological Institute (SMHI) Rossby Centre regional
Atmospheric (RCA) climate model

HIR Danish Meteorological Institute (DMI) HIgh Resolution limited-European Centre HAMburg
model 5 (HIRHAM5)

CLM Eidgenössische Technische Hochschule (ETH) Zurich Community Land Model
HRM Hadley Centre Regional Model 3Q3

RMO Koninklijk Nederlands Meteorologisch Instituut Regional Atmospheric Climate MOdel 2
(RACMO2)

REM Max Planck Institute-REgional climate MOdel (REMO)

Table 3. ENSEMBLES GCM-RCM combinations used in the CLIMB validation.

Acronym Acronym

ECH-RCA HCL-RCA
ECH-REM HCL-HRM
ECH-HIR HCS-HRM

ECH-RMO HCS-CLM
BCM-HIR HCS-HIR
ARP-HIR HCH-HRM

HCH-RCA

The timeframe of the study goes from 1951 to 2010 in order to split the time period into two
30-years periods (1951–1980 and 1981–2010). This split allows to skill for the datasets from one 30-year
period to another. In particular, the 1981–2010 time-period was chosen because it coincides with the
current climatological normal period; moreover, CHIRPS data is available only from 1981 onward.

The validation has been conducted for monthly precipitation, because of its importance and
relevance for research and for applications. First of all, it is used to build monthly normal climatology,
which is a fundamental climatological parameter. It is also used: in calculating drought indices like
Standard Precipitation Index (SPI; [49]); in evaluating rainfall seasonality, with, e.g., the Precipitation
Concentration Index (PCI; [50]); in trying to understand the seasonal correlation between precipitation
and teleconnections (e.g., El Nino Southern Oscillation, North Atlantic Oscillation); and runoff of
monthly precipitation is also used as a driver of hydrological modeling (e.g., [51]). Finally, it must
also be taken into account that many available datasets are only produced with monthly values, or
restricted to monthly sampling (e.g., gauge-based precipitation products; see for instance [52]).

The validation set is based on daily data, available online, managed by the Multi-Risk Functional
Centre of the Regional Agency for Environment Protection. The database consists of high quality and
complete or near-complete records, available since early 20th century and currently updated. This set
has been widely employed in the study of climate in Calabria (e.g., [53,54]). In particular, at the end of
2010, the Calabria database consisted of daily data collected at about 100 stations. All the rainfall series,
which presented less than 80% of daily data in the observation period, were discarded. As a result, data



Remote Sens. 2019, 11, 1625 6 of 20

from 79 stations in the period 1951–2010 (Figure 1 and Appendix A Table A1), with an average density
of 1 station per 190 km2, were selected. Rain gauge density and distribution are crucial for an accurate
description of rainfall amount over a region. It is difficult to derive fundamental laws to determine the
gauge density needed in a particular region [55]. However, several studies proved a linear correlation
between uncertainty in the spatially averaged rainfall and spatial standard deviation [56–58]. More
recent theoretical developments suggest that uncertainty is directly proportional to the spatial standard
deviation and inversely proportional to the square root of the total number of gauges [59]. World
Meteorological Organization (WMO) guidelines indicated a number of stations per km2 ranging
from one station per 100 km2 for complex, mountain terrain to one station per 10,000 km2 in arid
and polar deserts [60]. Nonetheless, uncertainties are often calculated with different methods and
metrics depending on the region of interest and the applications for which precipitation is needed
(e.g., [61,62]). Mishra, for instance, suggested that for southern India the acceptable rain gauge density
for reproducing significantly total precipitation was around 1 station per 350 km2 [61].

Small-scale variability influences rainfall events and monthly accumulated precipitation, so that
validation at the smallest possible spatial scale is recommended. Interpolating gauge measurements
into a gridded product results in large uncertainties [63]. Thus, for the CHIRPS versus observations
comparison, we applied a point-to-pixel analysis which compared rainfall data observed at gauge
stations with the respective grid cell; i.e., for each station and month, time series of data observed at
selected rain gauges were compared to the corresponding CHIRPS pixel [36,64].

In comparing gauge measurements and E-OBS/ENSEMBLES grid points, grid data were
interpolated to the station location and we compared the results to the station data. Numerous
studies have provided reviews of existing spatial interpolation methods for hydrological variables
(e.g., [65]) or suggested new spatial interpolation approaches (e.g., [66]). Among these studies, there
was not a unanimous consensus on the best interpolation method: several authors have concluded
that results depend on the sampling density (e.g., [67]). A bilinear interpolation has been chosen
because it is a simple, two-dimensional (2D) interpolation and it allows to perform a clear assessment
of improvements and uncertainties introduced.

2.3. Validation Metrics

Different metrics can evaluate different skills in reproducing precipitation. For this study, three
common evaluation metrics were used: the relative mean error, the relative standard deviation error,
and the Pearson correlation coefficient [2,25,36].

These metrics have been selected for the following reasons:

• Mean error and standard deviation error are among the most commonly used tools in validation
and error theory [68,69], and also to compare E-OBS and ENSEMBLES RCMs [25];

• The Pearson correlation coefficient is an important measure commonly used in climate science for
evaluating data from independent data sources, just like precipitation values from gauge stations,
satellites and models [70,71].

The use of mean error and standard deviation assume that the error distribution is Gaussian.
We checked preliminarily that monthly precipitation data over Calabria followed roughly a normal
distribution for rain gauge data, E-OBS and CHIRPS. It is then a common assumption that the errors
are normally distributed as well (e.g., Roebeling et al. [40]).

It is interesting to note that the approximately normal distribution of E-OBS, CHIRPS and of the
gauge network, three independent sets with mutually uncorrelated errors, might satisfy the requirements
for applying triple collocation validation. However, the mutual independence of the sets might be only
apparent, as both E-OBS and (partially) CHIRPS are built using rain gauge data. Thus, more preliminary
analyses are needed before using triple collocation to assess the performance of these sets.

There are many other methods and indices that can be used; however, many of these are not
independent of mean and standard deviation, or are basically different methods to calculate correlation.
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Others, such as the number of rainy days, could not be used as we do not have daily data for most of
these sets.

2.3.1. Mean Error and Standard Deviation Error

The two-metric validation introduced in this section is based on the work of Deidda et al. [25].
They used it to evaluate ENSEMBLES RCMs’ skills in reproducing precipitation (and temperature)
against E-OBS reanalysis data. The performance indices are the monthly mean and standard deviation
adimensional errors. The mean error evaluates how well the estimates correspond to the observed
values, indicating whether rainfall totals are overestimated or underestimated. The standard deviation
evaluates the average magnitude of estimated errors, and the capability at reproducing variability.

Let PS (m, y) be monthly precipitation, for month m, year y and for a generic dataset s that we
want to validate. It can be collected at a station, a grid point, or as an averaged value over an area (e.g.,
a hydrological basin or an administrative district).

Considering a climatological time-frame that takes into account a number Ny of years of monthly
averaged precipitation PS (m, y), starting with year y0, the Ny-years average of the monthly precipitation
for each month in the annual cycle µs(m) is:

µs(m) =
1

Ny

y0+Ny−1∑
y=y0

Ps(m, y), (1)

and the standard deviation of precipitation of month m is:

σs(m) =

√√√√√
1

Ny − 1

y0+Ny−1∑
y=y0

∣∣∣Ps(m, y) − µs(m)
∣∣∣2. (2)

Each dataset has to be compared with the observed data (registered in the rain gauges). Just like
in Equation (1) and Equation (2), it is possible to estimate, also for the observed dataset, the Ny-years
average of the monthly precipitation P0 (m, y):

µ0(m) =
1

Ny

y0+Ny−1∑
y=y0

P0(m, y), (3)

and the standard deviation:

σ0(m) =

√√√√√
1

Ny − 1

y0+Ny−1∑
y=y0

∣∣∣P0(m, y) − µ0(m)
∣∣∣2. (4)

Within this aim, the following error metrics have been introduced:
a) The average absolute error on the monthly mean:

Eµs =
1

12

12∑
m=1

∣∣∣µs(m) − µ0(m)
∣∣∣; (5)

b) The average absolute error on the standard deviation:

Eσs =
1

12

12∑
m=1

∣∣∣σs(m) − σ0(m)
∣∣∣. (6)
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The above defined error metrics provide information on the reliability of a single model in
reproducing precipitation, whereas normalizing metrics is needed to visualize more clearly the
simultaneous performance of different datasets against each other.

To produce normalized metrics for datasets, each error has been divided by a factor obtained as
the sum of errors on all datasets (S):

fµ =
S∑

s=1

Eµs, (7)

fσ =
S∑

s=1

Eσs. (8)

The errors on the climatological mean of a single dataset become:

εµs =
Eµs

fµ
; (9)

εσs =
Eσs

fσ
. (10)

The results can be graphically represented in a simply Cartesian plane, by drawing the mean
error and the standard deviation error on the x- and y-axes, respectively. The origin (0,0) indicates the
reference value. The closest the error metrics for a dataset s are to the origin, the better its performance.

This procedure can be easily generalized from a two-dimensional error to a N-dimensional error
by including any relative indices relevant to the specific study. It might even be possible to provide
every index with a weighting factor. The use of more and/or different indices would be up to the
specific scientific problem’s demands.

As the absolute standard deviation represents the degree of dispersion, Equation (6) can be used
as a bias error estimate (see [72,73]). On the other hand, while the relative bias error is defined as the
bias error divided by the mean precipitation, Equation (10)’s relative error is normalized over the
errors of all other models. Thus, this error measure is not a relative bias index.

2.3.2. Pearson Correlation Coefficient

The Pearson correlation coefficient (r) has been used to evaluate how well the estimates
corresponded to the observed values. For each month (m) and each dataset (s), the coefficient
is defined as:

R(m, s) =

Ny∑
y=1

[P0(m, y) − µ0(m)][Ps(m, y) − µs(m)]√
Ny∑

y=1
[P0(m, y) − µ0(m)]2

√
Ny∑

y=1
[Ps(m, y) − µs(m)]2

, (11)

with values ranging from −1 to 1 with the extremes ±1 indicating the perfect scores [70,71,74].
Ny indicates the number of years taken into account, i.e., 30 or 60 (except for CHIRPS, for which

Ny = 30 only).

3. Results

Results from the adimensional mean-and-standard deviation metrics (Figure 2) showed that some
model results from ENSEMBLES compare well with satellite data (CHIRPS) and reanalysis tools (E-OBS).

In particular, CHIRPS and the four ECHAM5-driven models are the best performers overall, both
in terms of standard deviation and mean. From the other ENSEMBLES combinations, good relative
performances were obtained by HCH-RCA and ARP-HIR.
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There is very little change in relative performance between the two considered time periods, with
the exception of E-OBS and of the ECHAM5-driven models. In particular, all of the latter models
increase their relative skills in reproducing standard deviation; and three out of four increase the skills
in the mean from the 1951–1980 to the 1981–2010 time-period (Figure 3).Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 21 
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from the 1951–1980 to the 1981–2010 time period for the 13 ENSEMBLES models and the E-OBS dataset.

Figure 4 shows the Pearson correlation coefficient, evaluated between monthly rain gauge
precipitation and gridded dataset precipitation, for the whole observation period (1951–2010) and for
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the 1981–2010 time period only. The correlation shows that the same models that had good relative
error metrics are the best-performing ones (ECH-driven models, HCH-RCA and ARP-HIR), with the
addition of BCM-HIR. However, the most correlated dataset of all (r = 0.97) is E-OBS, which was only
an average performer with regard to relative metrics. CHIRPS is once again an excellent performer,
with a correlation value of r = 0.94.

The other six models (all driven by the Hadley Center HadCM3 Model) score very bad on the
Pearson correlation. They all show anticorrelation, with values ranging from r = −0.23 (HCS-HRM) to
r = −0.59 (HCH-HRM), which means that it is not possible to identify any linear relation between the
model data and the rain gauge data.

A huge difference between the results obtained from two regional models driven by the Hadley
Model with high sensitivity has been detected: HCH-RCA is one of the best performers at all metrics,
while HCH-HRM is one of the worst.
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Figure 4. Pearson correlation coefficient between monthly rain gauge precipitation and gridded dataset
precipitation: (a) for all months in the 1951–2010 time period (13 ENSEMBLES models + E-OBS); (b) for
all months in the 1981-2010 period (13 ENSEMBLES models + E-OBS + CHIRPS).

Figure 5 shows the seasonal correlation of monthly rain gauge precipitation with gridded dataset
precipitation. The seasonal breakdowns show a good performance of nine datasets in the spring
(MAM) and in the fall months (SON). The E-OBS is the only dataset with an excellent correlation
(r > 0.9) in the winter months (DJF), while all datasets show a strong decrease in correlation for the
summer months.

The six anticorrelating models show a wildly inconsistent behavior from season to season and
from 1951–1980 to 1981–2010. For example, HCL-HRM (r = −0.52 for all months in the 1951–2010
time period) has a correlation value r = +0.92 in the winter months for the 1951–1980 time period (not
shown in figures), and r = −0.87 if we consider the 1981–2010 time period, with seasonal values for the
1951–2010 period varying from r = +0.87 in winter to r = −0.59 for spring.

To further understand the strengths and weaknesses of the examined datasets in reproducing
precipitation features in Calabria, we have examined Quantile-Quantile plots (QQ-plots) of monthly
precipitations of all stations for each dataset. Figure 6 shows the QQ-plots of gridded data against
station data for the full 1951–2010 time period, for E-OBS and the seven best-correlating (r > 0.9) models
from ENSEMBLES. Figure 7 shows the results for 1981–2010 for CHIRPS.
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Figure 5. Pearson correlation coefficient between seasonal rain gauge precipitation and gridded
dataset precipitation: (a) winter, (c) spring, (e) summer and (g) fall months in the 1951–2010 time
period (13 ENSEMBLES models + E-OBS); (b) winter (d) spring, (f) summer and (h) fall months in the
1981–2010 period (13 ENSEMBLES models + E-OBS + CHIRPS).
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Figure 6. QQ-plots for gridded data with Pearson correlation values with rain gauge above 0.9. 
Monthly precipitation versus rain gauge data at all stations, from 1951 to 2010: (a) for E-OBS 
reanalysis; (b) for ECH-HIR model data; (c) for ARP-HIR model data; (d) for BCM-HIR model data; 
(e) for ECH-RCA model data; (f) for HCH-RCA model data; (g) for ECH-REM model data; (h) for 
ECH-RMO model data. 
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Figure 6. QQ-plots for gridded data with Pearson correlation values with rain gauge above 0.9. Monthly
precipitation versus rain gauge data at all stations, from 1951 to 2010: (a) for E-OBS reanalysis; (b) for
ECH-HIR model data; (c) for ARP-HIR model data; (d) for BCM-HIR model data; (e) for ECH-RCA
model data; (f) for HCH-RCA model data; (g) for ECH-REM model data; (h) for ECH-RMO model data.
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Results from QQ-plots and relative metrics show how E-OBS is not one of the best models.
However, it must be noted that it still correlates very well with the observed data. From the plots,
it is clear that most of the well-performing models have good or even excellent results at the lower
spectrum of the precipitation range. However, they are not able to reproduce correctly the months with
most precipitation. This is probably due to a lack of skill in reproducing extreme events (for models) or
problems in satellites in observing them (TRMM). It is possible that this problem is transferred from
raw satellite data to methods that integrate satellites with stations (CHIRPS) or use satellite data in
reanalysis (E-OBS).

Analogous QQ-plots (not shown) were examined for the full 1951-2010 time period for the seven
mildly anticorrelating (−0.53 < r < −0.23) models from ENSEMBLES. It is clear that the gridded data
here do not follow any recognizable linear pattern for a long enough interval to allow some form of
linear correlation to emerge.
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4. Discussion

Results from this study show the importance of using multiple metrics in validation: combining
the analysis from several tools provides a deeper understanding of the datasets’ skills and shortcomings.

The relative error metrics show which datasets perform better as to what concerns actual
monthly precipitation values. However, Pearson correlation is also an important validation tool: a
high correlation (i.e., correlation values above 0.8) means that it might be possible to obtain better
results with a simple bias correction. For example, we could use the Pearson value to select only
high-correlating datasets, then bias-correct them (for instance, with a simple linear regression), and
finally re-run the relative metrics to find the best-performing models. In general, however, one must
always remember that metrics should be tailored on the desired end-use of the datasets: metrics are
not a measure of quality per se.

Bias correction, for instance, might be useful with the E-OBS data: while this reanalysis gridded
set shows the highest correlation values (r = 0.97), its performance is only average with respect to the
relative, normalized error metrics. E-OBS shows a strong tendency to underestimate precipitation
amounts in general and extreme events in particular. The mean yearly precipitation for 1951–2010 is
1057 mm/year according to the observations, while it is only 606 mm/year according to E-OBS (see
Appendix A and Table A1 for more information on the datasets’ mean yearly precipitation). This
underestimation has also been found in other studies that have shown a bias in E-OBS toward lower
values [44].
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With regard to possible bias corrections, it must be noted that the ENSEMBLES models have
associated the available elevation data, which can be used for vertical corrections. On the other
hand, CHIRPS precipitation is based on satellite data, and has no orographic reference. Caroletti
and Deidda [75] applied bias correction and orographic correction to downscale precipitation of
14 ENSEMBLES models in Sardinia. They improved the skill in reproducing results, using a
combination of a multifractal model and of a linear orographic model. This could be usefully
applied to the mountainous regions of western Calabria, where precipitation has a strong orographic
component. However, this method would not solve the issue concerning months with high amounts
of convective precipitation.

Balsamo et al. suggested spatial re-scaling as a way to improve gridded dataset results [66].
The main problem for Calabria would be to find a reliable gridded reference to use for re-scaling.
An alternative approach could be the spatial interpolation of the rain gauge network into a
regular-spaced grid.

E-OBS could be considered a reliable enough dataset for this purpose. However, E-OBS is provided
at the same grid (and space resolution) as ENSEMBLES, so there would not really be a re-scaling. Even
though E-OBS could be used to re-scale CHIRPS data, more problems could come from re-scaling
satellite data at cell level into a point-grid system (see Section 2.2). Another choice of dataset could be
ERA-INTERIM, which has a resolution of about 80 km, but is only available from 1979 to 2017 [76,77].

With regard to the interpolation of the rain gauge network to a regular grid, one of the main
issues would be what method to use for building the grid. Several tools are available for sparse data
interpolation: the Barnes method, for instance, has been used successfully for precipitation [25]. The
problem of rescaling cell data to grid points, though, would still have to be addressed.

CHIRPS has a very high correlation value (0.94) and a high relative error skill compared to other
models. This dataset seems to be an excellent basis for further work, especially given the fact that it has
a 0.05◦ resolution compared to the 0.25◦ resolution of all other datasets taken into account. Precipitation
estimates derived from satellite data are indirect and are inevitably accompanied by a large degree of
variability, and have difficulty representing precipitation with high spatiotemporal variability in areas
of complex topography [52,78]. CHIRPS results, however, show no particular problem in capturing
light precipitation. This is probably due to the incorporation of station data in satellite products.

Good Pearson correlation results and an underestimation of high precipitation events were in
accord with previous evaluations: Paredes-Trejo et al. [32] in northeast Brazil, and Luo et al. [79] in
the Lancang-Mekong river basin, where they used CHIRPS data to drive hydrological modeling. On
the other hand, Rivera et al. [33] noted some issues in the Andes region of Argentina, where CHIRPS
underperformed especially in areas above 1000 m a.s.l. As there are only a handful of stations located
above that altitude in this study, this begs for some caution in the use of the CHIRPS dataset. This
is especially noteworthy given the importance of mountain areas of Calabria as the main freshwater
sources for the region. Bai et al. [3] investigated the performance of CHIRPS over China, finding very
different results in different regional and basin areas, wet versus arid zones, and summer versus winter
months. Once again, this underlines the importance of taking case region validations as valid only for
that specific region and for the specific use the data is validated and selected for.

Deidda et al. [25] used E-OBS to validate 14 ENSEMBLES models. However, although the Pearson
correlation with ground data is excellent, the relative error metrics show that some of the ENSEMBLES
models perform better than E-OBS. Since the ENSEMBLES models are built at least in part on the
E-OBS results, this is not necessarily surprising. However, this might question the idea of using E-OBS
as a validation method for these models, as ENSEMBLES and E-OBS are not independent of each other.

In general, Pearson correlation results show huge problems in reproducing summer precipitation.
However, this has a lesser impact on the relative error metrics, as they are based on the sum of all errors
on the monthly means; thus, the contribution to the error from summer months is much reduced, as
summer precipitations in Calabria are significantly less than precipitation during the other months of
the year.
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Poor summer performance, on the other hand, might contribute to errors in extreme events
evaluation for E-OBS and CHIRPS, as extreme events can affect Calabria in the form of late summer
thunderstorms and extreme convective precipitation.

The reliability of RCMs in general is strongly dependent on the quality of the climate forcing data,
i.e., of the GCMs. It is plausible that the ECH-driven models are the best performers in general because
of the quality of their forcing data, which is more important than the RCMs fine-tuning. The three
models driven by the Hadley Centre HadRM3Q3 Model (HCL-HRM, HCS-HRM and HCH-HRM), are
better during 1951–2010 than 1981–2010 according to the Pearson correlation coefficient. By looking at
the seasonal correlations, we see that the performance is almost the same in the spring season, while
it worsened for the other seasons; most significantly, it worsened for winter months, where it went
from a good correlation to anti-correlation. In the 1981-2010 time period, there was an increase in
extreme precipitation and a decrease in the number of precipitation days in Calabria [80], especially in
winter [81]. This change in precipitation patterns might have escaped the HRM climatology that drove
these RCMs; even though the 30-years climatology of precipitation (i.e., the decrease of the yearly
average) might have been correctly reproduced (see Appendix A Table A2).

The performance of RCMs in regard to extreme events, on the other hand, depends on the skill of
the regional model to capture correctly spatial distribution of precipitation and orographic enhancing.
In this regard, we found that RCA regional models were the best performers: even HCL-RCA, which is
one of the lower ranking datasets overall, actually correlates more at extreme events than for all the rest
of the precipitation spectrum (not shown). Results from ENSEMBLES models run with the HIRHAM5
RCM, show the opposite problem: even those with good correlation values, strongly overestimate
extreme events. Thus, it is not surprising that BCM-HIR and ECH-HIR are the datasets with the highest
yearly precipitation values (see Appendix A Table A2).

5. Conclusions

Products distributed on regular grids, whether satellite data, reanalysis products, or model data,
are currently used for most climatological studies, especially in regions where ground stations are
inadequate to perform high-resolution regional studies. A common approach in future projections
studies is to produce large ensembles of climate model results. Many studies (e.g., [13] and [14]) suggest
that the results from all available models are used to span the uncertainties coming from different
approaches (e.g., on parameterizations). However, other studies [22,69,82] challenge this approach
and suggest weighting the models contribution, or using a limited number of high-performing model
results instead. The selection of the most accurate gridded products—i.e., validation—can play a major
role in accurate climate projections, assessment studies and hydrological studies.

The results of this study showed that, taking into account Pearson correlation, error metrics
and extreme events performance, the best datasets are the satellite-based CHIRPS dataset and the
ECH-RCA, HCH-RCA and ECH-REM models from the ENSEMBLES set. Given its high correlation
values, E-OBS data could be a good dataset to use for further applications, but only after bias correction.
There was a slight appreciable improvement in performance for all four ECHAM5-based models and
for the E-OBS dataset from the 1951–1980 to the 1981–2010 time-period.

Results from this validation show that, out of 13 ENSEMBLES models, the ones with the worse
error metrics are also the ones of which the monthly precipitation data do not correlate with rain gauge
data. Thus, to calculate ensemble uncertainties using models showing these performances might be in
fact counterproductive.

The whole validation procedure presented in this study is general and easily applicable to any
other region where ground- and gridded-data are available, as a supporting tool in the choice of data
for precipitation assessments in areas with sparse ground data.



Remote Sens. 2019, 11, 1625 16 of 20

Author Contributions: Conceptualization, C.G.N. and C.R.; methodology, C.G.N.; software, C.G.N. and C.T.;
formal analysis, C.G.N. and C.T.; validation: C.T. and C.R.; investigation, C.G.N.; data curation, C.R. and C.T.;
writing—original draft preparation, C.G.N.; writing—review and editing, C.R. and C.T.; visualization, C.G.N. and
C.T.; supervision, C.R.; project administration, C.R.

Funding: This research was funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR
(FR) with co-funding by the European Union, Grant number 690462

Acknowledgments: The Project INDECIS is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded
by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European
Union (Grant 690462).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This Appendix shows the rain gauges of the Multi-Risk Functional Centre used for the validation
(Table A1), and yearly mean precipitation results from the two time series for all validated datasets
and for the validation data (Table A2), averaged over all available stations for that time period and
that dataset.

Table A1. Rain gauges of the Multi-Risk Functional Centre of the Regional Agency for Environmental
Protection, with code number and station name.

Code Name Code Name

900 Albidona 2090 Fabrizia
930 Villapiana Scalo 2130 Roccella Ionica
970 Cassano allo Ionio 2150 Fabrizia - Cassari

1000 Domanico 2160 Gioiosa Ionica
1010 Cosenza 2200 Antonimina
1030 San Pietro in Guarano 2210 Ardore Superiore
1060 Montalto Uffugo 2230 Plati’
1092 Camigliatello – Monte Curcio 2260 San Luca
1100 Cecita 2270 Sant’Agata del Bianco
1120 Acri 2290 Staiti
1130 Torano Scalo 2310 Capo Spartivento
1140 Tarsia 2320 Bova Superiore
1180 Castrovillari 2340 Roccaforte del Greco
1230 San Sosti 2380 Montebello Ionico
1360 Longobucco 2450 Reggio Calabria
1380 Cropalati 2510 Scilla
1410 Cariati Marina 2540 Santa Cristina d’Aspromonte
1440 Crucoli 2560 Sinopoli
1455 Ciro’ Marina - Punta Alice 2580 Molochio
1500 Nocelle - Arvo 2600 Cittanova
1580 Cerenzia 2610 Rizziconi
1670 Cutro 2670 Arena
1675 Crotone - Papanice 2690 Feroleto della Chiesa
1680 Crotone 2710 Mammola - Limina C.C.
1695 Crotone - Salica 2730 Mileto
1700 Isola di Capo Rizzuto - Campolongo 2740 Rosarno
1740 San Mauro Marchesato 2760 Joppolo
1760 Botricello 2780 Zungri
1780 Cropani 2800 Vibo Valentia
1820 Soveria Simeri 2830 Filadelfia
1830 Albi 2890 Tiriolo
1850 Catanzaro 2940 Nicastro - Bella
1910 Gimigliano 2990 Parenti
1940 Palermiti 3000 Rogliano
1960 Chiaravalle Centrale 3040 Amantea
1970 Soverato Marina 3060 Paola
1980 Serra San Bruno 3090 Cetraro Superiore
2040 Monasterace - Punta Stilo 3100 Belvedere Marittimo
2086 Mongiana 3150 Laino Borgo

3160 Campotenese
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Table A2. ENSEMBLES Regional Climate Models used in the CLIMB validation.

Dataset 1951–1980 (mm/year) 1981–2010 (mm/year)

HCH-RCA 748 716
ARP-HIR 723 648
ECH-HIR 1146 1076
HCS-CLM 810 777
HCS-HRM 746 681
HCL-HRM 550 471
HCH-HRM 783 763
ECH-RMO 733 733
BCM-HIR 1586 1485
HCS-HIR 1217 1179
ECH-REM 672 662
ECH-RCA 777 744
HCL-RCA 904 790

E-OBS 617 596
CHIRPS - 766

Gauge data 1128 986
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