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Abstract: Urban areas globally are vulnerable to warming climate trends exacerbated by their growing
populations and heat island effects. The Local Climate Zone (LCZ) typology has become a popular
framework for characterizing urban microclimates in different regions using various classification
methods, including a widely adopted pixel-based protocol by the World Urban Database and Access
Portal Tools (WUDAPT) Project. However, few studies to date have explored the potential of
object-based image analysis (OBIA) to facilitate classification of LCZs given their inherent complexity,
and few studies have further used the LCZ framework to analyze land cover changes in urban
areas over time. This study classified LCZs in the Salt Lake Metro Region, Utah, USA for 1993
and 2017 using a supervised object-based analysis of Landsat satellite imagery and assessed their
change during this time frame. The overall accuracy, measured for the most recent classification
period (2017), was equal to 64% across 12 LCZs, with most of the error resulting from similarities
among highly developed LCZs and non-developed classes with sparse or low-stature vegetation.
The observed 1993–2017 changes in LCZs indicated a regional tendency towards primarily suburban,
open low-rise development, and large low-rise and paved classes. However, despite the potential for
local cooling with landscape transitions likely to increase vegetation cover and irrigation compared
to pre-development conditions, summer averages of Landsat-derived top-of-atmosphere brightness
temperatures showed a pronounced warming between 1992–1994 and 2016–2018 across the study
region, with a 0.1–2.9 ◦C increase among individual LCZs. Our results indicate that future applications
of LCZs towards urban change analyses should develop a stronger understanding of LCZ microclimate
sensitivity to changes in size and configuration of urban neighborhoods and regions. Furthermore,
while OBIA is promising for capturing the heterogeneous and multi-scale nature of LCZs, its
applications could be strengthened by adopting more generalizable approaches for LCZ-relevant
segmentation and validation, and by incorporating active remote sensing data to account for the 3D
complexity of urban areas.
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1. Introduction

Worldwide expansion and warming of urban regions present an important concern for the
well-being of their residents, creating an urgent need for cost-effective strategies to track changing
microclimates and inform current and future planning [1–4]. Previous research has extensively
focused on urban heat island (UHI) phenomena manifested in significantly higher temperatures of
cities compared to their surroundings due to unique thermal properties of urban land cover/use
(LULC), building materials, human activities and other factors [5–9]. Increases in both ambient urban
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temperatures and frequency of extreme heat events [10] pose major threats to human health, especially
in areas with higher population densities and vulnerable social and demographic groups [1,2,11].
These concerns become even more apparent considering that by 2050, 66% of the world’s population is
projected to be urban, while 82% of the North American population already lives in urban areas [12].
However, as UHIs are frequently analyzed at metropolitan scales [8,13,14], it remains less well known
how specific local urbanization patterns contribute to their intensity and persistence in regions with
ongoing development [15,16].

Adapting urban policy and planning to these novel thermal risks thus requires a more explicit
understanding of the distribution and dynamics of urban microclimates [17–19], which cannot
be adequately represented by the rural-urban temperature differences or traditional LULC types
alone [6,20,21]. To better represent landscape drivers of UHIs, Stewart and Oke (2012) proposed the
classification of Local Climate Zones (LCZs) as urban regions with similar surface cover (Figure A1,
Appendix A), building materials, configuration and types of human activities [6]. There are 17
total classes, where LCZs 1–6 are built-up types with different building compactness and height,
types 7–10 represent other urban-specific surfaces and land uses, and types A–G are non-built
land cover types that are not unique to cities [6,21]. The distinctions among LCZs are defined by
measurable physical properties (see the Appendix A in [6]), and thus each class has a somewhat unique
microclimate, as supported by both in situ observations and numeric modeling [22–25]. As such, the
LCZ framework enables objective, standardized comparisons of urbanization patterns from a climate
impact perspective [6,9,21], as well as other applications in climate modeling [20] and landscape
design [17]. The LCZs also appeal to planning and policy [26–29] because operationalizing the new
insights from UHI studies requires framing them in the lexicon of design and planning, which often
relies on discrete concepts such as zoning boundaries, building dimensions, and similar. Measurements
of urban climates, on the other hand, are frequently scale-sensitive and continuous in space and time.
The LCZ framework aims to reconcile this discrepancy by summarizing micro- and meso-climatic
variation across the landscape and packaging this information into discrete zones that can be translated
into specific measurable parameters of the urban environments [6,26,28,30–32].

Recognizing this potential, multiple efforts have started to map LCZs in different cities across the
world [9,21,26,33–35], as discussed in more detail in the next section; however, relatively few studies
have applied this framework in the context of urban change [36,37]. The potential of urban temperatures
and UHIs to continue increasing with ongoing development implies that urban neighborhoods in
growing cities may experience future warming, even without substantial change in their landscape
morphology and structure [13,37]. Thus, understanding the dynamics of urban LCZs and their
relationship to microclimatic transformation represents an important research need, which could be
addressed using existing and new spatially comprehensive and temporally rich satellite products.
For instance, more than 30 years of openly accessible Landsat imagery provides an unprecedented
opportunity to characterize LCZs and their change in different urban regions experiencing transitions
of their LULC and population [38,39]. Our study presents a case for such analysis by using an
object-based image analysis (OBIA) workflow to classify LCZs in the Salt Lake City Metro Region, USA
from 30 m Landsat imagery and assess their shift with the ongoing urbanization from 1993 to 2017.
We subsequently discuss the strengths and challenges in applying OBIA towards LCZ classification
from medium-resolution imagery, reflect on the potential of LCZs to characterize long-term urban
transformation and outline key future research needs and potential directions.

2. Background

2.1. Background on LCZ Applications and Alternative Mapping Methodologies

Efforts to map LCZs to date have highlighted many useful insights and methodological
opportunities for applying LCZs towards urban change analyses [34,40,41]. Typically, LCZ mapping
relies on supervised image classification workflows, where training samples of LCZs are generated
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from known locations by expert selection and are subsequently used to train statistical algorithms to
recognize LCZs in the unmapped areas [21,32]. One particularly well-known protocol was developed by
the World Urban Database and Access Portal Tools (WUDAPT) project [20,21,31], a community-based
initiative aiming to develop a global database representing urban form and function in a format
applicable to climate-relevant research and modeling. The WUDAPT level 0 LCZ classification
approach [21] uses publicly available Landsat satellite imagery resampled from 30-m spatial resolution
to ~100–150 m. The training sample and validation regions for each LCZ are selected using expert
knowledge and cost-effective platforms such as Google Earth software, and then a Random Forest
classifier is used to map LCZs in the open source software, SAGA. Among different studies, notable
recent outcomes of WUDAPT include a comparison of surface urban heat islands across 50 global
cities [33] and a continental-scale LCZ map for Europe [9].

While Landsat imagery has been a prevailing input to LCZ mapping to date [20,21,42–45], other
datasets have also been used recently as either primary inputs or supplementary to Landsat. An
analysis of LCZs and UHIs in Beirut [46] used a Sentinel-2 image together with three Landsat-8 scenes
in a multi-date classification input, which facilitated the differentiation of vegetation types based
on Sentinel-2′s red edge band. Similarly, an assessment of the effect of input data on LCZ mapping
focusing on nine cities in Europe recommended a joint use of Landsat-8 and Sentinel-2 [47]. Another
study focusing on Milan, Italy [48] compared LCZ maps derived from Landsat-8, Sentinel-2 and 5-m
RapidEye satellite imagery, where the latter input resulted in ~4–10% lower overall accuracy than two
others. Alternatively, an effort to map LCZs in three metropolitan areas in Texas, USA [28] combined
the existing 30-m National Land Cover Dataset (NLCD) raster product and airborne LiDAR datasets
to discriminate LCZs via a multi-step decision-making algorithm based on both horizontal identity
and 3-dimensional structure of land cover. Another notable example of using active remote sensing in
LCZ mapping involved the application of Sentinel-1 synthetic aperture radar (SAR) imagery in 29
global cities [49], which suggested the importance of using local statistical features relevant to urban
heterogeneity in classification success.

However, despite efforts to increase the informative richness of input data and common use of
sophisticated machine-learning algorithms, classification accuracy among these previous studies highly
varied, ranging from greater than 81% [21,43–45] to less than 70% [35,42,46,49]. One of the potential
key reasons behind this could be the availability and quality of training samples, as suggested by the
LCZ transferability analysis in [50] which highlighted the importance of city or local ecoregion-specific
training data for such transferability and the potential need to strategically combine training data
from different cities in broader-scale regional mapping. Another potentially important factor could
lie in the pixel-based nature of LCZ classifications and spatial resolution of the input data. In some
cases, individual pixels may be too small to capture the relevant mixtures of cover types (i.e., paved
surfaces, vegetation, buildings), or, in contrast, too large to adequately capture the contrasts between
LCZs with similar mixtures of different urban surfaces. These issues may be magnified in historical
neighborhoods of older cities with irregular, complex patterns making it difficult to identify LCZ
boundaries [51]. Collectively, these challenges imply that spatial scales that best represent individual
LCZs may vary among different urban regions and even among the individual LCZs themselves,
which makes it difficult to optimize accuracy under one standard mapping unit size [43,52].

Recognizing this challenge, studies have proposed different modifications to mapping units and/or
classification workflow. For instance, LCZ analysis in Wuhan, China, found 500m to be a more optimal
spatial resolution for investigating the relationships between landscape pattern and temperature [52].
This result was consistent with the originally proposed LCZ dimensions, namely the minimum diameter
of 400–1000 m to account for thermal continuity and broad-scale atmospheric effects [6]. Alternatively,
a study mapping LCZs in Kyiv, Ukraine [35] retained some of the spectral variation at the Landsat
30 m resolution by calculating additional statistics (e.g., mean and extrema of spectral values) when
resampling to 120 m. This adjustment, however, improved overall accuracy by only 2%. In contrast,
another LCZ analysis in three European cities [44] preserved the original Landsat pixel resolution



Remote Sens. 2019, 11, 1615 4 of 27

of 30 m instead of resampling to a larger pixel size, but incorporated neighborhood information in
classification by using moving window-based local metrics, leading to 5–12% accuracy improvement.
However, the remaining difficulties in accounting for complex urban land cover boundaries with rigid
fixed-size moving windows [44] together with the lack of accuracy improvement with higher spatial
resolution of inputs in other cases [48] suggest that the need for more flexible mapping approaches
accounting for complex LCZ configurations remains.

2.2. The Potential of Object-Based Image Analysis for LCZ Mapping

Another possibility to account for local heterogeneity in urban landscape structure in LCZ
mapping is offered by object-based image analysis (OBIA), which has been widely applied in previous
urban studies [53–57]. With OBIA, image pixels are first grouped into local regions, or objects, via a
segmentation algorithm, and then resulting objects, rather than individual pixels, are classified into
relevant landscape categories. The OBIA workflow can be customized to include other geographic
data (e.g., land cover, zoning units) in addition to remote sensing images, or to select a segmentation
and/or classification method according to the study objectives. For example, during segmentation,
objects may be generated either as small regions capturing local heterogeneity and smoothing noise
but not conforming to a particular geometry, or as whole entities of specific types (e.g., buildings, trees)
that can be validated using independently delineated polygons [54,55]. Similar to pixel-based analysis,
objects may be assigned to classes via unsupervised, supervised or rule-based algorithms, including
machine-learning methods [58]. However, compared to pixels, objects offer two unique advantages
as mapping units: 1) capturing local neighborhoods of pixels that may be more representative of the
class-specific spatial pattern than pixels themselves, and 2) using metrics summarizing such patterns
(i.e., object shape, texture, context) as class-discriminating variables in addition to spectral values [59].
Some of the popular segmentation algorithms allow the resulting objects to vary in size depending on
local spectral heterogeneity [59,60], which may accommodate classes with varying-scale patterns and
may be especially appealing for LCZs.

Urban landscape studies have particularly benefited from OBIA due to its potential to address
local spatial complexity and facilitate recognition of “characteristic” urban landscape features with the
combined power of spectral, geometric, textural and contextual attributes [54–56,61,62]. Studies have
shown that with sufficiently high spatial resolution, OBIA workflow allows distinguishing not only of
general land cover, but also of individual objects such as trees [61,63], buildings [62], vehicles [55] and
other elements as “building blocks” for various landscape typologies. Spatial configuration of such
features and interactions among vegetated and developed elements also provides a critical insight
into bottom-up mechanisms shaping urban thermal phenomena at broader scales [15,63,64] Recent
advances in machine-learning algorithms further offer promise for characterizing urban land uses [65],
which are critically important for understanding environmental impacts of human activities, yet can
be difficult to map from remote sensing images alone [39,51].

Recent studies have also started to demonstrate the potential of OBIA to facilitate mapping of
novel urban typologies. A study of Berlin, Germany [53] derived a detailed land cover map using
high spatial resolution airborne imagery that was subsequently used to produce a feature set for
classifying Urban Structure Types as different forms of landscape morphology and spatial patterns.
Among LCZ-specific efforts, a study of Xuzhou, Jiangsu, China [66] used image segmentation on
panchromatic 2.5 m PRISM imagery to extract the road network of the study area; the resulting road
blocks were then used as the mapping units for LCZ classification, leading to a relatively high (81%)
overall accuracy compared to pixel-level classification (63%). A study of Bandung, Indonesia [67]
found that object-based classification of LCZs from very high-resolution Pleiades and SPOT-6 satellite
imagery achieved greater overall accuracy (89%) than did pixel-based analysis of Landsat imagery
(69%). However, the potential of OBIA to facilitate LCZ mapping from medium-resolution imagery
such as Landsat, has not been yet extensively explored, although multiple studies have successfully
used OBIA with Landsat imagery in both urban regions [57,68] and other landscapes [58,69]. Given
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the >30-year length of the Landsat archive, testing the potential of OBIA to facilitate the monitoring of
urban LCZs can help better understand the attribution of microclimatic transformations in different
cities to local planning, policies and environmental setting.

3. Materials and Methods

3.1. Study Area

The focal urban area of this study (Figure 1) was the Salt Lake Valley within the State of Utah, USA.
It forms the central section of the larger metropolitan region known as the Wasatch Front, within which
approximately 80% of the Utah State’s population resides. Surrounded by the Wasatch Mountain
Range to the East, the Oquirrh Mountains to the West, and the Great Salt Lake to the Northwest, the
study area constitutes a mountain valley. While most of the state of Utah is comprised of desert and
semiarid steppe lands, the Wasatch Front forms a humid continental-hot summer zone at 1288 m
elevation, with cold, snowy winters averaging below 0 ◦C, and hot, dry summers averaging around
25 ◦C. Furthermore, while short-term weather patterns are not necessarily indicative of larger climatic
trends, the five warmest years on record for Salt Lake City have all occurred recently, between 2012
and 2017.
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Pronounced urban development makes the Salt Lake Valley a particularly relevant place for LCZ
analysis, as it is one of the fast-growing metro regions, by population, in the United States. Within the
study period of 1993 to 2017, the population increased by approximately 323,000 (40%) [70], while
the 2017 average annual percent change in population growth for Salt Lake County in 2017 was 1.27,
compared to 0.72 for the entire USA [70]. Furthermore, the proportion of population increase due to
migration is growing, which can be attributed to Utah’s booming tech economy [71]. In January 2017
the Salt Lake Metro region had the lowest unemployment rate among all metro areas in the United
States with greater than 1 million people [72]. As a result, the urban built up area has also expanded
rapidly over the study period, primarily into the southwestern part of the region constrained by the
Oquirrh Mountains bordering the West of the Valley. This has caused major changes in land uses
and urban morphology within the existing urban footprint, thus providing an informative case for
investigating changes in the extent and spatial pattern of LCZs. For this analysis, the study area
boundary (Figure 1) was selected to capture the built-up area within Salt Lake County Utah based on
2010 US Census block group polygon geometries. To focus on the main urban extent, polygons that
primarily overlaid the desired built up area were selected and combined to form the final boundary,
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whereas some large or irregularly shaped polygons that extended far outside the desired study area
were omitted. Subsequently, object-based image classification was used to classify LCZs from the
input Landsat satellite imagery separately for 2017 and 1993, followed by a post-classification change
analysis, as described in the following sections (Figure 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 26 
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3.2. Object-Based Classification of LCZs from Satellite Imagery

3.2.1. Remote Sensing Data and Image Segmentation

The first step in each year’s LCZ classification was generation of primitive mapping units (i.e.,
objects) via segmentation of a single-date Landsat image using the Segment Mean Shift tool in ArcGIS
version 10.5 (ESRI Inc.) software. Such an algorithm can also be implemented in open-source GIS
software, such as QGIS. Segmentation was performed using one satellite image for each time period of
interest, representative of the summer-early fall time frame when atmospheric temperatures tend to
be higher and annual herbaceous vegetation is typically senescent, highlighting their contrast with
woody species (Table 1). For 1993, the input image was a Landsat 5 Thematic Mapper, Level 1 Precision
Terrain Corrected, Tier 1 product, collected on 22 September 1993 (this date was chosen as the closest
to the timing of the available digital orthophoto quad high spatial resolution reference imagery of
10 September 1993). Bands 2 (0.52–0.60 µm), 3 (0.63–0.69 µm), and 4 (0.76–0.90 µm) from this image
were used in segmentation. For 2017, the input image was a Landsat 8 OLI/TIRS, Level 1 Precision
Terrain Corrected, Tier 1 product, collected on 22 July 2017. Landsat bands 3 (0.533–0.590 µm), 4
(0.636–0.673 µm), and 5 (0.851–0.879 µm) from this image were used in segmentation. Electromagnetic
regions of these bands correspond to the green, red, and near-infrared spectral wavelengths, expected
to help differentiate between green and senescent vegetation, water and built-up/impervious surfaces.
Here and later during classification, Landsat images were used at their original spatial resolution
of 30 m for visible and infrared bands, and 120 m spatial resolution of thermal bands resampled to
30 m. All satellite images in this study were obtained from the U.S. Geological Survey’s Earth Explorer
database (https://earthexplorer.usgs.gov).

The Segment Mean Shift tool in ArcGIS software generates objects via a bottom-up, region-growing
algorithm which groups the neighboring pixels together depending on the criteria for spectral similarity,
spatial properties of resulting regions and minimum object size determined by a set of user-specified
parameters (Table A1, Appendix A; [73,74]). The parameter that controls the importance of spectral
properties was set to the maximum value of 20 (on the scale from 0 to 20) because it was intended
to achieve the greatest discrimination between features with similar spectral characteristics (such as

https://earthexplorer.usgs.gov
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vegetated classes). The parameter for relative importance of spatial detail (Table A1, Appendix A) was
informed by testing multiple values and visually examining the output against base map imagery,
which suggested that the relatively low value of 2 (on the scale from 0 to 20) was optimal for preserving
landscape element mixtures relevant to LCZ definitions.

Table 1. Landsat satellite imagery used in object-based segmentation and classification of LCZs.

2017 Period 1993 Period

Analysis Scenes Date Bands/Indices Scenes Date Bands/Indices

LCZ
(primitive)

Segmentation

LC08_L1TP_
038032_20170722_
20170728_01_T1

22 July 2017 3,4,5
LT05_L1TP_

038032_19930922_
20160928_01_T1

22 September 1993 2,3,4

LCZ
Classification

LC08_L1TP_
038032_20170212_
20170228_01_T1

12 February 2017 2
3
4
5
6
7

10
11

NDVI
NDWI

LT05_L1TP_
038032_19930720 _

20160927_01_T1
20 July 1993 1

2
3
4
5
6
7

NDVI
NDWI

LC08_L1TP_
038032_20170401_
20170414_01_T1

1 April 2017
LT05_L1TP_

038032_19930922_
20160928_01_T1

22 September 1993

LC08_L1TP_
038032_20170722_
20170728_01_T1

22 July 2017
LT05_L1TP_

038032_19931211_
20160927_01_T1

11 December 1993

LC08_L1TP_
038032_20171010_
20171024_01_T1

10 October 2017
LT05_L1TP_

038032_19940402_
20160927_01_T1

2 April 1994

Finally, the parameter controlling segmentation affects the amount of spectral variation allowed
within segments and thus minimum segment size (the same amount of local variation in more
homogenous landscapes would be captured by larger segments than in heterogeneous areas). Due to
potential variability in the size of LCZs, the goal of segmentation was not to delineate their complete
extents, but instead to obtain object primitives that could be classified to reproduce such full extents.
Thus, segmentation outcomes would ideally sufficiently capture minimum representative groupings
of real-world objects and covers for different local climate zone types. To determine the appropriate
minimum segment size given these objectives, 30 iterations of the segment mean shift tool were run on
the input images, while varying the parameter on each iteration, from 2 to 60 by increments of 2. For
each resulting segmented map, the spectral variation within each segment was summarized as the
standard deviation of the near infrared band of the input image, and the mean of these within-segment
standard deviations was used to summarize within-segment variation for the entire map, and to
compare the output maps to one another. Scale parameter value of 20 was chosen for primitive object
generation as the inflection point after which the rate of change in within-segment variation starts
slowing towards saturation (Figure 3).
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3.2.2. Image Classification

Next, the resulting segment polygons were classified into LCZs using the following process. For
each time period, four cloud-free Landsat scenes (one for each season) were used (Table 1) in order
to capture phenological variation in LCZs that may aid in their classification (Bechtel et al., 2015).
For each primitive object in the segmentation results, basic summary statistics (minimum, maximum,
mean, median and standard deviation) were calculated for each spectral band for each date. For
2017, training samples of LCZ classes (Table 2) were then selected following their definitions in [6]
from ArcGIS and Google Earth high resolution imagery for 2017 (see examples of class patterns in
Figure A1, Appendix A). A total of 60 segments were selected to represent each class using a random
sampling technique where 100 segments within the study area were selected randomly and each was
manually classified by visually interpreting their identity from reference imagery. This process was
then repeated until each local climate zone class had accumulated a minimum of 60 samples. However,
some classes were not prevalent enough within the study area to achieve the desired 60 samples
using this methodology, so specific instances of these classes were sought out, classified manually and
isolated prior to automated classification. Specifically, for LCZs 1 (compact high-rise) and 10 (heavy
industry), all segments within the study area had been sufficiently identified, and therefore did not
need to be included in the supervised image classification. It was discovered that classes 4 (open
high-rise) and 7 (lightweight low-rise) could not be identified in the study area, while class C (brush,
scrub) could not be reliably distinguished from low plants via visual interpretation alone. Therefore,
the resulting candidate LCZs for classification included 2, 3, 5, 6, 8, 9, A, B, D, E, F, and G. For each of
them, 50% of the previously identified samples were randomly selected for use in classifier training,
and the remaining 50% were reserved for independent accuracy assessment.

Table 2. Local climate zone (LCZ) classes used in classification and change analysis of the study area.
Columns labeled with ‘T’ show numbers of training sample objects, and columns labeled ‘V’ show the
number of validation samples (2017 only).

LCZ
2017 1993

LCZ
2017 1993

T V T V T V T V

2: Compact Mid-Rise 31 31 20 n/a A: Dense Trees 32 31 60 n/a
3: Compact Low-Rise 32 32 20 n/a B: Scattered Trees 39 39 20 n/a

5: Open Mid-Rise 38 37 30 n/a D: Low Plants 40 39 30 n/a
6: Open Low-Rise 42 41 40 n/a E: Bare Rock or Paved 31 31 40 n/a
8: Large Low-Rise 42 41 40 n/a F: Bare Soil or Sand 37 37 60 n/a
9: Sparsely Built 33 33 60 n/a G: Water 31 30 40 n/a

For 1993, training sample selection followed a slightly different process since there was no
high-resolution reference imagery in Google Earth (Table 2). The best historical (1993) data available
for reference were black and white U.S. Geological Survey digital orthophoto quadrangles at 1-m
resolution from September 10, 1993. Coverage of the study area by this imagery was also limited;
therefore, the number of training samples for each class varied (Table 2). The polygon data representing
training sample segments was converted to csv file format for the subsequent LCZ classification.

Next, the open-source Waikato Environment for Knowledge Analysis (Weka) software [75] was
used for the supervised classification of each Landsat image set into LCZs based on the identified
training samples. The advantage of machine-learning methods for LCZ mapping is that, in contrast to
maximum likelihood approaches, they often do not rely on rigid assumptions about class statistical
distributions and can handle large numbers of discriminating features that may be useful for complex
typologies. In our workflow, the Random Forest classifier recommended by WUDAPT was applied in
both years. It was implemented using Weka’s graphical user interface (GUI) with the specification as
shown in Table A2, Appendix A. For details on how to run Weka the reader is referred to the supporting
documentation at https://www.cs.waikato.ac.nz/ml/weka/documentation.html and to [75]. To maintain

https://www.cs.waikato.ac.nz/ml/weka/documentation.html
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comparability with other studies using the WUDAPT method, a similar feature set was used, but with
the addition of the Normalized Difference Vegetation Index (NDVI; normalized difference between
near-infrared and red bands, [76]) and the Normalized Difference Water Index (NDWI; normalized
difference between green and near-infrared bands, [77]), following previous studies [50,78]. For the
2017 period, the Landsat 8 feature set included the segment-level means of bands 2-7, 10, 11, NDVI
and NDWI, while the 1993 Landsat 5 feature set included the segment-level means of bands 1-7, NDVI
and NDWI.

Independent accuracy assessment was subsequently conducted for 2017 using the previously
designated validation samples. Accuracy was assessed with the standard metrics (i.e., overall, user’s
and producer’s accuracies) based on the contingency matrix comparing reference and mapped identities
of the classified LCZs for validation samples [79]. In addition, a bootstrapping procedure was applied
using the Python package, Scikit-learn [80] to evaluate the distributions of overall classification accuracy,
kappa, overall accuracy of urban-only LCZs and overall accuracy of two aggregated classes, urban
(LCZs 1-10) and natural (LCZs A-D, F and G excluding E common to both urban and natural areas),
following [30]. No independent accuracy assessment was conducted for 1993 due to the lack of
reference data, but the same method and similar input features (Table 1) were used here as for 2017.

3.3. LCZ Change Analysis

A post-classification change analysis was conducted by computing the geometric intersection of
the 1993 and 2017 LCZ maps. Areas where different LCZs intersected were categorized as areas of
change, and the specific type of change was labeled according to the previous (From) and current (To)
LCZ classes. The sum area of each LCZ was calculated for each analysis year, and the change in LCZ
proportional composition of the study area was analyzed. The sum areas of each specific ‘from-to’
change type were also analyzed for the original individual LCZs and for specific LCZ groups sharing
similarity in both definitions and directions of change.

Finally, we estimated changes in two landscape metrics characterizing spatial pattern of individual
LCZs: mean patch size, representing the average extent of LCZ patches in each respective period, and
mean proximity index characterizing the degree of isolation among patches given their size [81]. The
latter index can distinguish among scattered, smaller patches (low mean proximity index values) and
clusters of larger, more aggregated patches (high mean proximity value).

3.4. Changes in the Proxy of Surface Temperature

To investigate the potential microclimatic implications of the observed LCZ changes, we used the
land surface temperature (LST) datasets from the Landsat Level-2 Provisional Surface Temperature (ST)
Science Products [82] for the same dates as the Landsat images used in classification (Table 1). Between
two periods, these selected Landsat dates represented similar seasons and vegetation phenology stages
(Table 1). Thus, to compare them, we computed per-pixel annual LST averages and then quantified
changes in their mean values for each LCZ between two periods. To assess potential changes in LST
distribution within the study area, we also normalized the annual average LSTs within its boundary
by subtracting their mean values and dividing by standard deviation. We then evaluated how the
skewness and kurtosis of the normalized value distributions changed between two periods.

4. Results

4.1. Supervised Classification of LCZs

The overall accuracy of the 2017 LCZ classification was 64% with kappa coefficient of 0.61 (Table 3),
while the cross-validation accuracy initially performed by Weka using the training set was 71% (with
kappa equal to 0.68). Overall accuracy distribution determined by bootstrapping largely varied
between these two estimates (Figure A2 Appendix A), showing a mean value of 0.67. Furthermore,
similar to the results in [30], bootstrapping produced relatively lower accuracy values for urban-only
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LCZs, with the minimum values reaching ~0.55 (Figure A2 Appendix A) and a mean of 0.62. In turn,
simplifying the scheme to natural versus urban LCZs showed a highly successful distinction of these
groups with overall accuracies exceeding 91% (Figure A2 Appendix A), also similar to the results
in [30].

Table 3. Contingency matrix for LCZ classification accuracy assessment.

Reference LCZsMapped
LCZs 2 3 5 6 8 9 A B D E F G

User’s
Accuracy

2 12 2 5 0 2 1 0 0 0 2 0 0 0.50
3 2 18 2 4 1 0 0 0 0 2 0 1 0.60
5 8 4 18 0 5 0 0 0 1 3 0 0 0.46
6 0 1 5 37 0 3 2 0 1 0 1 1 0.73
8 3 3 2 0 26 0 0 0 0 5 1 0 0.65
9 0 0 2 0 0 24 2 1 3 0 0 1 0.73
A 0 1 1 0 0 0 22 2 0 0 0 2 0.79
B 0 1 0 0 0 2 5 21 7 0 0 1 0.57
D 0 0 0 0 0 2 0 14 25 0 2 1 0.57
E 5 1 1 0 4 0 0 0 0 18 2 1 0.56
F 1 0 1 0 2 1 0 0 1 1 29 1 0.78
G 0 1 0 0 1 0 0 1 1 0 2 21 0.78

Producer’s
Accuracy 0.39 0.56 0.49 0.9 0.63 0.73 0.71 0.54 0.64 0.58 0.78 0.70 Overall

accuracy 0.64

The individual class accuracies in the independent assessment (Table 3) indicated several notable
successes and challenges. Open Low-Rise (LCZ 6), the most prevalent class in 2017 (Figure 4), had
the highest producer’s accuracy at 90%. It was followed by Bare Soil (Class F) with 78%, Sparsely
Built LCZ 9 (73%) and Dense Vegetation (71%). The highest user’s accuracy was observed for distinct,
predominantly non-built-up classes (Table 3): Dense Vegetation (79%), Bare Soil or Sand (78%) and
Water (78%).
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In contrast, a substantial amount of the classification error was associated with LCZs representing
a greater intensity of development, as suggested by the off-diagonal counts in Table 3. For instance,
Compact Mid-Rise (LCZ 2) and Open Mid-Rise (LCZ 5) both had the lowest producer and the lowest
user accuracies of all classes (Table 3). They also showed a substantial mutual confusion with each other
(Table 3). Other notable class pairs with mutual confusion were Paved (LCZ E) and Large Low-Rise
(LCZ 8), likely due to their common association with flat impervious surfaces, and between Scattered
Trees (LCZ B) and Low Plants (LCZ D), likely due to high prevalence of low-height vegetation in each.
User’s accuracy for the Open Low-Rise (LCZ 6) was relatively lower (73%), which together with its
higher producer’s accuracy suggested that other classes were likely to be misclassified as this LCZ
(Table 3).

4.2. Change in LCZ Distributions

Spatial distribution and prevalence of LCZs in 1993 and 2017 (Figures 4 and 5) indicated a
substantial degree of urbanization during this period (Table A3 Appendix A). Open Low-Rise (LCZ 6)
increased from being the second largest (17.4% of the study area) to the most prevalent (35%) in 2017.
This class showed the largest gains overall, adding 126.3 km2 (88.5% of its 1993 extent), equivalent to
16.8% of the study area (Table A4 Appendix A). This was consistent with the population growth observed
during the study period, as LCZ 6 typically corresponded with residential suburban development.
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Other substantial gains in area were observed in the Paved (LCZ E) and Large Low-Rise (LCZ 8)
classes, adding, respectively, 160.6% and 82.35% of their 1993 extents (Figure 5, Table A4 Appendix A).
By their definition and distribution within the study area, these classes both typically corresponded
with commercial and manufacturing uses, the growth of which can also be visually identified on the
Local Climate Zone maps. In contrast, the two other most extensive 1993 LCZs, Low Plants (LCZ D)
and Sparsely Built (LCZ 9), decreased by 37.9% and 46.1%, respectively, even though both remained
among the 3 largest classes in 2017 (Table A4 Appendix A). Area losses for these classes together with
a 49% decrease in Bare Soil and Sand (LCZ F) indicates that all three likely represented preferred
sites for new development. Among most classes that already had been developed in 1993, losses
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were relatively small, with the exception of Open Mid-Rise (LCZ 5), which lost 48.3% of its area, and
Compact Low-Rise (LCZ 3), a large part of which was converted to Open Low-Rise (LCZ 6). Both of
the latter results were not intuitive, and in addition to potential LCZ transitions, they could be caused
by the classification error and potential expansion of vegetation cover. For instance, growth of woody
species or introduction of specific landscaping practices could affect the balance between vegetated
and built-up spectral contributions, making the respective locations more similar to LCZ 6.

4.3. Changes in Spatial Pattern of LCZ Distribution

The spatial pattern of LCZ distribution also showed several notable changes during the study
period. Mean proximity index increased substantially for LCZs 6, 8, and E (Figure 6a), resonating
with the large net increases in their respective class areas (Figure 6b, Table A4 Appendix A). Among
these, LCZ 6 in particular showed an extreme increase, indicating that its expansion was accompanied
by greater local aggregation, likely due to extension of existing patches (as opposed to new leapfrog
development). While some relatively isolated patches of LCZ 6 remained in the southwestern part of
the study area (Figure 4), its mean patch size nearly doubled over the study period (Figure 6b).
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Figure 6. Changes in spatial pattern indicators of different LCZs from 1993 to 2017: (a) mean proximity
index, and (b) mean patch size.

In contrast, LCZs 9, D, and F, the classes that showed substantial net decreases in class area, all
decreased in mean proximity index as well. On the 1993 map, LCZ 9 formed an aggregated and
relatively large grouping of patches in the South and Southwest portions of the study area. This region
is where much landscape change took place. Other LCZs, primarily LCZ 6, expanded into this region,
forming a more heterogeneous patchwork of LCZs. By looking at the LCZ maps (Figure 4), LCZ 9
clearly shows change to a more fragmented pattern of smaller patches. The mean patch size of LCZ 9
also decreased by approximately 45%.

4.4. Changes in Thermal Characteristics of the Urban Landscape

Finally, the comparison of Landsat land surface temperature variation across the study area
between 1993 and 2017 revealed a pronounced overall warming (Figure A3 Appendix A), and increases
from 0.1 to 2.9 ◦C on average temperature of individual LCZs (Figure 7a). Pixels with net decreases in
temperature represented ~15% of the study area, corresponding to small wetland features, vegetated
areas, golf courses and a few urban shadow areas in high-rise neighborhoods. In 1993, the highest
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mean temperatures were observed for LCZ 8 (25.8 ◦C) followed by LCZs 2, 10 and E (>24 ◦C in each).
In 2017, LCZs 8 and 10 remained the warmest on average (27.7 and 26.7 ◦C, respectively), followed by
2, 3, E and 10 (26.1–26.6 ◦C). The lowest temperatures, in turn, were observed for types A and B in both
1993 (20.4 and 22.7◦C, respectively) and in 2017 (21.5 and 22.8◦C, respectively). The highest increases in
mean LST (>2◦C) were observed for open LCZs 5 and 6, compact low-rise (LCZ 3) and industrial (LCZ
10). In turn, the lowest LST changes (within 0.1–1.2◦C) corresponded to natural LCZs A–F, indicating
that the background thermal conditions did not differ substantially between the two periods.
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Figure 7. Mean Landsat land surface temperature (LST) values for mapped LCZs in the Salt Lake City,
UT, USA study area in 1993 and 2017: (a) annual average LST, and (b) normalized annual average LST.
Error bars show standard deviation of temperature metrics within LCZs.

Mean values of normalized annual average LST indicated that most LCZs remained consistently
above or below the study area mean values (Figure 7b). Among natural classes, vegetated (A, B) and
water (G) were substantially below the average, while most of the built-up classes were above the
average, especially in 2017 (Figure 7b). Two exceptions were Sparsely Built (LCZ 9) with substantial
prevalence of non-built cover, and Compact High-Rise (LCZ 1) where lower-than-average LSTs could
emerge due to tall building shadows at the time of the satellite overpass. Across the study area, the
skewness of normalized LST distributions changed from −0.88 in 1993 to −0.95 in 2017, indicating
the increase in the left tail and greater frequency of higher values in the later time period. In turn,
the kurtosis of normalized LST distributions has also increased from 7.03 in 1993 to 10.05 in 2017,
indicating a greater concentration of values around the mean—i.e., increased homogeneity of the
landscape, which may be expected with urbanization.

5. Discussion

5.1. The Informative Value of LCZs for Monitoring Urban Transformation

Major environmental transformations experienced by globally expanding urban regions call for a
revision of traditional LULC classes to facilitate the understanding of potential processes underlying
these transitions [21,31,53]. The local climate zone framework has been proposed as one of such
novel, alternative typologies bridging physical characteristics of cities (and particularly their built
environment) with spatial and morphological structural properties applicable to urban architecture,
planning and design [9,17,21]. As the appeal of LCZs is recognized by a wider community of researchers
and planners and more cities are included in the WUDAPT efforts [20,42], the need to better understand
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the opportunities offered by different classification approaches (and possibilities to improve them with
new methodological advances) is becoming even more pertinent.

A closer look at the transitions among individual LCZs in the study area (Figure 5) highlights
the regional tendency towards suburbanization at the expense of lateral low-density development.
For example, the largest net increase of the low-density built-up areas (LCZ 6) and relatively low
(17%) conversion of their 1993 area to any other class (Table A4 Appendix A) suggest that it is not an
intermediate stage of development, but rather an ultimate stage. Our results further suggest that much
of the new development associated with commercial/industrial land uses (LCZs 8 and E) emerged
primarily from direct open space (Figures 4 and 5, Table A3 Appendix A) and in some cases sparsely
built (LCZ 9) rather than existing low-density development. These patterns are consistent with the
broader tendencies in the rapidly urbanizing Wasatch Front of north-central Utah encompassing our
study area [83,84]. Developed areas here are projected to expand by 48–80% by 2030, while expected
increases in population density range only between 15–25 people/ha, suggesting a prevalence of
low-density peripheral urban growth [83]. Similar to urbanizing regions in other parts of USA and
Canada [85], such lateral expansion occurs at the expense of agriculturally productive lands and poses
multiple threats to natural habitats and ecologically sensitive areas in the region [83,84].

Our results further show that LCZs provide a useful framework to characterize urban
transformation [36] and elucidate microclimate-relevant aspects of urban heterogeneity [27,31,50].
Differences in spatial extents and patterns of LCZs between 1993 and 2017 (Figure 4) highlighted the
increases in relatively warmer LCZs 8, E and 6 and losses of cooler types A and 9 (Figure 5, Table A4
Appendix A). Relative differences in mean brightness temperature among these LCZs (Figure 7) were
consistent with earlier studies [29,37,45], although in our case type D (low plants) appeared among the
warmer types likely due to dry and warm state of herbaceous natural vegetation in the dry-summer
climate of the study area. The overall character of LCZ change showed large increases in LCZs 6, 8, and
E, and decreases in LCZs 9, D, and F, which collectively indicate increases in landscape structural and
morphological features contributing to potential heat island phenomena. These results were similar to
an LCZ change analysis conducted in Bogor City, Jakarta [36], in which an overall trend of increasing
area among the built LCZs and decreasing area among the vegetated LCZs was observed along with
increases in land surface temperature.

Our results further suggest that potential microclimatic transitions indicated by LCZ changes
could be amplified by shifts in their spatial configuration (Figure 6), particularly, consolidation and
expansion of LCZs 6, 8 and E, and reduction and fragmentation of LCZs 9, D and F. Hypothetically, not
all development transitions should elevate urban heat, particularly when encroaching onto relatively
hot open space. For example, Bare Soil (LCZ F) tends to be a relatively warm LCZ in arid and semi-arid
cities [45], and thus loss of area and fragmentation of patches of LCZ F may be expected to produce
some amount of local cooling if new development adds shading structures, tree and shrub vegetation
or irrigation, which may be expected for suburban residential land management. In our case, 35% of
the area lost by LCZ F over the study period was replaced by LCZ 6, a class expected to be relatively
cooler due to open nature of development and greater vegetation cover (Figure 7), while ~5.6 km2 also
converted from LCZ F to LCZ 9, another relatively cooler LCZ.

Notably, however, the overall shifts in brightness temperatures in our focal area do not indicate
any substantial local cooling (Figure A2 Appendix A) with the exception of a few irrigated golf course
areas. Furthermore, the increase of average temperatures for all LCZs regardless of the amount of
their change (Figure 7, Figure A3 Appendix A) suggests that the whole region has experienced an
increase in surface temperature between the compared periods. The magnitudes of this increase
should be interpreted with caution because they could be influenced by ambient climate warming
and the differences between two Landsat instruments and short-term weather fluctuations despite the
use of top-of-atmosphere brightness temperature products and their averages over 3-year summer
periods. Nevertheless, the observed region-wide warming and shifts in normalized LST distributions
were consistent with the expected potential warming due to the expansion of urban area, leading to
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local temperature increases even in neighborhoods not experiencing changes in urban morphology
per se [13,86]. For instance, modeling of summer climate indices based on LCZs in Brno, Czech
Republic [86] reported an increase in summer warming indicators for all LCZs under different climate
change scenarios, especially the extreme ones.

Importantly, these results imply that microclimates may change without substantial changes in
urban morphology defining LCZs, due to synergistic effects of broader-scale urban configuration
and increasing ambient and surface temperatures. Changes in urban energy consumption and
anthropogenic heat sources could also contribute to thermal shifts without an apparent change in
urban morphology [19,87]. These considerations should be taken into account by spatial land use
planning and policy to strategically plan for local cooling via landscape design measures to mitigate
the broader warming introduced by urban development and promote more sustainable management
of water and energy resources [16,19,87–90]. As many LCZ analyses to date have been performed as
single-year, the feedbacks between LCZ-specific microclimates and the broader urban environment
represent an important direction for future work.

5.2. Successes and Challenges in Object-Based LCZ Classification

Our results indicate that, overall, object-based image analysis is appealing for classification of
Local Climate Zones particularly as high spatial resolution imagery becomes incorporated in such
efforts; however, the workflow does not necessarily outperform the successes of previous pixel-based
analyses and needs more refinement to become a generalizable framework. Although the overall
LCZ classification accuracy of 64% for the full range of considered classes was relatively low, it was
comparable with several other previous studies performing supervised classifications of LCZs, such
as 56% in [46], 64% in [35] and 67.7% in [42]. Furthermore, most of the classification error was a
cumulative outcome of small misclassifications among individual class pairs (Table 3), while the sizable
pool of 12 candidate classes and their inherent similarities contributed to greater likelihood of such
misclassifications. The observed mutual confusions among LCZs were also common in other studies,
particularly the prominent mutual confusion between Compact Mid-Rise (LCZ 2), Large Low-Rise
(LCZ 8), and Paved (LCZ E). For instance, [21] noted the misclassification between Large Low-Rise
(LCZ 8) and Paved (LCZ E), while [44] reported confusion between the compact built zones and Large
Low-Rise (LCZ 8).

Our results further suggest that these confusions may result from both vertical (i.e., building
height and rise) and horizontal (i.e., openness and spatial arrangement) similarities among LCZs
(Table 3). Mutual confusions among built-up classes with different levels of building height indicate the
limitations of passive remote sensors to capture the differences in rise, while misclassifications among
compact and open LCZs suggest potential similarities in relative contributions of their land covers
despite the expected differences in configuration. Similarly, substantial confusion among ‘sparse’ LCZs
9, B and D (Table 3) places varying sparseness of woody plant cover as an important challenge for
both LCZ mapping and inference of microclimatic properties in less developed and sparsely built
areas. This evidence implies that complexity of 3D urban structure is an important contributor to
LCZ mapping uncertainties regardless of the classification method. Future work should thus more
rigorously explore the utility of datasets representing vertical variability in urban surface, such as novel
metrics of building density, tree cover and broader local heterogeneity developed from LiDAR [28]
and radar [49] active remote sensing products.

Some of the observed classification successes were likely attributed to the advantages of the
OBIA framework, particularly, the high producer’s accuracy for a heterogeneous-by-definition Open
Low-Rise (LCZ 6) (Table 3). Using image objects as multi-pixel mapping units may allow capturing
complex spatial patterns composed of both constructed elements and various types of open and
vegetated spaces between them under the same semantic identity. As open low-rise development
appears to be one of the key transformations in the study area’s urban sprawl, these results suggests
that the object-based framework may help address the definitional complexity of LCZs as an inherent
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challenge in their mapping. Our results also suggest that mapping LCZs with potentially larger
amounts of vegetation (e.g., A, B, D, 9) can benefit from the OBIA approach as well by helping to
separate them from more developed LCZs that may include vegetated pixels as part of, e.g., backyard
and street spaces. However, primitive objects generated from moderate-resolution data might not
be sufficiently sensitive to nuanced variation in low-density woody cover or presence of sparsely
built elements.

Differentiating among such LCZs with confidence may ultimately require higher-resolution
imagery [46,48,67], where, again, objects may offer greater flexibility for summarizing local heterogeneity
and complex LCZ boundaries compared to square block mapping units [67]. For current and future
analyses, such opportunities are emerging with the accumulation of open-access Sentinel-2 imagery
and Harmonized Landsat-Sentinel-2 product [91]. Moderate-resolution imagery remains appealing for
broad-scale and historical LCZ mapping due to the availability of thermal products and unparallelled
archive length. However, emerging urban studies are increasingly uncovering the microclimatic
impacts of fine-scale LULC patterns and urban structure [15,16,63,64], which necessarily rely on
higher detail of landscape characterization. As such, mechanistic understanding of LCZs and their
microclimatic properties would necessarily invoke the applications of high spatial resolution data [51],
even if thermal information is not available at the same spatial scales. As the benefits of greater spatial
detail come at the cost of greater local spectral noise and confounding heterogeneity, the advantages of
OBIA [59,69] and its earlier applications in urban mapping [53,56] may be increasingly useful to LCZ
analyses in the future.

The limitations encountered in our OBIA implementation for LCZ mapping call for more research
in three important directions. First, OBIA performance, as well as its added cost and logistical demand,
should be compared against the established pixel-based workflows, particularly WUDAPT [20,21,30].
The relatively straightforward implementation and universality of the latter are important advantages
when urban structure can be well represented by 100–150 m pixel units, as suggested by high
classification accuracy in some of the previous studies [21,43,44]. In contrast, OBIA’s possibility to use
more flexible and variable mapping units in complex landscapes comes at a cost of extra steps required
to parameterize the segmentation and limited generalizability, which may not be equally necessary
among different cities. Thus, to provide a more informed guidance about method selection, future
research should perform comparative assessments of the alternative workflows in landscapes with
different levels of structural and morphological complexity, using high-quality reference data.

Second, the role of segmentation and strategies to optimize the choice of its parameters need to be
identified more explicitly, because the degree of spectral heterogeneity in LCZs is expected to vary
due to their definitions [58,92]. Although the Segment Mean Shift tool is able to generate variable
sizes and properties of primitive objects, the contrasts between more homogeneous LCZs and classes
with inherent configurational complexity present the risks for both under-segmentation (i.e., covering
more than one visually discernable LCZ) and over-generalization (delineating single homogeneous
cover signatures, such as building rooftops, rather than capturing local scale structures). Furthermore,
the flexibility of variable-size objects comes at a cost of difficulties to anticipate specific properties of
mapping units, which may need to be chosen according to city-specific landscape properties. Thus,
a more careful discrimination should be taken in future analyses to choose training objects that are
relatively large and “homogeneous” with respect to LCZ definition. Incorporating spatial units that
are likely to influence the pattern of development associated with hypothesized LCZ structure—such
as land parcels, zoning units or census units sharing similar population and housing densities—may
also facilitate this task.

Third, there remains an important uncertainty about which spectral, textural and other features
may be most effective at differentiating LCZs given the complexity of their typology (Table 2).
Phenological characteristics of vegetation may further contribute to such uncertainties; for example, in
dry-summer climates such as in our study area, herbaceous vegetation may be spectrally similar to
trees in green stage and to bare soil in senescent stage. More detailed future investigations would thus
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be useful both at the segmentation stage (since the Segment Mean Shift tool in ArcGIS takes as input
3 user-specified image bands at a time) and at the stage of classification to identify the most useful
discriminating features and optimal date(s) [47].

5.3. Other Key Lessons and Future Research Directions

Opportunities and challenges revealed by our analysis suggest several other important future
research directions to make LCZ applications more robust and transferable across global regions.
There is an obvious need to refine and standardize the validation of LCZ mapping outcomes, because
different accuracy assessment strategies in previous studies make it difficult to draw generalized
lessons about method performance. Spatial dimensions of testing units may also affect accuracy
assessment; for instance, a study with classification accuracy of 64% similar to ours [35] commented
that even independent validation pixels may be problematic as LCZs are supposed to be at least 1 km2

in size. To avoid a potential bias due to proximity of training and test samples, in [44], independent
validation polygons were purposefully chosen from training areas instead of randomly selected pixels;
the resulting overall accuracies ranged from 79.6 to 90.2% in different cities. Lessons from a global LCZ
transferability assessment [50] highlight the importance of both training and test sample selections and
suggest the need to consider sample sources broader than an individual focal city. A unique challenge
in validating object-based LCZ classification thus becomes a decision as to what types of reference
objects might perform as the most representative, and what criteria might be especially important in
guiding the initial segmentation process to capture their LCZ relevance.

The latter challenge, in turn, highlights another interesting and important research need:
developing a stronger understanding of the ‘characteristic’ spatial scales of different LCZs to better
inform the minimum mapping unit selection (or segmentation scale in OBIA workflows). Both the
original definitions of LCZs and the insights from our results make it obvious that a single segmentation
scale or moving window size might not fully accommodate their differences, which has been long
recognized in complex landscapes [55,92]. However, in the context of LCZ mapping, it further
translates into the need to understand scales that effectively represent thermal outcomes of specific
patterns. This understanding is currently limited both by challenges to discriminate among LCZs
despite the inclusion of the thermal remote sensing datasets [93] and by the dynamic behavior of
urban temperatures that may shift even when morphological aspects of LCZs remain stable. Future
studies should therefore more explicitly investigate the fundamental relationships between local
spatial patterns and their thermal outcomes across ranges of urban scales beyond individual pixels or
multi-pixel square neighborhoods.

Together, these issues also raise important questions about the interpretation and uncertainty of
the LCZ boundaries. Urban microclimates are often continuous, scale-dependent [17,20,22,39] and
difficult to discretize due to various processes contributing to atmospheric circulation and energy
transfer [6]. In contrast, the morphology of LCZs treats urban landscapes as mosaics of discrete semantic
entities, e.g., buildings, trees, roads or their groupings, with detectable limits [6]. However, with
moderate to coarse spatial resolution units, such as 30 m Landsat pixels or larger sizes recommended
by WUDAPT [21,30,42], the boundaries between urban entities and LCZs themselves are likely to
be diluted. As such, it can be difficult to interpret the mapped LCZ boundaries based on the local
gradients of temperature or other microclimatic parameters. This uncertainty is further augmented
by both the shorter-term variation of urban temperatures (e.g., diurnal, seasonal or interannual) and
longer-term shifts (e.g., due to continuing urban warming). As a result, spatially explicit validation
of LCZs and their boundaries from the urban microclimate perspective remains an important and
interesting challenge for the future research.

Finally, an important research need is testing the potential of complementary remote sensing
datasets to elucidate structural, configurational and microclimatic differences among LCZs. The ‘ideal’
datasets for characterizing urban 3D complexity, such as LiDAR point clouds or waveform datasets,
are not yet available globally as systematically acquired and publicly available products. However,
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advances in moderate-resolution satellite radar systems, including publicly available Sentinel-1
instruments, may provide useful information about volume and complexity of urban structures to
complement the passive optical remote sensing datasets even if thermal bands are not available [43].
Very few studies to date, however, have attempted such multi-source analyses in the context of LCZs,
and the utility of radar inputs was not uniformly obvious among their results [43,93]. The earlier
mentioned harmonization of Landsat and Sentinel-2 products [91] and emerging higher-resolution
open-access land surface temperature datasets [94] would further support such analyses at global
scales and repeated time frames.

6. Conclusions

This study classified Local Climate Zones [6] in the Salt Lake Metro Region (USA) and assessed
their change between 1993 and 2017 using object-based image analysis with 30-m resolution Landsat
data. Our results show that urbanization of the study area during this period was accompanied by
several notable LCZ transformations, particularly the expansion of open low-rise development common
in residential neighborhoods and large low-rise and paved LCZs common in commercial/industrial
areas. Both of these types grew primarily at the expense of non-developed or sparsely built areas and
suggested that suburbanization and lateral sprawl, rather than intensification of existing development,
were the key players in the observed transformations. While hypothetically the observed transitions
could be expected to produce both local warming and local cooling (e.g., due to conversion of bare soil
to low-density developed areas with greater green vegetation cover), the mean values for Landsat-based
surface temperature increased for all LCZs by 0.1-2.9◦C, showing the warming tendency across the
vast majority of the region. While our results cannot reliably disentangle urbanization from ambient
climate warming, new anthropogenic energy sources and potential confounding effects of satellite data
availability, they highlight an important need to investigate thermal dynamics of LCZs which might
occur in growing cities without pronounced changes in the morphology of their neighborhoods.

From a practical perspective, our findings indicate that OBIA applied to moderate-resolution
satellite imagery shows potential to facilitate LCZ classification and change analysis by capturing
local heterogeneity of urban landscapes within objects as mapping units. However, as most of the
classification error resulted from the confusions among developed LCZs with varying horizontal density
of landscape elements and vertical height of vegetation and built-structures, several important directions
should be pursued in future research. These directions include: (1) identifying characteristic spatial
scales of different LCZ patterns to more effectively guide segmentation of images into objects as mapping
units; (2) testing additional feature sets as discriminating attributes in LCZ classification, particularly,
measures of local variance and texture [44,47,66]; and (3) testing the utility of complementary
datasets, particularly active remote sensing data, to support LCZ classification by providing additional
information on 3D structure and heterogeneity of urban landscapes [43,93].

In sum, our findings concur with previous studies that Local Climate Zones show potential as a
valuable framework for landscape change analysis as they can provide a more detailed, climate-relevant
perspective of urban change when compared with traditional land use and land cover classification
schemes. Our results corroborate the potential of the open-access Landsat imagery to support the
analysis of urban microclimatic transformation consistently with the goals of the WUDAPT project
and similar initiatives and encourage LCZ classifications for past time periods and more detailed
longer-term change assessments.
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Table A1. Main parameters of the segmentation process as the first stage of OBIA workflow.

Value
Parameter Explanation

1993 2017

Input Raster The raster data to segment
LT05_L1TP_

038032_19930922_
20160928_01_T1

LC08_L1TP_
038032_20170722_
20170728_01_T1

Band Indexes Landsat bands used to segment the imagery

Band 2
(0.52–0.60 µm)

Band 3
(0.63–0.69 µm)

Band 4
(0.76–0.90 µm)

Band 3
(0.533–0.590 µm)

Band 4
(0.636–0.673 µm)

Band 5
(0.851–0.879 µm)

Spectral Detail

A parameter in Segment Mean Shift tool
controlling the importance of spectral

differences for the object outcomes. Values
range from 1 to 20 with higher values

producing greater separation of regions with
similar spectral properties.

20 20

Spatial Detail

A parameter controlling the importance of
proximity between objects. Values range from
1 to 20, where higher values allow delineating

smaller and more clustered features.

2 2

Minimum
Segment Size

A scale parameter controlling the size of the
smallest allowed objects (in pixels). Objects
smaller than this size can be merged with

their most similar neighbor.

20 20

Table A2. The following table lists the essential parameters used in setting up the random forest
classifier in Weka. Default values were used for all other parameters not listed in the table.

Parameter Name Value Used Parameter Description
numIterations 100 The number of trees in the forest.

maxDepth 0 (unlimited) The maximum depth of each tree.

numFeatures 0 = (log_2(n_features) + 1) The number of features to consider when
looking for the best split

bagSizePercent 100 Size of each bag, as a percentage of the
training set size.

Table A3. Spatial extents (km2) of transitions and no-change among LCZs from 1993 to 2017.

TO LCZ (2017)
1 2 3 5 6 8 9 10 A B D E F G

1 0.24 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.20 2.27 0.70 3.00 1.73 4.55 0.05 0.00 0.02 0.00 0.12 1.65 0.11 0.06
3 0.00 1.16 4.80 1.67 29.34 5.68 1.67 0.01 0.34 0.18 1.17 1.95 0.14 0.10
5 0.07 1.42 3.99 6.66 29.76 2.59 3.06 0.02 0.29 0.73 0.56 2.08 0.14 0.45
6 0.04 0.57 5.12 3.69 117.43 1.61 5.99 0.02 1.48 1.63 2.77 1.01 0.39 0.45
8 0.11 2.93 0.87 3.11 1.25 21.14 0.16 0.30 0.00 0.05 0.15 4.98 0.15 0.03
9 0.00 1.58 9.86 2.83 41.49 4.45 35.23 0.02 4.35 6.81 12.50 5.57 5.02 0.78
10 0.00 0.00 0.00 0.10 0.05 0.06 0.12 1.04 0.01 0.02 0.02 0.94 0.16 0.10
A 0.00 0.09 0.63 0.36 2.52 0.66 2.74 0.00 6.15 3.06 2.41 0.73 0.55 0.67
B 0.00 0.10 0.44 0.42 2.49 0.17 2.48 0.00 0.66 6.25 2.61 0.53 0.57 0.12
D 0.00 1.36 7.82 1.83 23.46 11.14 11.69 0.04 2.37 7.94 61.09 14.35 16.54 5.20
E 0.01 0.64 0.72 1.22 1.10 5.81 0.55 0.25 0.04 0.01 0.54 11.16 1.02 0.42
F 0.00 0.80 6.91 1.75 17.27 3.57 5.65 0.23 0.10 0.99 14.68 12.14 14.69 1.78

FR
O

M
LC

Z
(1

99
3)

G 0.00 0.20 0.18 0.13 0.55 2.91 0.94 0.39 0.28 0.21 3.74 4.12 1.63 2.91
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Table A4. Changes in spatial extents of mapped Local Climate Zones between 1993 and 2017.

1993 2017
LCZ Area

(km2)
%Study

Area
Area
(km2)

%Study
Area

Area
Lost

(km2)

Area
Gained
(km2)

Net
Change
(km2)

Net Change
(As %Class

Area)

Net Change
(As %Study

Area)
1 0.3 0.0 0.7 0.1 0.03 0.44 0.41 155.3 0.1
2 14.5 1.9 13.1 1.7 12.19 10.86 −1.33 −9.2 −0.2
3 48.2 6.4 42.1 5.6 43.40 37.26 −6.15 −12.7 −0.8
5 51.8 6.9 26.7 3.6 45.17 20.12 −25.05 −48.3 −3.3
6 142.6 19.0 268.9 35.8 24.78 151.00 126.22 88.5 16.8
8 35.2 4.7 64.3 8.6 14.10 43.19 29.09 82.6 3.9
9 130.5 17.4 70.3 9.4 95.26 35.10 −60.17 −46.1 −8.0

10 2.6 0.3 2.3 0.3 1.57 1.29 −0.28 −10.8 0.0
A 20.6 2.7 16.1 2.1 14.44 9.94 −4.50 −21.8 −0.6
B 16.8 2.2 27.9 3.7 10.60 21.63 11.04 65.5 1.5
D 164.8 22.0 102.4 13.6 103.74 41.29 −62.45 −37.9 −8.3
E 23.5 3.1 61.2 8.2 12.33 50.06 37.73 160.6 5.0
F 80.6 10.7 41.1 5.5 65.88 26.42 −39.46 −49.0 −5.3
G 18.2 2.4 13.1 1.7 15.28 10.16 −5.11 −28.1 −0.7
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